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Abstract. Compressible flow past a circular cylinder at an inflow Reynolds number
of 2×105 is numerically investigated by using a constrained large-eddy simulation
(CLES) technique. Numerical simulation with adiabatic wall boundary condition and
at a free-stream Mach number of 0.75 is conducted to validate and verify the perfor-
mance of the present CLES method in predicting separated flows. Some typical and
characteristic physical quantities, such as the drag coefficient, the root-mean-square lift
fluctuations, the Strouhal number, the pressure and skin friction distributions around
the cylinder, etc. are calculated and compared with previously reported experimental
data, finer-grid large-eddy simulation (LES) data and those obtained in the present LES
and detached-eddy simulation (DES) on coarse grids. It turns out that CLES is superior
to DES in predicting such separated flow and that CLES can mimic the intricate shock
wave dynamics quite well. Then, the effects of Mach number on the flow patterns and
parameters such as the pressure, skin friction and drag coefficients, and the cylinder
surface temperature are studied, with Mach number varying from 0.1 to 0.95. Non-
monotonic behaviors of the pressure and skin friction distributions are observed with
increasing Mach number and the minimum mean separation angle occurs at a subcriti-
cal Mach number of between 0.3 and 0.5. Additionally, the wall temperature effects on
the thermodynamic and aerodynamic quantities are explored in a series of simulations
using isothermal wall boundary conditions at three different wall temperatures. It is
found that the flow separates earlier from the cylinder surface with a longer recircula-
tion length in the wake and a higher pressure coefficient at the rear stagnation point for
higher wall temperature. Moreover, the influences of different thermal wall boundary
conditions on the flow field are gradually magnified from the front stagnation point to
the rear stagnation point. It is inferred that the CLES approach in its current version is
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a useful and effective tool for simulating wall-bounded compressible turbulent flows
with massive separations.

AMS subject classifications: 76F50, 76F65, 76H99, 76G25

Key words: Compressible flow, constrained large-eddy simulation, circular cylinder, separated
flow.

1 Introduction

Flow around a circular cylinder is of great importance, either in practical engineering
problems such as wind past a cooling tower, lateral flow past an aircraft body, or in fun-
damental research problems. As the cylinder surface is smooth and curved, a sensitive
boundary layer forms and will separate from the surface if the inflow Reynolds number is
high enough. The transition of flow to turbulence may take place either in the boundary
layer (i.e., turbulent separation) or in the separated shear layer (i.e., laminar separation).
The interactions among the three shear layers, say, the boundary layer, the separated
free shear layer and the wake, result in complex physical phenomena in incompressible
case [1]. The first experimental study on this problem was carried out by Bénard [2] at
the beginning of the twentieth century. Then, von Kármán [3] and Thom [4] investigated
the same problem theoretically and numerically, respectively. These seminal works have
sparked increasing interests and challenges in understanding the intricate dynamics of
flow past a circular cylinder. The readers are referred to the review articles [5–8] and
textbooks [9, 10] for details. In fact, the geometrical simplicity and the availability of nu-
merical and experimental data of flow past a circular cylinder have suggested that it be
a benchmark model to validate a numerical solver or a turbulence model both in incom-
pressible cases [11–18] and in compressible cases [19–21].

