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Abstract. In the current study, a two-dimensional multi-relaxation time (MRT) lattice
Boltzmann model which can tolerate high density ratios and low viscosity is employed
to simulate the liquid droplet impact onto a curved target. The temporal variation of
the film thickness at the north pole of the target surface is investigated. Three different
temporal phases of the dynamics behavior, namely, the initial drop deformation phase,
the inertia dominated phase and the viscosity dominated phase are reproduced and
studied. The effect of the Reynolds number, Weber number and Galilei number on the
film flow dynamics is investigated. In addition, the dynamic behavior of the droplet
impact onto the side of the curved target is shown, and the effect of the contact angle,
the Reynolds number and the Weber number are investigated.

AMS subject classifications: 76T10

Key words: Multiphase flow, MRT Lattice Boltzmann, high-density-ratio, droplet impact, film
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1 Introduction

Many engineering process operations involve the droplet impingement onto solid sur-
face, such as spray cooling, spray painting and coating, diesel and automotive injection,
catalytic reaction process in fixed bed reactors and more recently in microfabrication and

∗Corresponding author. Email address: Konstantinos.Papadikis@xjtlu.edu.cn (K. Papadikis)

http://www.global-sci.com/ 892 c©2014 Global-Science Press



D. Zhang, K. Papadikis and S. Gu / Commun. Comput. Phys., 16 (2014), pp. 892-912 893

microchannels. Therefore, understanding the fluid dynamics of droplet impaction onto
solid surfaces is important for the design and improvement of the above industrial pro-
cesses.

Rein [1] and Yarin [2] presented comprehensive reviews on the experimental and the-
oretical studies of the droplet impact dynamics onto the solid surface. Systematic studies
have been carried out by Rioboo et al. [3]. Six possible outcomes of drop impact on
a dry wall were revealed, namely deposition, prompt splash, corona splash, receding
break-up, partial rebound and complete rebound. The influence of droplet size, impact
velocity, droplet viscosity, surface tension of the droplet, the surface roughness ampli-
tude and the surface wettability characteristics on the impingement outcomes have been
investigated. Experimental and analytical investigations have been done extensively to
study the time evolution of the spread factor and the correlation between the maximum
spreading factor and Weber number, Reynolds number, Ohnesorge number [4–8]. The
three non-dimensional parameters, Weber number (We), Reynolds number (Re) and the
Ohnesorge number (Oh) are defined as

We=
ρLD0U2

0

σ
, (1.1)

Re=
ρLD0U0

µL
(1.2)

Oh=
µL

√

D0σρL

, (1.3)

where U0 is the drop impaction speed, D0 is diameter of the spherical drop prior to im-
pact, µL is the liquid viscosity, σ is surface tension of the liquid drop, ρL is liquid density.

Most of the existing work has investigated the droplet impacting onto a flat surface.
However, very limited research has been focused on the droplet impacting onto a spher-
ical surface. Hung and Yao [9] have carried out experiments on the impaction of water
droplets, the diameters of which are 110, 350 and 680 µm on cylindrical wires. The ef-
fect of droplet velocity and the wire sizes were varied parametrically to reveal the im-
paction characteristics. Hardalupas et al. [10] have conducted experiments on droplets
of a water-ethanol-glycerol solution in the size and velocity ranges of 160<D< 230 µm
and 6<U<13 m/s respectively, impinging on the surface of a solid sphere with 0.8−1.3
mm diameter. The impinged droplet formed a crown which was influenced by surface
roughness, droplet kinematic and liquid properties. Bakshi et al. [11] have reported ex-
periments and theory on the impact of a droplet onto a spherical target over a range of
Reynolds numbers and target-to-drop size ratios. Three distinct temporal phases of the
film dynamics were found, namely the initial drop deformation phase, the inertia domi-
nated phase, and the viscosity dominated phase. The influence of the droplet Reynolds
number and the target-to-drop size ratio on the dynamics of the film flow on the surface
of the target were conducted.

Since experimental techniques are not adequate to deal with the complex measure-
ment, numerical investigations have drawn increasing attention in simulating complex
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multi-phase flow. Trapaga and Szekely [12] used a commercial code (FLOW-3D) that im-
plements the “volume of fluid” (VOF) method to study the impact of molten particles
in a thermal spray process. Bussmann et al. [13] studied the flow of a droplet impact on
flat and inclined surfaces with a 3D VOF method. Pasandideh-Fard et al. [14] developed
a three-dimensional model which is an extension of finite-difference, fixed-grid Eulerian
model to simulated the impact of a 2mm diameter water droplet landing with low veloc-
ity (1m/s) on tubes ranging in diameter from 0.5 to 6.35 mm. Liu et al. [15] developed
a fixed-grid, sharp interface method to simulate the droplet impact and spreading on
surfaces of arbitrary shape with a level-set method. Ge and Fan [16] studied the process
of collision between an evaporative droplet and a high-temperature particle in a riser
reactor with a three-dimensional level-set method.

