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Abstract. A stochastic approach to conditional simulation of flow in randomly hetero-
geneous media is proposed with the combination of the Karhunen-Loeve expansion
and the probabilistic collocation method (PCM). The conditional log hydraulic con-
ductivity field is represented with the Karhunen-Loeve expansion, in terms of some
deterministic functions and a set of independent Gaussian random variables. The
propagation of uncertainty in the flow simulations is carried out through the PCM,
which relies on the efficient polynomial chaos expansion used to represent the flow
responses such as the hydraulic head. With the PCM, existing flow simulators can be
employed for uncertainty quantification of flow in heterogeneous porous media when
direct measurements of hydraulic conductivity are taken into consideration. With il-
lustration of several numerical examples of groundwater flow, this study reveals that
the proposed approach is able to accurately quantify uncertainty of the flow responses
conditioning on hydraulic conductivity data, while the computational efforts are sig-
nificantly reduced in comparison to the Monte Carlo simulations.

AMS subject classifications: 60H35, 65C50, 65M70, 76S05
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1 Introduction

It is well recognized that the geological formations normally exhibit spatial heterogeneity
to certain degrees. On the other hand, our information about the formations is limited
due to insufficient measurements. As such, the properties of geological formations such
as the hydraulic conductivity are usually considered as random space functions, and the
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equations describing flow and transport in the subsurface become stochastic. Extensive
studies on flow and transport in random porous media have been conducted in the past
and many stochastic approaches have been developed [4, 6, 7, 20, 22, 29].

Uncertainties of the subsurface flow can be quantified through stochastic simulation
of flow in random porous media, in that the statistical moments or probability density
functions can be evaluated for the flow responses of interests. When some measure-
ments of the hydraulic conductivity are prescribed in the process of stochastic simulation,
it is called the conditional simulation [5, 10, 17, 21]. The conditioning on the measured
hydraulic conductivity can reduce the overall uncertainty of the hydraulic conductivity
field, and that of responses of the flow and transport.

The most common approach to stochastic simulation of flow in porous media is the
Monte Carlo method [1,29]. In this approach, a random field is represented by an ensem-
ble of equally probable realizations. With each of the realizations as input, multiple flow
simulations are performed independently, and statistical properties of flow responses can
be evaluated. Monte Carlo method is straightforward to implement, either for uncondi-
tional or conditional simulation. However, it normally requires a large number of sim-
ulations to achieve statistical convergent results, thus it is computationally demanding,
which prohibits its applications in large scale problems.

An alterative to the Monte Carlo method is the moment equation method, in which a
system of deterministic differential equations governing the statistical moments (usually
the first two) of the random variables are derived with the perturbation method or the
closure approximation method [9, 11, 19, 27, 28, 31]. However, the number of resulting
deterministic equations in the moment equation method is dependent on the number of
grid blocks in the numerical simulation, thus the computational cost of the this method
is still high especially for large scale problems [29]. And it is limited to relatively small
variance of hydraulic conductivity. The Karhunen-Loeve decomposition based moment
equation approach (KLME) was developed for unconditional simulation of single phase
flow in porous media [17], which was applied for groundwater flow and transport prob-
lems [2,3,16,26]. Lu and Zhang [17] extended the KLME to conditional simulation of flow
in heterogeneous media, to incorporate the existing measurements of hydraulic conduc-
tivity.

The probabilistic collocation method (PCM) is another efficient stochastic approach
[13, 24]. It is based on the polynomial chaos expansions of random variables or fields,
and a collocation technique is used to solve for the coefficients of the polynomial chaos
expansions, which leads to uncoupled deterministic differential equations, similar to the
governing flow equations. Li and Zhang [13] explored the PCM for single phase flow and
showed its superiority compared to other stochastic approaches. With the PCM, a small
number of flow simulations are performed independently, and the existing simulators
can be employed. The method has been applied for efficient uncertainty quantification of
unconfined groundwater flow [23], unsaturated and multiphase flows [14, 15]. However
in these studies, the PCM was only used for unconditional simulation.

In this study, an approach for conditional simulation of flow in randomly heteroge-
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neous porous media is proposed, with the aid of the Karhunen-Loeve expansion and the
probabilistic collocation method. The accuracy, efficiency, and applicability of the ap-
proach will be discussed by comparing with the Monte Carlo method through numerical
examples.