In compressible flow past a circular cylinder, especially at transonic inflow conditions,
the problem becomes more complicated due to the three mutually coupled fundamental
processes (i.e., compressing, shearing, and thermal). Related topics include compressible
boundary layer instability, shock wave/boundary layer interactions, shock wave/wake
interactions, etc. Macha systematically examined the pressure distributions and the drag
coefficients around a circular cylinder in a wind tunnel at Reynolds and Mach numbers
from 0.1×106 to 1.0×106 and from 0.6 to 1.2, respectively [22]. As Mach number increases,
it is shown that the pressure drag keeps increasing before Mach 0.7, remains constant
or decreases slightly from Mach 0.7 to Mach 0.9, increases dramatically near Mach 1.0
and decreases monotonically when Mach number is larger than unit. It is argued that
the leveling-off of the drag variation prior to the major drag crisis near Mach 1.0 be at-
tributed to the compressibility effects. Murthy and Rose [23] also conducted a series of
wind tunnel experiments on air flow past a circular cylinder with Mach and Reynolds
numbers varying from 0.25 to 1.2 and from 0.03×106 to 0.5×106, respectively. The tran-
sonic drag rise phenomenon was also observed. Meanwhile, it is found that detectable
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periodic shedding ceases at about Mach 0.9. Rodriguez [24] investigated the subsonic
and transonic flows around a circular cylinder at Reynolds numbers of about 105. As is
shown by his experimental results, there exist strong coupling between the flow over the
cylinder and the vortex street in the near wake. Various coupling regimes are classified
and instantaneous pressure distributions are obtained and analyzed at different times in
a vortex street period.

Compressible flow around a circular cylinder has also been studied via numerical
simulations. Miserda and Leal [25] investigated the unsteady forces and the flow struc-
tures generated in transonic flow past a circular cylinder through solving either the un-
steady Reynolds-averaged or spatially-filtered compressible two-dimensional (2D) Navier-
Stokes equations with SST-DES model using a finite-volume method. The inflow Mach
and Reynolds numbers are 0.8 and 5×105, respectively. It is shown that the dominant fre-
quency of the unsteady lift coefficient is closely related to the vortex-shedding frequency.
The complex interactions between the shearing processes and the compressing process
were also discussed. Xu et al. [26] evaluated the effects of Mach number on typical flow
phenomena for transonic flows past a circular cylinder, including shock wave/turbulent
boundary layer interactions, the formation of local supersonic zones and shocklets in the
wake and the evolution of the turbulent shear layer. It is suggested that there be a critical
Mach number of about 0.9, above which the flow is quasi-steady and the vortex shedding
is suppressed. Recently, Xu et al. [21] conducted a numerical investigation of the physical
mechanisms concerning the passive control of compressible flow past a wavy cylinder
by using large-eddy simulation. It is shown that the wavy surface of the cylinder plays
an effective role in eliminating or suppressing the shock waves and shocklets observed
in flow around a circular cylinder.

The simplest approach to numerical exploration of turbulent flows is the direct nu-
merical simulation (DNS), which is free of modeling assumptions. However, DNS has
been limited to simple geometries at low or moderate Reynolds numbers due to the in-
tolerable computational cost and its application to practical engineering problems is still
far from feasible in the near future. Reynolds-averaged Navier-Stokes (RANS) simulation
technique has been widely used in commercial software for engineering flows with low
requirement for computing grids, but its application to unsteady and separated flows
patterns remains questionable and unsatisfactory due to the lack of generality of turbu-
lence models. Large-eddy simulation (LES), whose computational cost is between DNS
and RANS approaches, can predict three-dimensional (3D) and unsteady flow fields by
solving the spatially-filtered Navier-Stokes equations with the subgrid-scale (SGS) mod-
els being more “universal” than those for RANS. Nevertheless, LES still requires fairly
fine grids when used to solve the wall-bounded turbulent flows of engineering interest.
Such a situation has considerably stimulated the development of the hybrid RANS/LES
methods, among which is the commonly employed detached-eddy simulations (DES)
technique [36]. In this type of approaches, the computation domain is usually divided
into two regions along the wall-normal direction. The RANS equations are solved in the
near-wall region, while the LES equations are integrated in the outer region. The hybrid
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RANS/LES method takes the advantages both from the RANS solutions in the near wall
region and from the LES solutions in the outer region, and has contributed a lot to the
simulation for engineering flows, especially for the complex flows with massive sepa-
rations. Yet with the inherent advantages, the hybrid RANS/LES methods have prob-
lematic drawbacks. For example, DES encounters the well-known log-layer mismatch
(LLM) defect in predicting a simple turbulent channel flow [27]. As claimed by Fröhlich
and von Terzi [28], “the unphysical deviations in the mean flow profiles appearing at the
inner-outer layer interface may cast doubts on the quality of predictions made with such
approaches, in particular for applications where the near-wall flow structures play a sig-
nificant role.” Readers are suggested to check the review articles by Fröhlich and von
Terzi [28] and Spalart [29] for more detailed descriptions and discussions on the hybrid
RANS/LES methods.