As a modern method, lattice Boltzmann method (LBM) has attracted considerable at-
tention in simulating the droplet impingement on solid surfaces. There are several mod-
els developed for multi-phase and multi-component flows during the last twenty years.
They are Shan and Chen’s potential method [17], Swift et al.’s free energy method [18]
and He et al.’s phase field method [19]. However, the density ratio is limited due to nu-
merical instabilities. To overcome this difficulty, Inamuro et al. [20] proposed a model,
based on the free energy method for multi-phase flows with large density ratio. Yan [21]
reported a new numerical scheme for the lattice Boltzmann method which combines the
existing model of Inamuro [20] and Briant [22] for calculating the liquid droplet behav-
ior on partial wetting surface typically for the system of liquid-gas of large density ratio.
However, Inamuro et al.’s model [20] involves solving a Poisson equation, which de-
creased the simplicity of the usual LBM. Lee and Liu [23] developed a stabilized scheme
of discrete Boltzmann equation for multiphase flows with large density ratio based on the
phase field method. The LBE method was applied to micron-scale drop impact on dry
surfaces. However, at different steps, the discretization forms are different, which make
the implementation quite complex and reduce the computational efficiency greatly. Al-
ternative to the Bhatnagar-Gross-Krook (BGK) model, the multi-relaxation time (MRT)
method [24–26], represent changes in the various physical collision processes by select-
ing different and separated time scales. The stability of the LBE can be significantly im-
proved by MRT. Gupta and Kumar [27, 28] studied the droplet impingement on a flat
solid surface with Shan-Chen model [17] at low density ratio. However, the Shan-Chen
model adopted in the present study suffers from some limitations, such as low density
ratios and it is unstable with a relaxation time τ less than 1 which restricts the maximum
Reynolds number that can be achieved. Very few studies focus on the simulation of a
droplet impact on a curved solid surface. Shen [29] adopted the two-dimensional lattice
Boltzmann pseudo-potential method to simulate the droplets impacting on curved solid
surfaces. However, the density ratio of liquid and gas is limited to unity.

In order to overcome the limitations of low density ratio and instability with a relax-
ation time τ less than 1, a two-dimensional multi-relaxation-time interaction-potential-
based lattice Boltzmann model based on the improved forcing scheme which was re-
ported by Li et al. [30] and Peng-Robinson (P-R) equation of state [31] is proposed in this
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paper. The impaction of liquid droplet on a curved surface for the liquid-gas system with
large density ratio and low kinematic viscosity of the fluid is simulated. The effect of the
Reynolds number, Weber number, Galilei number and surface characteristics on the dy-
namic behavior of droplet and film flow dynamics on the target surface are investigated.

The rest of the paper is organized in four sections. In Section 2, the improved MRT
pseudopotential LBM model is introduced, followed by numerical investigations on the
droplet impact onto a spherical surface in Section 3. Finally, conclusions are presented in
Section 4.

2 Numerical model

2.1 Incorporation of the force term

In the LBM model, the motion of a fluid is described by a set of discrete single-particle
density distribution functions. According to the Guo et al. [32] forcing scheme, the parti-
cle distribution function with single relaxation time can be written as

fα(x+eαδt,t+δt)= fα(x,t)− 1

τ
[ fα(x,t)− f

eq
α (x,t)]+Fα, (2.1)

where fα is the particle distribution along the αth direction and f
eq
α is equilibrium distri-

bution, δt is the time step, eα is the particle velocity in the αth direction, and τ is the single
relaxation time. Fα is the forcing term, Li et al. [30] proposed an improved version based
on Guo et al. forcing scheme by using a modified velocity in the scheme, which leads to

Fα=(1− 1

2τ
)wα

[eα−v
′

c2
s

+
(eα ·v′

)

c4
s

eα

]

·F. (2.2)

The modified velocity v
′

is defined as v
′

= v+ǫF/((τ−0.5)ψ2), where ψ is the effective
mass and ǫ is a constant. cs=c/

√
3 is the lattice sound speed, where c=δx/δt is the ratio

of lattice spacing δx and time step δt. The equilibrium distribution function f
eq
α (x,t) in

Eq. (2.1) can be calculated as

f
eq
α =ρwα

[

1+
eα ·v

c2
s

+
(eα ·v)2

2c4
s

− v

2c2
s

]

, (2.3)

where wα is the weighting factor. In this paper, the D2Q9 model will be adopted for 2D
simulations. The discrete velocity and weighting factor for D2Q9 are given by

[

e0,e1,e2,e3,e4,e5,e6,e7,e8

]

=

[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]

, (2.4)

wα=







4/9, α=0;
1/9, α=1,2,3,4;
1/36, α=5,6,7,8.