2 Governing equations

Consider single phase water flow in porous media, which is governed by the following
continuity equation and Darcy’s law [29]:

Ss
∂h(x,t)

∂t
+∇·q(x,t)= g(x,t), (2.1)

q(x,t)=−K(x)∇h(x,t), (2.2)

subject to initial and boundary conditions

h(x,0)=H0(x), x∈D, (2.3)

h(x,t)=H(x,t), x∈ΓD, (2.4)

q(x,t)·n(x)=Q(x,t), x∈ΓN , (2.5)

where K(x) is the hydraulic conductivity, h(x,t) is hydraulic head, q(x,t) is the specific
discharge (flux), and g(x,t) is the source (or sink) term. H0(x) is the initial head in the
domain D, H(x,t) is the prescribed head on Dirichlet boundary segment ΓD, Q(x,t) is
the prescribed flux across Neumann boundary segments ΓN , n(x) = (n1,··· ,nd)

T is an
outward unit vector normal to the boundary Γ=ΓD∪ΓN , and SS is the specific storage.

The hydraulic conductivity K(x) is spatially heterogeneous and it is treated as a spa-
tial random field, whose covariance function and measurements at some locations are
prescribed. As a result of the governing flow equations, the hydraulic head is no longer
deterministic and its statistical properties need to be evaluated.

3 KL expansion of log hydraulic conductivity

3.1 Unconditional KL expansion

Suppose the hydraulic conductivity is a random field, and it can be written as a random
space function K(x,θ), where x∈D and θ∈Θ (a probability space). Assume that Y(x,θ)=
lnK(x,θ) is a Gaussian random field. It can be decomposed to:

Y(x,θ)= 〈Y(x)〉+Y′(x,θ), (3.1)

where 〈Y(x)〉 is the mean and Y′(x,θ) is the fluctuation. The covariance function CY(x,y)
is used to describe the spatial structure of the random field Y(x,θ) :

CY(x,y)= 〈Y′(x,θ)Y′(y,θ)〉. (3.2)
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Since the covariance is bounded, symmetric and positive-definite, it can be decom-
posed as [8]:

CY(x,y)=
∞

∑
n=1

λn fn(x) fn(y), (3.3)

where λn and fn(x) are eigenvalues and deterministic eigenfunctions, respectively, and
can be solved from the following Fredholm equation:

∫

D
CY(x,y) f (x)dx=λ f (y). (3.4)

Then the random field Y(x,θ) can be expressed as

Y(x,θ)= 〈Y(x)〉+
∞

∑
n=1

√

λn fn(x)ξn(θ), (3.5)

where ξn(θ) are orthogonal Gaussian random variables with zero mean and unit vari-
ance. The expansion (3.5) is called the Karhunen-Loeve (KL) expansion. The KL expan-
sion, which is a spectral expansion, is optimal with mean square convergence when the
underlying random field is Gaussian [8].

Generally, the eigenvalue problem of (3.4) needs to be solved numerically. However,
analytical or semi-analytical solutions can be obtained under certain conditions. For
a one-dimensional random field with a covariance function CY(x1,y1) = σ2

Y exp(−|x1−
y1|/η), where σ2

Y and η are the variance and the correlation length of the random field,
respectively, the eigenvalues and their corresponding eigenfunctions can be expressed
as [30]:

λn =
2ησ2

Y

η2ω2
n+1

, (3.6)

and

fn(x)=
1

√

(η2ω2
n+1)L/2+η

[ηωncos(ωnx)+sin(ωnx)], (3.7)

where ωn are positive roots of the following equation:

(η2ω2−1)sin(ωL)=2ηωcos(ωL). (3.8)

For problems in multi-dimension, if we assume that the covariance function CY(x,y) is
separable, for example CY(x,y)=σ2

Y exp(−|x1−y1|/η1−|x2−y2|/η2) in a rectangular do-
main D = {(x1,x2) : 0≤ x1 ≤ L1;0≤ x2 ≤ L2}, the eigenvalues and eigenfunctions can be
obtained by combining those in each dimension. For a non-separate covariance in a do-
main of arbitrary shape, the eigenvalue problem of (3.4) has to be solved numerically.
Furthermore, the KL expansion is not limited to stationary random fields [18].