In order for the LES to be feasible to numerically predict wall-bounded turbulent
flows, Chen et al. [30] proposed a so-called Reynolds-stress constrained large-eddy simu-
lation (CLES) methodology, in which the whole flow domain is simulated through solv-
ing the LES equations with the modeled mean SGS stress constrained by a Reynolds
stress balance condition in the near wall region. Such a Reynolds stress constraint can
ensure an accurate mean velocity distribution near the wall, which cannot be achieved
in traditional LES if the mesh is not fine enough. In the Reynolds stress balance relation,
the total Reynolds stress is modeled based on the resolved velocity field without solv-
ing the RANS equations. The Reynolds stress CLES method was tested and validated
in simulation of incompressible turbulent channel flow and incompressible flow past a
circular cylinder. For turbulent channel flow, the CLES method can predict the mean
velocity profile very well without the LLM phenomena, and can calculate the skin fric-
tion more accurately as compared with the DES method and the traditional LES method
using dynamic Smagorinsky model. It is the first time for pure LES method to be used
to simulate flow past a circular cylinder at a Reynolds number based on the diameter of
cylinder up to 3×106 and the results are also encouraging when compared with available
experimental data.

Jiang et al. [31] extended the CLES method for incompressible turbulent flows to a
new version for wall-bounded compressible turbulent flows. In the compressible CLES
approach, a Reynolds heat flux balance condition is introduced for the modeled mean
SGS heat flux vector in addition to the Reynolds stress constraint for the SGS stress tensor.
The new CLES method are tested and verified in simulations of compressible turbulent
channel flow and the results are well compared with those obtained from traditional LES,
DES and DNS. The corresponding paper is under consideration for publication in other
journal. Chen et al. [32] carried out a pure LES of flow past a commercial plane at 14o

angle of attack by using the compressible CLES technique. It is shown that CLES can
predict more fruitful and much smaller vortex structures than DES and RANS methods.

In this paper, compressible flow past a circular cylinder is investigated utilizing the
compressible CLES approach proposed by Jiang et al. [31] at Reynolds number Re=2×105

based on the diameter of cylinder. The purpose of the present paper is threefold. First,
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we demonstrate the validity of the new CLES method in predicting wall-bounded com-
pressible flows with massive separations. Compressible flow around a circular cylinder
is simulated at a free-stream Mach number Ma=0.75 with adiabatic wall boundary con-
dition. The statistical results are compared with those obtained from the experimental
measurements [22–24], the previously reported LES on a much finer mesh [21] and the
present LES and DES on the same coarse-resolution grids. Second, we explore the Mach
number effects on the flow patterns, the drag coefficient, the pressure distribution, etc.
Finally, we provide some insight into the influences of wall temperature on the flow phe-
nomena by using isothermal wall boundary condition.

The remaining contents of this paper are as follows. The governing equations are
presented in Section 2. Section 3 concentrates on the introduction of the CLES and DES
formulations as well as the numerical methods. Section 4 focuses on the validation of the
compressible CLES method. The shock wave/shock wave and shock wave/turbulence
interactions are studied using the compressible CLES approach in Section 5. Section 6
and Section 7 contributes to the studies of Mach number and wall temperature effects,
respectively. Finally, conclusions and discussions are made in Section 8.