(2.5)
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The corresponding macroscopic density and velocity are calculated by

ρ(x,t)=
N

∑
α=0

fα(x,t), (2.6)

ρv(x,t)=
N

∑
α=0

eα fα(x,t)+
F

2
, (2.7)

where N is the number of discrete particle velocities. F=F1+F2+F3 is the total force on
each particle, including fluid-fluid cohesion F1, fluid-solid adhesion force F2 and body
force F3.

2.2 Fluid-fluid cohesion

It is commonly accepted that the segregation of different phases is microscopically due
to the long-range interaction force between the particles at site x and the particles at
neighbor sites x

′

[17]. The interaction force is defined as:

F1(x)=−ψ(x)∑
x
′

G(x,x
′

)ψ(x
′

)(x
′−x), (2.8)

where G(x,x
′

) is Green’s function and satisfies G(x,x
′

)=G(x
′

,x). It reflects the intensity
of the interparticle interaction and given by

G(x,x
′

)=







g
′
, |x−x

′ |=1,

g
′
/4, |x−x

′ |=
√

2,
0, otherwise,

(2.9)

where g
′

is a constant equals to 1/9 in the current work. In Eq. (2.8), ψ(x) is the effective
mass, which is a function of the local density and can be varied to reflect different fluid
and fluid mixture behaviors, as represented by various equations. The equation of state
(EOS) of the system is given by

p= c2
s ρ+

c0

2
g[ψ(ρ)]2 , (2.10)

thus the effective mass can be defined as:

ψ(ρ)=

√

2(p−c2
s ρ)

c0g
, (2.11)

where g=g
′
/2 is a constant and c0=6.0 for the D2Q9, and p is the pressure. Five different

EOS were compared by Yuan and Schaefer [31], and it was found that Peng-Robinson (P-
R) EOS provided the maximum density ratio while maintaining small spurious currents
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around the interface. Hence, the P-R EOS was adopted in our following multi-phase flow
research, where the P-R EOS is expressed as:

p=
ρRT

1−bρ
− aα(T)ρ2

1+2bρ−b2ρ2
, (2.12)

α(T)=
[

1+(0.37464+1.5422ω−0.26992ω2)(1−
√

T/Tc)
]2

, (2.13)

with a=0.45724R2T2
c /pc and b=0.0778RTc/pc, where a is the attraction parameter, b is the

volumetric or repulsion parameter, and ω is the acentric factor. Tc and Pc are the critical
temperature and critical pressure, respectively. The density ratio and surface tension of
liquid is governed by the temperature T, parameter a and b respectively. Substituting
Eq. (2.12) into Eq. (2.11), we get

ψ(ρ)=

√

√

√

√

2( ρRT
1−bρ −

aα(T)ρ2

1+2bρ−b2ρ2 −c2
s ρ)

c0g
. (2.14)

Unlike in the original SC model, the value of coefficient of interaction strength g becomes
unimportant. Indeed, it is canceled out when Eq. (2.11) is substituted into Eq. (2.8). The
only requirement for g is to ensure that the term inside the square root in Eq. (2.11) is
positive, (i.e. g= sgn(p−c2

s ρ) has to be stored when computing Eq. (2.11)).

2.3 Fluid-solid adhesion and body force

At the fluid-solid interface, the interaction between the fluid and solid interface needs to
be considered, so the force applied on a particle that is in contact with the solid wall is:

F2=−ψ(x)∑
x
′

Gw(x,x
′

)ρw(x
′

)(x
′−x), (2.15)

where Gw(x,x
′

) denotes the intensity of the fluid-solid interaction. For the D2Q9 model,
it is defined as:

Gw(x,x
′

)=







Gwg
′
, |x−x

′ |=1,

Gwg
′
/4, |x−x

′ |=
√

2,
0, otherwise,

(2.16)

where Gw is the fluid-solid interaction potential parameter, different contact angle can be
obtained through adjusting Gw. The term ρw(x