On the basis of the KL expansion (3.5), one can have ∑
∞
n=1λn = Dσ2

Y, where D is the
domain size. It means that the variance σ2

Y is decomposed by an infinite series of eigen-
values λn. If the roots ωn of Eq. (3.8) are sorted in an increasing order, one can have the
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monotonically decreasing λn. Then the KL expansion can be truncated to finite terms
by excluding the small eigenvalues. The number of terms retained in the KL expansion
determines the random dimensionality of the problem, and it depends on the decay rate
of the eigenvalues.

3.2 Conditional KL expansion

Conditional simulation of a Gaussian random field is based on the kriging technique [12].
For the Gaussian random field Y(x). The measurements of Y(x) at some locations xi

(i = 1,2,··· ,M) are known. The objective is to simulate Y(x) at other locations without
measurements. Let Yk(x) denote the kriging estimate of Y(x). The simulated field of
Y(x) is expressed as follows,

Yc(x)=Yk(x)+ǫ(x), (3.9)

where ǫ(x) is the estimation error at location x, and the superscript c denotes “condi-
tional”.

The kriging estimate Yk(x) can be expressed as follows,

Yk(x)= 〈Y(x)〉+
N

∑
i=1

αi(x)(Y(xi)−〈Y(x)〉), (3.10)

where αi(x) are the weighting functions for the kriging estimate, and can be obtained
from the following equation,

N

∑
j=1

αj(x)C(xi,xj)=C(xi,x), i=1,2,··· ,M. (3.11)

The conditional mean and covariance of Yc(x) for the simple kriging can be derived as
follows,

〈Yc(x)〉= 〈Y(x)〉+
M

∑
i=1

αi(x)[(Y(xi)−〈Y(x)〉], (3.12)

Cc
Y(x,y)=CY(x,y)−

M

∑
i,j=1

αi(x)αj(y)C(xi,yj). (3.13)

The covariance function from Eq. (3.13) is nonstationary and the eigenvalues and eigen-
functions need to be solved from the following Fredholm equation (3.14) numerically,

∫

D
Cc

Y(x,y) f c(x)dx=λc f c(y). (3.14)

When the unconditional covariance function is of the separable exponential form, the
conditional eigenvalues and eigenfunctions can be related to the corresponding uncon-
ditional ones [17]. Here we follow the algorithm of [17] for the special case with an un-
conditional separable exponential covariance function. Since the set of eigenfunctions is
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complete, one can expand αi(x) in terms of the basis { fn}, αi(x)=Σ∞
k=1αik fk(x), where αik

are coefficients to be determined. Substituting this expansion into Eq. (3.13), multiplying
fm(x) on both sides, and integrating the derived equation with respect to x over D yields,

M

∑
i=1

CY(xi,xj)αim =λm fm(xj), j=1,2,··· ,M; m=1,2,··· . (3.15)

If only N terms are retained in the KL expansion, all αim in Eq. (3.15) will be obtained by
just solving the M×M linear algebraic equations for N times. The computational cost is
small since the number of conditioning points (M) is usually small.

The conditional eigenfunctions f c(x) can also be expanded with the unconditional
eigenfunctions fn(x), f c(x)=∑

N
i=1di fi(x). Substituting this expansion and Eq. (3.13) into

Eq. (3.14), multiplying fm(y) on the derived equation, and integrating it with respect to
y over domain D, one obtains:

λmdm−
N

∑
k=1

(

M

∑
i,j=1

CY(xi,xj)αikαjm

)

dk =λcdm, m=1,2,··· ,N, (3.16)

or in the matrix form:
(A−λcE)d=0, (3.17)

where the components of A are (akm)N×N, akm = λmδkm−∑
M
i,j=1CY(xi,xj)αikαjm, and E is

an N×N identical matrix. The matrix A is symmetric since CY(xi,xj) is symmetric. Af-
ter solving the eigenvalue problem of an N×N matrix A through Eq. (3.17), one can
obtain the conditional eigenvalues and eigenfunctions. The conditional eigenfunction
corresponding to each conditional eigenvalue λc

n is constructed with the eigenvector dn,

f c
n(x)=

N

∑
i=1

dni fi(x). (3.18)

In this way, the computational cost of finding the conditional eigenvalues and eigen-
functions is reduced in comparison to directly solving the conditional covariance func-
tion numerically.