2 Governing equations

The governing equations for LES of compressible turbulent flows can be obtained by
applying a low-pass filter to the mass, momentum and energy conservation equations.
If one defines characteristic parameters using the diameter of cylinder D, the free-stream
velocity U∞, density ρ∞, temperature T∞, dynamic viscosity µ∞ and thermal conductivity
κ∞, the filtered conservation equations are written as the following dimensionless form
[31]

∂ρ̄

∂t
+

∂(ρ̄ũi)

∂xi
=0, (2.1)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj+ p̄δij)

∂xj
=

1

Re

∂σ̃ij

∂xj
+

∂τLES
ij

∂xj
, (2.2)

∂(ρ̄ẽ)
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+

∂[ũi(ρ̄ẽ+ p̄)]

∂xi
=

∂q̃i

∂xi
+

1

Re

∂(σ̃ijũj)

∂xi
+

∂qLES
i

∂xi
+

∂JLES
i

∂xi
, (2.3)

which are accompanied with the thermodynamical equation of state

p̄=
ρ̄T̃

γM2
∞

. (2.4)

Here, f represents a spatially-filtered field, and f̃ = ρ f
ρ̄ denotes a Favre-filtered field [33].

ρ is the density, ũi is the velocity vector, p is the pressure, T̃ is the temperature, ẽ=CvT̃+
1
2 ũiũi is the total energy per unit mass, Cv=1/γ(γ−1)M2

∞ is the specific heat at constant
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volume, γ is the ratio of specific heats, Cp=γCv is the specific heat at constant pressure,
M∞ =U∞/

√
γRT∞ is the Mach number, R is the specific gas constant, Re= ρ∞U∞D/µ∞

is the Reynolds number,

σ̃ij =µ(T̃)

(
∂ũi

∂xj
+

∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
(2.5)

and

q̃i=−Cpµ(T̃)

RePr

∂T̃

∂xi
(2.6)

are, respectively, the viscous stress tensor and the heat flux vector, in which Pr =
Cpµ∞U2

∞/κ∞T∞ = 0.7 is the molecular Prandtl number and µ is the dimensionless vis-
cosity given by Sutherland’s law

µ=
T̃3/2(1+S)

T̃+S
, (2.7)

with S=110.3K/T∞.
There exist three unclosed terms in Eq. (2.2) and Eq. (2.3), namely, the SGS stress

tensor

τLES
ij =−ρ̄(ũiuj−ũiũj), (2.8)

the SGS heat flux vector

qLES
i =−ρ̄Cp(T̃ui− T̃ũi), (2.9)

and the triple velocity correlation term

JLES
i =−1

2
ρ̄(ũjujui−ũjujũi). (2.10)

As suggested in previous studies [34, 35], JLES
i can be approximated using the SGS stress

tensor in the form

JLES
i =τLES

ij ũj. (2.11)

Therefore, in the present study, closure models for τLES
ij and qLES

i need to be supple-

mented based on the resolved fields.

3 Simulation and numerical methods

3.1 The DES method

The DES method has attracted increasing attention in a sense of both turbulence mod-
eling research and engineering application [28, 29] since it was originally proposed by
Spalart et al. in 1997 [36]. The aim of the DES method is to numerically predict separated
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flows at unlimited Reynolds number and affordable computational cost. In DES, a uni-
fied system of the control equations (see, e.g., Eqs. (2.1)-(2.4)) is solved by incorporating
prescribed RANS models in the near-wall region and SGS models in the rest region, re-
spectively. In principle, any available RANS model can be modified and adopted in the
DES formulation. In this work, the most commonly used version of DES method based
on the one equation Spalart-Allmaras (S-A) model [37] is implemented in order to evalu-
ate the performance of the CLES method. The RANS and SGS models for stress and heat
flux take the same form as follows

τMOD
ij =µt

(
2Ŝij−

2

3

∂ûk

∂xk
δij

)
, (3.1)

and

qMOD
i =−Cpµt

Prt

∂T̂

∂xi
, (3.2)

with a hat denoting ensemble averaging in RANS model or spatial filtering in SGS model.
The turbulent (or eddy) viscosity µt is determined by an intermediate viscosity ν̊, which
can be obtained by solving the following equation as suggested by Edwards and Chandra
[38]

Dρ̂ν̊

Dt
= cb1S̊ρ̂ν̊+

1

σ

(
∂

∂xj
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∂ν̊

∂xj
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∂ν̊

∂xj
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)
− ρ̂cw1 fw

(
ν̊

d̊

)2

. (3.3)

Thus, µt is related to ν̊ through the following relation

µt= ρ̂ν̊ fv1, fv1=
λ3

λ3+c3
v1

, λ≡ ν̊

ν
.