′

) in Eq. (2.15) is the wall density, which
equals one at the wall and zero in the fluid. In addition to interparticle and wall forces,
the body force can be simply defined as:

F3(x)=ρ(x)g. (2.17)
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2.4 Multi-relaxation-time LBM model

In general the collision process involves multiple physical quantities that may relax on
different time scales, and information for those time scales can be given using a collision
matrix Ω instead of a single time scale τ in Eq. (2.1). As a result, Eq. (2.1) is replaced by
the following density distribution function:

fα(x+eαδt,t+δt)

= fα(x,t)−∑
β

Ωαβ[ fβ(x,t)− f
eq
β (x,t)]+

(

Sα(x,t)−0.5∑
β

ΩαβSβ(x,t)
)

, (2.18)

where S is the forcing term in multi-relaxation-time LBM model which can be derived
from Eq. (2.2). The collision step in the velocity space is difficult to perform. It is more
convenient to perform the collision process in the momentum space. Hence, Eq. (2.18)
can be transformed to the following form,

fα(x+eαδt,t+δt)= fα(x,t)−M−1
Λ[m(x,t)−meq(x,t)]+M−1

(

I−Λ

2

)

S̄(x,t), (2.19)

where m and meq are the moment space of the density distribution function fα and its
equilibrium distribution f

eq
α respectively. It can be obtained from m=M f and meq=M f eq

respectively. M is the transformation matrix, which for D2Q9 is

M=





























1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1





























. (2.20)

The inverse of matrix M is

M−1= a





























4 −4 4 0 0 0 0 0 0
4 −1 −2 6 −6 0 0 9 0
4 −1 −2 0 0 6 −6 −9 0
4 −1 −2 −6 6 0 0 9 0
4 −1 −2 0 0 −6 6 −9 0
4 2 1 6 3 6 3 0 9
4 2 1 −6 −3 6 3 0 −9
4 2 1 −6 −3 −6 −3 0 9
4 2 1 6 3 −6 −3 0 −9





























, (2.21)
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where a=1/36, I in Eq. (2.19) is the identity matrix and Λ is a diagonal matrix of multi-
relaxation times which is given by

Λ=diag(τ−1
ρ ,τ−1

e ,τ−1
ζ ,τ−1

j ,τ−1
q ,τ−1

j ,τ−1
q ,τ−1

ν ,τ−1
ν ). (2.22)

The kinematic viscosity in the multi-relaxation-time Lattice Boltzmann model is given by

ν=
(

τν−
1

2

)

c2
s δt. (2.23)

The S̄ term in Eq. (2.19) is the forcing term in the moment space which can be calculated
by S̄= MS. The force is incorporated via the following forcing scheme in the MRT LB
method [34]:

S̄=MS=

































0

6(vxFx+vyFy)+
12ǫF2

ψ2(τe−0.5)

−6(vxFx+vyFy)− 12ǫF2

ψ2(τζ−0.5)

Fx

−Fx

Fy

−Fy

2(vxFx−vyFy)
(vxFy+vyFx)

































, (2.24)

where ǫ is a constant which is given by 0.315 in current work.

3 Simulation results and discussion

3.1 Impact of a droplet onto the north pole of the tube

3.1.1 Initial and boundary condition

A two-dimensional computational domain for simulation of droplet impact onto the
north pole of a tube is shown in Fig. 1. Non-slip wall boundary condition is used on
the solid surface and periodic boundary condition is used on all sides of the domain. Ini-
tially, the droplet is located several nodes away from the tube and then directed towards
the tube with initial velocity U0 after 50000 lattice time steps.

3.1.2 Dynamics of the film flow on the surface of tube

Fig. 2 shows a sequence view of the impact of the droplet onto a curved target with
Re=113.1, We=12.51, Bond number B0=1.2, density ratio ρl/ρg =580 and equilibrium
contact angle θ=60◦. The Bond number is defined as B0 = ρlgD0/σ. The evolution time
t is non-dimensionalized as t⋆ = tU0/D0, where D0 is the initial drop diameter, U0 is
the initial velocity and t is the time steps elapsed after the drop contacts the surface.
From this figure, the formation of the liquid lamella around the surface of the target is
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Figure 1: The initial and boundary conditions in domain.

t⋆=0.028 t⋆=0.090 t⋆=0.325

t⋆=3.60 t⋆=12.33 t⋆=44.83

Figure 2: Computational snapshots of droplet impact on tube; We= 12.51, Re = 113.1, density ratio= 580,
contact angle=60◦.