Once the conditional eigenvalues and their corresponding eigenfunctions are obtained,
the conditional log hydraulic conductivity field can be represented by the KL expansion,

Yc(x,θ)= 〈Yc(x)〉+
N

∑
n=1

√

λc
n f c

n(x)ξn(θ). (3.19)

4 Probabilistic collocation method

In this section, the probabilistic collocation method (PCM) used for uncertainty propa-
gation of the flow equations is introduced. The outputs of flow simulations, e.g., the
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hydraulic head, are dependent on medium properties, i.e. the random hydraulic conduc-
tivity. While the covariance of the dependent random fields are yet to be found, the KL
expansion cannot be used to represent their random structures. Instead, the PCE, intro-
duced by Wiener (1938) and now widely used for uncertainty quantification, can be used
to represent the dependent random fields. For example, we express the output random
field h(x,t) with the polynomial chaos expansion,

h(x,t,θ)=a0(x,t)+
∞

∑
i1=1

ai1(x,t)Γ1(ξi1(θ))+
∞

∑
i1=1

i1

∑
i2=1

ai1 i2(x,t)Γ2(ξi1(θ),ξi2(θ))

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1 i2i3(x,t)Γ3(ξi1(θ),ξi2(θ),ξi3(θ))+··· , (4.1)

where the coefficients a0(x,t) and ai1 i2···id
(x,t) are deterministic functions of x and t, and

Γd(ξi1 ,··· ,ξid
) are orthogonal polynomial chaos of order d with respect to the random

variables (ξi1 ,··· ,ξid
). For independent standard Gaussian random variables (ξi1 ,··· ,ξid

),

Γd(ξi1 ,··· ,ξid
)=(−1)de

1
2 ξT ξ ∂d

∂ξi1 ···∂ξid

[e−
1
2 ξTξ ], (4.2)

where ξ is a vector denoting (ξi1 ,··· ,ξid
)T. Hermite polynomials form the best orthogonal

basis for Gaussian random variables [8]. In case of other random distributions, general-
ized polynomial chaos expansions [25] can be used to represent the random field.

In practice, Eq. (4.1) is usually truncated by finite terms, and the approximation ĥ(x,t)
can be written as

ĥ(x,t,θ)=
P

∑
j=1

cj(x,t)Ψj(ξ), (4.3)

where ξ is a vector of dimension N. There is a one-to-one correspondence between the
terms in Eqs. (4.1) and (4.3). The total number of terms P = (N+d)!/N!d!, where N is
the random dimensionality and d is the degree of the polynomial chaos expansion. The
P terms of coefficients are to be determined.

The general form of a stochastic differential equation can be expressed as:

Lh(x,t,θ)= f (x,t), (4.4)

where h(x,t,θ) is the unknown random space function and f (x,t) is the source term. The
operator L involves differentiations in space (x) and time (t). In our problem, Eq. (4.4)
represents the governing flow equations. Since h(x,t,θ) is approximated by the poly-
nomial chaos expansion, with its approximation denoted as ĥ(x,t,θ), one can define the
residual R as

R({ci},ξ)=Lŷ− f . (4.5)
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Relying on the weighted residual method in the random space, one can have
∫

ξ
R({ci},ξ)wj(ξ)p(ξ)dξ=0, (4.6)

where wj(ξ) is the weighting function, j=1,··· ,P, and p(ξ) is the joint probability density
function of ξ.

In the probabilistic collocation method, the weighting function is chosen as the Dirac
delta function,

wj(ξ)=δ(ξ−ξ j), (4.7)

where ξ j is a particular set selected with a proper algorithm out of the random vector ξ.
The elements in ξ j are called the collocation points. Then Eq. (4.6) becomes,

R
(

{ci},ξ j

)

=0, (4.8)

which results in a set of independent equations, evaluated at the given sets of collocation
points, ξ j, where j= 1,2,··· ,P. It means that P sets of collocation points are required to
solve for the P terms of coefficients {ci}, where i = 1,2,··· ,P. The collocation points at
a given order of polynomial chaos expansion can be selected from the roots of the next
higher order orthogonal polynomial for each uncertain parameter. One can refer to [13]
for the details regarding to the algorithm for the selection of the collocation points.