Given the vorticity magnitude

Ŝ=

[(
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+

∂ûj
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∂ûi

∂xj
− 2

3

(
∂ûk

∂xk

)2
]1/2

,

the modified vorticity magnitude S̊ in Eq. (3.3) reads

S̊= Ŝ

(
1

λ
+ fv1

)
.

The parameters fv2 and fw are given by

fv2=1− 1

1+λ fv1
, fw = g

[
1+c6

w3

g6+c6
w3

]1/6

with

g= r+cw2(r
6−r), r= tanh

[
ν̊

(kd̊)2S̊

]
/
[tanh(1.0)].
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The length scale d̊ is defined as

d̊≡min(d,CDES∆),

with d being the distance to the nearest wall and ∆≡max(∆x,∆y,∆z) the maximum local
mesh size. The DES method solves the RANS equations when d̊ is equal to d, and solves
the LES equations when d̊ is equal to CDES∆. The empirical constants in Eq. (3.3) are
listed below

cb1=0.1355, cb2=0.622, cw2=0.3, cv1=7.1, σ=
2

3
, cw1=

cb1

k2
+

1+cb2

σ
, cw3=2.

3.2 The CLES method

Chen et al. [30] argued that LES of wall-bounded turbulent flow is feasible on well-
designed coarse-resolution grids as long as the mean SGS stress in the near-wall region
is constrained by a Reynolds stress balance condition. The LES using such an SGS model
is referred to as Reynolds stress constrained large-eddy simulation (RS-CLES) and has
been implemented and verified in simulating the incompressible wall-bounded turbu-
lent flows with and without separations.

Recently, Jiang et al. [31] extended the RS-CLES methodology to a new formulation
aiming at the simulation of compressible turbulent flows with wall boundaries. In the
compressible CLES method, both the SGS stress and the SGS heat flux (i.e., τLES

ij and qLES
i

shown in Eq. (2.2) and Eq. (2.3)) are decomposed into a mean part and a fluctuation part
in the near-wall region of the flow domain, i.e.,

τLES
ij = 〈τLES

ij 〉+τLES
ij

′ (3.4)

and

qLES
i = 〈qLES

i 〉+qLES
i

′. (3.5)

The mean SGS stress and heat flux are given by

〈τLES
ij 〉=τRANS

ij +〈ρ〉(|ũiũj|−|ũi||ũj|), (3.6)

and

〈qLES
i 〉=qRANS

i +〈ρ̄〉Cp(|ũiT̃|−|ũi||T̃|), (3.7)

respectively. Here, 〈·〉 denotes a ensemble average, and |·| represents a Favre average.
The total Reynolds stress τRANS

ij and the total Reynolds heat flux qRANS
i shall be pre-

scribed by the S-A models discussed in Section 3.1 (see Eq. (3.1) and Eq. (3.2)) based on
the resolved fields. The SGS stress and heat flux fluctuations are given according to the
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compressible Smagorinsky models [35] in the following form

τLES
ij

′=2Cs

[
ρ̄∆

2|S̃|
(

S̃ij−
1

3
S̃kkδij

)
−
〈

ρ̄∆
2|S̃|

(
S̃ij−

1

3
S̃kkδij

)〉]

− 2

3
CI

[
ρ̄∆

2|S̃|2−〈ρ̄∆
2|S̃|2〉

]
δij , (3.8)

qLES
i

′=
Cs

PrT

(
∆

2ρ̄Cp|S̃|
∂T̃

∂xi
−
〈

∆
2ρ̄Cp|S̃|

∂T̃

∂xi

〉)
. (3.9)