clearly observed. At the beginning, the initial droplet deformation period is observed.
The upper portion of the droplet remains spherical under the action of surface tension
and moves with the impact velocity of the drop (t⋆ = 0.028 and t⋆ = 0.090). Then the
liquid lamella appears around the surface of the tube with the liquid continuing to flow
downwards and the thickness of film at the pole of tube decreasing gradually in this
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Figure 3: Time evolution of film thickness at the north pole of the tube; We = 12.51, Re = 113.1, density
ratio=580, contact angle=60◦.

phase (t⋆ = 0.325 and t⋆ = 3.60). Finally, during phase 3, the lamella begins to retract
governed by the surface tension and almost reaches a residual value (t⋆=12.33 and t⋆=
44.83) after a couple of oscillations. The corresponding temporal variation of the film
thickness at the north pole of the curved target is shown in Fig. 3 with log-log axes. The
film thickness is nondimensionalized with the initial impacting droplet diameter as h⋆=
h/D0. Three distinct temporal phases of the film dynamics can be clearly observed from
this figure. The first phase is the droplet deformation period in which the free surface
of the deforming drop is negligibly influenced by the presence of the target. Hence, the
upper part of the droplet continues to move at the impacting velocity resulting in the
non-dimensional film thickness and time satisfy the equation h⋆ = 1−t⋆. In the second
phase, inertial forces dominate the viscous forces and surface tension, thus the temporal
variation is given by the equation which yield h⋆ = 0.33/(t⋆)0.9. In phase 3, the film
thickness increases under the action of surface tension and approaches a constant value
due to the balance of surface tension, viscous forces and gravity.

Simulations are performed for different values of droplet Reynolds number with the
same target-to-drop size ratio, wettability and kinematic viscosity to evaluate the effect of
Reynolds number on the dynamics of the film flow on the surface of the tube. In order to
avoid the effect of gravity, the gravity force is not included into this case. The influence of
gravity on film flow dynamics will be discussed in the next paragraph. In the experimen-
tal research of Bakshi et al. [11], it has been observed that the non-dimensional temporal
variation of film thickness for different values of Reynolds number collapses onto a sin-
gle curve in the first and second phases. However, the Reynolds number is varied by
changing the impact velocity with same kinematic viscosity value in that study. The We-
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ber number is also varied during this process and both of the change of the Reynolds and
Weber number affect this process. A different behaviour might be observed when only
the Reynolds number is varied, while the Weber number is invariable. In order to verify
this assumption, a numerical investigation is conducted as follows. Firstly, the Reynolds
number is varied by changing the impact velocity, while the kinematic viscosity is kept
constant. The kinematic viscosity can be controlled by Eq. (2.23) and the τν is given by
0.6 for different Reynolds number. The contact angle of surface is given as 60◦ which
corresponds to Gw=2.9. Fig. 4 shows the time evolution of the film thickness at the north
pole of the target for different Reynolds numbers. Fig. 4 shows that the non-dimensional
temporal variation of film thickness for different values of Reynolds number collapses
onto a single curve in the first and second phases, but the transition to the third phase
occurs earlier for the low Reynolds number case. In addition, the film thickness in the
third phase reduces with increasing Reynolds number. All of the above observations are
in line with the experimental results by Bakshi et al. [11]. However, different phenomena
can be observed for the case that different Reynolds numbers are obtained by changing
the kinematic viscosity. The effect of different kinematic viscosity of fluids on the dynam-
ics of film flow is investigated. Fig. 5 shows the time evolution of the film thickness at
the north pole of the target for different Reynolds numbers through adjusting the kine-
matic viscosity. It can be observed that the thickness in the third phase still decreases with
increasing Reynolds number. However, it does not collapse onto a single curve in the sec-
ond phase for the different Reynolds number cases. The rate of film thickness decrease
becomes slower with increasing kinematic viscosity. This shows that the influence of the
viscous force in the second phase can not be neglected for the low Reynolds number case.
By comparing with the Reynolds number and Weber number used in Bakshi et al.’s [11]
experimental work, the Reynolds number and Weber number in current numerical work
is low. Thus, we call the Reynolds number and Weber number in the present work as low
Reynolds number and low Weber number. Actually, even for the high Reynolds number
case, the influence of the viscous force will appear at the latter part of the second phase
with the inertial force decreasing.