For our problem, the governing flow equations (2.1) and (2.2) combining with the KL
expansion (3.19) can be expressed as,

Ss
∂h(x,t)

∂t
−∇·

{

exp

[

〈Yc(x)〉+
N

∑
n=1

√

λc
n f c

n(x)ξn

]

∇h(x,t)

}

= g(x,t). (4.9)

With the PCM, we only need to choose certain sets of collocation points {ξ j=(ξ1,ξ2,··· ,
ξN)j, j= 1,2,··· ,P}, and solve Eq. (4.9) for the hydraulic head independently at each set
of ξ j. Then the coefficients of the polynomial chaos expansion of the hydraulic head
can be evaluated by solving a liner system of equations based on Eq. (4.3). The PCM is
non-intrusive to the flow models since Eq. (4.9) has the same form as the original deter-
ministic governing equations, and it can be solved independently, similar to the Monte
Carlo method. As such, existing codes or flow simulators can be employed directly.

Once the coefficients of the polynomial chaos expansion (4.3) are obtained, the sta-
tistical quantities of the hydraulic head can be easily evaluated by sampling the random
variables in the expansion. Since the expansion is already in an explicit form, the evalua-
tion is computational efficient. Alternatively, the statistical moments of h(x,t) such as the
mean and variance can be directly derived from Eq. (4.3),

〈h(x,t)〉= c1(x,t), (4.10)

σ2
h =

P

∑
j=2

cj(x,t)2〈Ψ2
j 〉. (4.11)
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The procedure of the KL-based PCM for conditional simulation is straightforward
and the main steps are summarized as follows: 1) Representing the conditional log hy-
draulic conductivity field using the KL expansion (3.19) in terms of a set of independent
Gaussian random variables; 2) approximating the hydraulic head with the polynomial
chaos expansion in terms of the set of independent Gaussian random variables with
Eq. (4.3); 3) determining the set deterministic coefficients of the polynomial chaos expan-
sion using the PCM technique; 4) evaluating the statistical properties of the hydraulic
head based on the constructed polynomial chaos expansion.

5 Case studies

This and the following sections show some examples to illustrate the KL-based PCM for
conditional simulation and compare it with the Monte Carlo method. Different cases of
one-dimensional flow in random porous media are used to analyze the effect of various
factors, such as the effect of conditioning, correlation length, and spatial variability. Fi-
nally a two-dimensional case is conducted to demonstrate its applicability for large scale
problems.

5.1 Effect of conditioning

We first consider steady state groundwater flow in a one-dimensional heterogeneous
medium of length L=10 [L] (where [L] denotes any consistent length unit) and assume
the forcing term to be zero. The boundary conditions are prescribed hydraulic heads at
the two ends, H0 = 7 [L] and HL = 5 [L]. The log hydraulic conductivity, Y(x)= lnK(x),
is a Gaussian random field. The unconditional mean of the log hydraulic conductivity
is given as 〈Y〉= 0. The covariance of the unconditional Y(x) is assumed to have the
exponential form, CY(x1,y1)=σ2

Y exp(−|x1−y1|/η).
Case 1 is for unconditional simulation, where no conditional data are used for simu-

lation. Here the results of Case 1 are used to compare with conditional simulations and
demonstrate the effect of conditioning. In Case 1, the correlation length η = 4, and the
variance of log conductivity is σ2

Y = 1.0 (corresponding to the coefficient of variation of
hydraulic conductivity CVK as 131%). Fig. 1 shows the variance of hydraulic head at dif-
ferent locations. Both the PCM and Monte Carlo (MC) method are performed. Due to
rapid decay of the eigenvalues, 6 terms are retained in the KL expansion used to repre-
sent the unconditional log hydraulic conductivity field, and there are only 28 simulations
involved for the 2nd order PCM. It can be seen from Fig. 2 that the preserved energy
of retained eigenvalues ΣN

n=1λn/Σ∞
n=1λn is about 92% when 6 terms of eigenvalues are

retained for the unconditional case. Fig. 1 shows that the results from the PCM (with 28
simulations) agree very well with those from MC (with 10,000 simulations).

Next, conditional data are added to the flow configuration of Case 1 to conduct con-
ditional simulation. There are three available measurements at three spatial points: x=1,
x=3, and x=7, respectively. The effect of different combinations of the conditioning data
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Figure 1: Variance of hydraulic head for the unconditional case with σ2
Y =1.
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Figure 2: Summation of unconditional and conditional eigenvalues for η=4.

is explored in the following cases. Case 2 (a) is for conditioning points at x=1 and x=7,
Case 2 (b) is for x=1 and x=3, Case 2 (c) is for x=3 and x=7, and Case 2 (d) is for x=1,
x=3, and x=7.