In the experimental study of Bakshi et al. [11], the effect of Reynolds number and
target-to-drop size ratio on the dynamics of film flow is investigated. In the current sim-
ulation study, the influence of gravity and surface tension is investigated as well. The
time evolution of the film thickness at the north pole of the tube with different Reynolds
numbers at Galilei number 219.5 is shown in Fig. 6. The Galilei number is defined as
Ga = gD3

0/ν2. It is clear from Fig. 6 that the temporal variation of film thickness for
different values of Reynolds number collapses onto a single curve in the first and sec-
ond phases, which shows that the influence of gravity can be neglected in the first and
second phases. However, decreasing the kinematic viscosity which corresponds to an
increase in the Galilei number results in a different phenomenon. Fig. 7 shows the tem-
poral variation of the film thickness for different Reynolds number at Galilei number
3512. It can be seen that the influence of gravity on the second phase appears with
increasing Galilei number, while the rate of film thinning becomes slower for the high
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Figure 4: Temporal variation of film thickness at the north pole of the tube for different Reynolds number and
Weber number with same kinematic viscosity; τν =0.6, contact angle=60◦.
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Figure 5: Temporal variation of film thickness at the north pole of the tube for different Reynolds number and
Weber number with different kinematic viscosity; contact angle=60◦.

Reynolds number case. This is because the influence of gravity is not considered into
the non-dimensional time. From Fig. 8, it is clear that when evolution time t is non-
dimensionalized as t⋆ = (tU0+0.5gt2)/D0, the non-dimensional temporal variation of
film thickness for varied Reynolds number collapses onto a single curve again in the sec-
ond phase. In order to evaluate the effects of the surface tension on the dynamics of
the film flow process, simulations were conducted for different values of Weber number
while the wettability of solid surface and Reynolds number were held constant as θ=91◦
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Figure 6: Temporal variation of film thickness at the north pole of the tube for different Reynolds number and
Weber number with Ga=219.5, B0=3.42, contact angle=60◦.
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Figure 7: Temporal variation of film thickness at the north pole of the tube for different Reynolds number and
Weber number with Ga=3512, B0 =3.42, contact angle=60◦.

and 65.25. The gravity force is ignored in this case. In Fig. 9, the time evolution of the
dynamics of film flow at the north pole of the tube with varied Weber number is shown.
It can be seen that the effect of surface tension can be neglected in the first and second
phases, and the rate of film thickness reduction is the same. However, the surface tension
dominates the inertial force at the end of the second phase, the transition to the retraction
phase occurs earlier for the low Weber number case.
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Figure 8: Temporal variation of film thickness at the north pole of the tube for different Reynolds number and

Weber number with Ga=3512, B0 =3.42, contact angle=60◦ and t⋆=(tU0+0.5gt2)/D0.
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Figure 9: Temporal variation of film thickness at the north pole of the tube for different Weber number with
contact angle=91◦ and Re=65.25.

3.2 Impact of a droplet onto the side of the tube

The dynamics of the film flow at the north pole of the tube is investigated in Section 3.1.2.
However, the droplet impact onto the side of the tube is a more common phenomenon
in industrial equipment. Especially in fixed bed and micro-channels, the contact line be-
tween liquid and solid surface and dynamic behavior of the droplet are important for the
catalytic reaction process. In the following section, the dynamic behavior of the droplet
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impact onto a curved target with its center offset from the centerline of the tube is shown.
The effects of the static contact angle, the Reynolds number, and the Weber number are
investigated. Non-slip wall boundary conditions have been used on the sphere surface
and periodic boundary conditions have been used on all sides of the domain.