For the conditional PCM, we first solve for the unconditional eigenvalues and eigen-
functions. Then the conditional eigenvalues and eigenfunctions are obtained with the
algorithm described in Section 3.2. Fig. 2 shows the summation of unconditional eigen-
values and that of the conditional eigenvalues for η=4, where the conditional eigenvalues
are for Case 2(a). It can be seen that the summation of all conditional eigenvalues is much
less than that of the unconditional case, indicating a smaller variability of the conditional
Y(x). When 6 terms are retained in the KL expansion of the conditional Y(x), the pre-
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Figure 3: The variance of hydraulic head at x=5 as a function of the number of realizations for Monte Carlo
simulations for Case 2 (a).

served energy of retained eigenvalues is about 83%. After representing the conditional
hydraulic conductivity with KL expansion, the governing flow equations are solved at
the specified collocation points through the PCM. Both the 2nd order PCM and 4th order
PCM are performed and compared with the MC to investigate the accuracy. The 2nd
order PCM requires 28 simulations, and the 4th order PCM requires 210 simulations.

Monte Carlo (MC) simulations are performed for comparison. Since the Monte Carlo
simulations are used as benchmark, it is necessary to check the convergence rate of the
Monte Carlo simulations. Fig. 3 shows the variance of hydraulic head at some specific
location (x = 5) as a function of the number of realizations used for Monte Carlo sim-
ulations in Case 2 (a). It shows that 10,000 realizations are enough to ensure statistical
convergence, thus MC (10,000) is used as benchmark. In our MC simulation, the KL
expansion is implemented to generate the realizations of the conditional log hydraulic
conductivity Y(x), based on Eq. (3.19). To ensure enough accuracy for reproducing the
ensemble statistics of Y(x), 50 terms are retained in Eq. (3.19) for the MC simulations. It
should be noted that the number of realizations for the MC simulations is independent
of the number of terms retained in the KL expansion.

Fig. 4 (a)-(d) show the variance of hydraulic head for Cases 2 (a)-(d), respectively. In
Fig. 4 (a)-(c), where only 2 conditioning points are used, the 2nd order PCM (with 28
simulations) has slight deviations from the Monte Carlo solutions. However, the results
from the 4th order PCM (210 simulations) are identical to the MC solutions. After all three
conditioning points are taken into consideration, the overall variance of hydraulic head
is reduced in Fig. 4 (d), compared to 4 (a)-(c). While the uncertainty is reduced in Fig. 4
(d), both the 2nd order PCM (28 simulations) and the 4th order PCM (210 simulations)
agree well with the MC solutions.

The comparison of computational cost and solution accuracy can be made for the
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Figure 4: Variance of hydraulic head for the case with σ2
Y = 1.0 and η= 4. The conditioning points are at (a)

x=1 and x=7; (b) x=1 and x=3; (c) x=3 and x=7; (d) x=1, x=3, and x=7.

PCM and MC. Both the PCM and MC involve solving the governing flow equations in-
dependently, and the computational cost for each PCM and MC simulation is almost the
same, regardless of the number of terms retained in the KL expansion. Therefore, the
difference of computational efficiency for the PCM and MC can be determined by the
number of simulations involved. Fig. 5 shows the results of three sets of MC (1,000 simu-
lations) for Case 2 (a). It can be seen that the three sets of MC solutions diverge, thus 1,000
realizations are not enough for this case. That is, different MC simulations yield different
solutions when the number for realizations are not enough and the statistical convergence
is not ensured. However, the PCM (with 28 or 210 simulations) yields robust results close
to the benchmark solutions. For this case with moderate spatial variability, the 2nd order
PCM with only 28 simulations can obtain satisfactory results. As the order is increased,
the results are more accurate. For the PCM, how to choose a certain order for a specific
problem is an undergoing research topic, and it is out of the scope of this paper.

The effect of conditioning can be found by comparing Fig. 1 with Fig. 4. As shown
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Figure 5: Variance of hydraulic head obtained from 3 sets of MC (with 1,000 simulations) for Case 2 (a).

in Fig. 1, for the unconditional simulation in Case 1, the variance of the hydraulic head
is symmetric about the center of the domain due to the specific boundary conditions.
However, when conditioning points are considered, the symmetry of head variance is
changed. The changes of head variance are most prominent around the conditioning
points, which would have significant impact on the entire variance profile. This is due to
the change of uncertainty in the conditional hydraulic conductivity, especially the abrupt
change around the conditioning points.

5.2 Effect of correlation length

To further test the effect of correlation length on the PCM, Case 3 (a)-(d) are performed
for a smaller correlation length η=2. The conditions of Case 3 (a)-(d) are the same as Case
2 (a)-(d), respectively, except for the correlation length η. Note that the prescribed values
of hydraulic conductivity at the conditioning points are different from those in Case 2.
They are generated from one unconditional realization of Y(x) with variance η=2. Fig. 6
shows the summation of unconditional eigenvalues and that of the conditional eigen-
values for η = 2, where the conditional eigenvalues are for Case 3(a). Comparing Fig. 6
with Fig. 2, one can find that the rate of decay in the eigenvalues is dependent on the
correlation length η relative to the domain length L. In Fig. 6, the preserved energy of
retained eigenvalues ΣN

n=1λn/Σ∞
n=1λn = 83% and 78% for the unconditional and condi-

tional case, respectively. We still choose 6 terms retained in the KL expansion for η = 2,
the same number as in the cases of η=4. The head variances obtained from the 2nd order
PCM, 4th order PCM, and the MC are presented in Fig. 7. In terms of accuracy, both the
2nd order PCM (with 28 simulations) and 4th order PCM (with 210 simulations) have
satisfactory results compared to MC (with 10,000 simulations), while the 4th order PCM
is more accurate than the 2nd order PCM. By comparing Fig. 4 with Fig. 7, one can also
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Figure 6: Summation of unconditional and conditional eigenvalues for η=2.

observe that the profiles of head variance are different when correlation length of the log
hydraulic conductivity field is different.

5.3 Effect of spatial variability

The effect of the spatial variability of hydraulic conductivity is investigated in Case 4
(a)-(d) and Case 5 (a)-(d). We modify Case 2 (a)-(d) by increasing the spatial variability
of Y(x) to σ2

Y =2.0, or σ2
Y =4.0, corresponding to the coefficient of variation of hydraulic

conductivity (CVK ) as 253% or 732%, respectively. σ2
Y = 2.0 is considered in Case 4 (a)-

(d), which correspond to the same combinations of conditioning points in Case 2 (a)-
(d), respectively. Fig. 8 (a)-(d) show the variance of hydraulic head for Case 4 (a)-(d),
respectively. Note that the values of hydraulic conductivity at the conditioning points
are different from those in Case 2. They are generated from one unconditional realization
of Y(x) with variance σ2

Y =2.0. Both the PCM and MC are performed. The results of MC
(with 10,000 simulations) are also used as benchmark solutions. The 4th order PCM (with
210 simulations) still agrees well with the MC for each case, while the 2nd order PCM
(with 28 simulations) has some deviations. When spatial variability of Y(x) becomes
larger, so does the resulting uncertainty of hydraulic head (σ2

h ).

Case 5 (a)-(d) are conducted for σ2
Y = 4.0. New values of Y at the three conditioning

points are generated from one unconditional realization of Y(x) with σ2
Y =4.0, and used

for conditional simulation. Fig. 9 (a)-(d) show the variance of hydraulic head for Case
5 (a)-(d), respectively. The magnitude of σ2

h is increasing, compared to Case 2 (a)-(d)
and Case 4 (a)-(d). For these cases where the spatial variability of Y(x) is huge (CVK =
732%), the 2nd order PCM (28) yields larger deviations against the MC (10,000) solutions.
However, the 4th order PCM (210) can still obtain good results compared to the MC
(10,000) solutions, with smaller computational efforts.
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Figure 7: Variance of hydraulic head for the case with σ2
Y = 1.0 and η= 2. The conditioning points are at (a)

x=1 and x=7; (b) x=1 and x=3; (c) x=3 and x=7; (d) x=1, x=3, and x=7.

5.4 Illustrative example in 2D

Case 6 is designed to illustrate the applicability of PCM for two-dimensional flow. The
two-dimensional domain of saturated heterogeneous medium is a square of size L1 =
L2 =10 [L], uniformly discretized into 40×40 square elements. The non-flow conditions
are prescribed at two lateral boundaries. The hydraulic head is prescribed at the left and
right boundaries as 10.5 [L] and 10.0 [L], respectively. The mean of the log hydraulic
conductivity is given as 〈Y〉=0. Assume the covariance function of the unconditional log
hydraulic conductivity is CY(x,y)=CY(x1,x2;y1,y2)=σ2

Y exp(−|x1−y1|/η1−|x2−y2|/η2),
where σ2

Y =1.0 and η1 =η2 =4.0. There are 9 conditioning points regularly distributed in
the square domain. The locations of these conditioning points are shown in Fig. 10. The
prescribed log hydraulic conductivity values at these conditioning points are generated
from one unconditional realization of the log hydraulic conductivity field.