3.2.1 Dynamic behavior of droplet impact onto the side of the tube

Fig. 10 shows the snapshots of impact of a liquid droplet landing on a tube, with Reynolds
number of 78.3, Weber number of 23.99, Bond number of 0.515, density ratio ρl/ρg of 580
and contact angle of 107◦. The droplet falls towards the tube after 50000 lattice time steps,
with its center offset by 65 nodes from the centerline of the tube. The evolution time t is
non-dimensionalized as t⋆ = tU0/D0, where t is the number of time steps elapsed after
the drop contacts the surface. Immediately after impact, the process is similar with the
first phase of the droplet impact onto the north pole of the tube, which is the initial drop
deformation period (t⋆=0.078). Then the liquid droplet spreads out on the surface of the
tube. Since the impact point of the droplet is off-set relative to the tube, the flow pattern
is not symmetrical, and the majority of the liquid flows downwards rather than towards
the upper part of the tube. The liquid lamella appears as the liquid flows in an upward
manner towards the north pole of the tube (t⋆=0.62). The upward motion tendency of the
liquid is captured at t⋆=0.853, where the droplet is pulled down by gravity. As a result of
the inertial force and gravity, the bulk of the droplet continues to flow downwards, being
stretched and growing longer and thinner (t⋆ = 1.55 and t⋆ = 3.1). However, with the
bulk of the liquid flowing downwards, the impact and potential energy of the droplet are
dissipated in overcoming the viscous flow effects and in spreading out its surface area.
Hence, the downward stretching is stopped at about t⋆=4.19, after which the bulk droplet
is pulled back onto the tube surface under the action of surface tension force (t⋆=5.897).
As the downward liquid flow increases and concentrates at the bottom of the tube, the
liquid droplet is stretched again under the action of the gravity and inertia (t⋆=8.53). At
the same time, the liquid droplet continues to move upwards along the surface of target
after crossing the bottom of tube (t⋆= 10.862). However, the surface tension dominates
the inertial and gravitational force and the upward kinetic energy is dissipated by viscous
effects (t⋆ = 18.62). Finally, the droplet flows back to the bottom under the action of
gravity and continues to resemble a pendular motion until an equilibrium state is reached
(t⋆=46.24 and t⋆=62.07).

3.2.2 Effect of contact angle

In order to investigate the effect of the wettability on the dynamic behavior of droplet
after impact onto the side of tube, the droplet impacts on a hydrophilic wall (contact an-
gle = 75◦) and on a hydrophobic wall (contact angle = 107◦) are simulated for the same
Weber number and Reynolds number. Fig. 10 and Fig. 11 show the time evolution of
droplet impact on hydrophobic and hydrophilic pipe surfaces respectively with density
ratio ρl/ρg =580, Re=78.3 and We=23.99. From Fig. 11, it can be observed that the con-
tact line between the liquid and the solid surface is longer for the hydrophilic case than
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t⋆=0.078 t⋆=0.62 t⋆=0.853 t⋆=1.55

t⋆=3.10 t⋆=4.19 t⋆=5.897 t⋆=8.53

t⋆=10.862 t⋆=18.62 t⋆=46.24 t⋆=62.07

Figure 10: Computational snapshots of droplet impact on the side of tube; We = 23.99, Re = 78.3, density
ratio=580, Bond number=0.515, contact angle=107◦.

for the hydrophobic one shown in Fig. 10. In the case of hydrophilic wall, the contact line
between the solid surface and the liquid is increasing with the downward liquid flow and
breaks up into two parts on the surface after reaching a maximum contact line. Then the
two droplets begin to retract due to interfacial tension and move towards the bottom of
the tube at the same time. At t⋆=22.5, the two droplets merge together, where an equi-
librium shape is reached at t⋆=41.18. On the other hand, in the case of the hydrophobic
wall (Fig. 10), there is a process that the bulk of the droplet is stretched and grows longer
and thinner as it moves along the surface of the tube. After the maximum elongation has
been reached, surface tension dominates the recovery process and the droplet is attached
to the tube wall. However, in the case of the hydrophilic wall (Fig. 11), the stretching and
oscillation behavior is not as obvious as that in Fig. 10 and the time to reach the equilib-
rium state is shorter than for a hydrophobic wall. This is because of the longer contact
line in the hydrophilic wall case. Thus, a higher proportion of the initial impact energy is
dissipated in overcoming the viscous effects and surface tension.

3.2.3 Effect of kinetic energy

In order to investigate the dependency of the kinetic energy on the dynamic process of
droplet impact onto the side of tube, simulations were conducted with various Weber
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t⋆=0.078 t⋆=0.62 t⋆=1.55

t⋆=5.90 t⋆=6.83 t⋆=8.53

t⋆=15.52 t⋆=22.50 t⋆=41.18

Figure 11: Computational snapshots of droplet impact on the side of tube; We= 23.99, Re = 78.3, density
ratio=580, Bond number=0.515, contact angle=75◦.

number and Reynolds numbers while the density ratio between liquid and gas, wettabil-
ity of surface and Bond number were held constant.

Fig. 12 shows the time simulated images of the dynamic behavior of the liquid droplet
impact onto the side of the tube with Weber number 46.27 and Reynolds number 108.75.
The values of contact angle and Bond number are the same as in Fig. 10. It can be seen
from Fig. 12, that the liquid breaks up into three smaller drops on the surface with the
film thinning and contact area increasing. The third part of the drop continues to flow
downwards with higher velocity and results in a column of liquid being suspended from
the tube (t⋆=5.17). The velocity of the lower portion of the droplet is larger than that in
the upper portion, which causes the lower portion of the bulk of the liquid to be pinched
off from the upper portion. Then the upper portion is subsequently detached from the
tube due to inertia dominating surface tension (t⋆ = 6.42 and t⋆ = 7.25). Thus, as it is
expected, higher Weber number flows will result in surface droplet breakup and droplet
detachment from the tube, something that does not occur in lower Weber number flows
(Fig. 10). In addition, since the surface is non-wetting, the liquid has a reduced affinity
for the solid surface, and in turn the surface interactions from the solid reduce the surface
energy. This leads to the less initial kinetic energy of droplet be dissipated and a strong
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t⋆=0.11 t⋆=0.54 t⋆=1.08

t⋆=2.16 t⋆=3.02 t⋆=4.31

t⋆=5.17 t⋆=6.42 t⋆=7.25

Figure 12: Computational snapshots of droplet impact on the side of tube; We= 46.27, Re= 108.75, density
ratio=580, Bond number=0.515, contact angle=107◦.

liquid elongation flow along the surface eventually leads to a breakup of the droplet on
the surface. In order to validate the above conclusion, a case of hydrophilic surface wall
(contact angle = 60◦) which has the same Weber number and Reynolds number as in
Fig. 12 is performed. From Fig. 13, it can be observed that the surface droplet breakup
does not occur in hydrophilic surface due to the higher kinetic energy dissipation on
surface energy. However, similar to the hydrophobic case shown in Fig. 12, the bulk
of the droplet suspends below the tube and detachment occurs as the liquid elongation
reaches a critical state at t⋆=6.79.

4 Conclusions

In the present work, the liquid droplet impact on a curved target has been simulated by a
two-dimensional multi-relaxation time (MRT) lattice Boltzmann model which can toler-
ate high density ratios and low viscosity. It is shown that three distinct temporal phases of
the film dynamics can be clearly observed from the simulation results which is consistent
with the experimental study of Bakshi et al. [11]. In the first phase, the non-dimensional
film thickness follows the correlation given by h⋆=1−t⋆. The inertia dominates the vis-
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t⋆=0.11 t⋆=0.54 t⋆=1.08 t⋆=2.16

t⋆=3.02 t⋆=4.31 t⋆=5.17 t⋆=6.79

Figure 13: Computational snapshots of droplet impact on the side of tube; We= 46.27, Re= 108.75, density
ratio=580, Bond number=0.515, contact angle=60◦.

cous forces during the second phase, while the non-dimensional time and film thickness
satisfy the relation h⋆ = 0.33/(t⋆)0.9. In the third phase, the film thickness increases un-
der the action of the interfacial tension and almost reaches a constant value at last due
to the balance of surface tension, viscous force and gravity. The non-dimensional time
and film thickness curve for different values of Reynolds number collapses onto a single
curve in the first and second phases which is in line with the experimental results [11]
when the Reynolds number is controlled by the impact velocity. However, different phe-
nomena can be observed for the case that varied Reynolds number obtained by changing
the kinematic viscosity. It can be seen that the non-dimensional time and film thickness
curves for varied Reynolds number do not collapse onto a single curve in the second
phase, and the rate of film thickness reduction becomes slower with increasing kinematic
viscosity. Therefore, the influence of the viscous force in the second phase can not be
neglected for the low Reynolds number case. The effects of gravity and surface tension
on the dynamics of film flow are also investigated in the current paper. It is found that
the influence of gravity on the second phase appears with increasing Galilei number, the
rate of film thinning becomes slower for the high Reynolds number case when evolution
time is non-dimensionalized as t⋆= tU0/D0, while the film thickness reduction rate will
remain the same when t⋆=(tU0+0.5gt2)/D0. From the simulation results, the effect of
surface tension can be neglected at the first and second phases, while the surface tension
dominates the inertial force at the end of the second phase, the transition to the retraction
phase occurs earlier for low Weber numbers.

The investigation of dynamic behavior of droplet impact on the side of the tube is
also included in this study. At the same time, the effects of surface characteristics and
impact velocity on the dynamic behavior are evaluated. From the simulation study, it
can be concluded that the contact line between liquid and solid surface on hydrophilic
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wall is longer than for hydrophobic surface and higher kinetic energy will be dissipated
on the hydrophilic wall. In addition, increasing the initial kinetic energy will result in a
droplet breakup and in the case of high impact velocity, the use of a hydrophilic surface
can assist in averting the surface droplet breakup during the impacting process.
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