After conditioning to the 9 points, the conditional mean and variance of the hydraulic



H. Li / Commun. Comput. Phys., 16 (2014), pp. 1010-1030 1025

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

x

σ h2

PCM 28
PCM 210
MC 10,000

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

σ h2

PCM 28
PCM 210
MC 10,000

(a) (b)

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

σ h2

PCM 28
PCM 210
MC 10,000

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

x

σ h2

PCM 28
PCM 210
MC 10,000

(c) (d)

Figure 8: Variance of hydraulic head for the case with σ2
Y = 2.0. The conditioning points are at (a) x= 1 and

x=7; (b) x=1 and x=3; (c) x=3 and x=7; (d) x=1, x=3, and x=7.

conductivity are shown in Fig. 11 (a) and (b), respectively. It can be seen obviously that
the variance of hydraulic conductivity after conditioning becomes zero at the 9 condition-
ing points. The overall uncertainty of the hydraulic conductivity field is reduced. Both
the PCM and MC are performed for uncertainty quantification of the hydraulic head in
the whole domain. For the 2nd order PCM, 20 terms are retained in the KL expansion
where the preserved energy of the conditional eigenvalues is about 71%, thus the total
number of collocation points is 231. Fig. 12 shows the comparisons of the conditional
mean head and head variance in the two-dimensional domain, obtained from PCM (with
231 simulations) and MC (with 10,000 simulations). Fig. 13 shows the comparison of
head variance along the profile x2 = 5. It can be seen that the conditional mean head of
the PCM is identical to that of the MC, and the results of head variance for PCM and MC
are also in good agreement with each other.
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Figure 9: Variance of hydraulic head for the case with σ2
Y = 4.0. The conditioning points are at (a) x= 1 and

x=7; (b) x=1 and x=3; (c) x=3 and x=7; (d) x=1, x=3, and x=7.

6 Summary and conclusions

A stochastic approach has been proposed for conditional simulation of flow in random
porous media by combining the Karhunen-Loeve (KL) expansion and the probabilistic
collocation method (PCM). After incorporating the measurements of log hydraulic con-
ductivity with the kriging technique, the conditional mean and covariance of the log
conductivity field are obtained, by which the KL expansion is used to represent the log
hydraulic conductivity field. When the unconditional covariance function is of the sepa-
rable exponential form, the conditional eigenvalues and eigenfunctions can be computed
from their unconditional counterparts directly. Once the conditional eigenvalues and
eigenfunctions are obtained, the KL expansion provides an effective way to generate
conditional realizations and parameterize the conditional random field through a set of
independent Gaussian random variables. The flow response such as the hydraulic head
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Figure 11: (a) Conditional mean of log hydraulic conductivity; (b) conditional variance of log hydraulic conduc-
tivity for Case 6.

is expressed with the polynomial chaos expansion, whereby the PCM can be employed
for efficient uncertainty quantification.

The PCM is non-intrusive to the flow models in that it results in independent differ-
ential equations similar to the governing flow equations. Therefore, existing flow simula-
tors or codes could be employed in a straightforward manner for conditional simulation.
Our numerical examples reveal that with a smaller number of flow simulations, the PCM
can achieve a good agreement with the Monte Carlo solutions that are involved with a
large number of simulations. It is found that for moderate variability of hydraulic con-
ductivity, the 2nd order PCM is sufficient to obtain satisfactory results. When the variance
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Figure 12: Comparisons of (a) conditional mean head and (b) conditional head variance for Case 6 obtained
from PCM (231 simulations) and MC (10,000 simulations): solid curves for PCM and dashed curves for MC.
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of log conductivity becomes large (e.g, with the coefficient of variation of the hydraulic
conductivity being larger than 253%), a high order of PCM may be needed to achieve
higher accuracy. The conditioning on the measured hydraulic conductivity can reduce
the overall uncertainty of the hydraulic conductivity field, and that of flow response,
i.e., the hydraulic head. As more conditioning points are taken into consideration, the
uncertainty would be further reduced.
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