Here, Cs and CI are the Smagorinsky constants, PrT is the SGS Prandtl number. In this
paper, CI is taken to be zero as suggested in previous studies [39–41]. Cs and PrT can be
prescribed a priori or be calculated instantaneously by a dynamic procedure. For details
of the derivation of the CLES models, readers are referred to the paper by Chen et al. [30]
for incompressible turbulence and the paper by Jiang et al. [31] for compressible turbu-
lence. In the rest region of the flow domain, the traditional Smagorinsky models for the
SGS stress and heat flux [35] are employed. The compressible CLES method has been
tested and validated in the simulation of compressible turbulent channel flow at various
Reynolds and Mach numbers [31].

3.3 Numerical method

In order to simulate compressible flows past a circular cylinder, the governing equa-
tions (e.g., Eqs. (2.1)-(2.4)) are numerically integrated based on a self-developed finite
volume solver on non-staggered grids in generalized curvilinear coordinates. The nonlin-
ear terms are discretized via an advection upstream splitting method (AUSM+) [42–44].
The van Leer’s minmod limiter [45] is utilized at the interface to stabilize the compu-
tation of the flux. The viscous terms are discretized by using traditional second-order
central difference scheme. The temporal advancement of the equations is achieved using
an implicit LU-SGS method with sub-iterations to improve the accuracy. As shown in
Fig. 1, O-type grids are generated for the simulation domain, which is bounded by 25D

Figure 1: (a) Cross-sectional grids of the computation domain and (b) zoom view of the near-wall grids.
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Table 1: Computational parameters and statistical results for the present numerical simulations using LES,
DES and CLES at Mach number M∞ =0.75 and Reynolds number Re=2×105 in comparison with previously
reported numerical data (fine-resolution LES by Xu et al. [21] at M∞=0.75 and Re=2×105) and experimental

data (EXP-1: by Rodriguez [24] at M∞=0.75 and Re=1.7×105−3.4×105; EXP-2: by Murthy & Rose [23] at

M∞ =0.8 and Re=1.66×105: EXP-3: by Macha [22] at M∞ =0.8 and Re=105−106).

Case Grid U∞△t/D CD CLrms St θsep

LES 128×160×40 0.02 1.598 0.282 0.187 88.9◦

DES 128×160×40 0.02 1.616 0.315 0.187 87.5◦

CLES 128×160×40 0.02 1.571 0.287 0.188 86.1◦

LES by Xu et al. [21] 257×257×61 0.006 1.572 0.250 0.180

EXP-1 1.618 0.253 0.2

EXP-2 1.5 0.18

EXP-3 1.5-1.6

in the radial direction of the cross section, and by πD in the spanwise direction. There
are 128×160 nonuniform control volumes in the cross sectional plane with enough grid
points near the cylinder surface and within the wake regions. The first offwall grid height
is about 2×10−5D, which is less than unity in wall units as claimed for effective LES of
near-wall flow field. There are 40 uniformly distributed control volumes in the spanwise
direction. The constant free-stream quantities, such as U∞, T∞, etc., are prescribed at the
inlet of the flow and the boundary conditions at the outlet of the flow are determined by
the local one-dimensional Riemann-invariants. Non-slip and adiabatic (or isothermal)
wall boundary conditions are employed for kinetic and thermodynamic quantities, re-
spectively, on the cylinder surface. Periodic boundary conditions are used in spanwise
direction. All the calculations in this study are carried out on the same O-type grid (see
Fig. 1). The computational parameters are summarized in Table 1.

4 Validation of the CLES method

In this section, the CLES method for compressible turbulent flows is tested and validated
by simulating of compressible flow past a circular cylinder with adiabatic wall boundary
condition and at free-stream Mach and Reynolds numbers of 0.75 and 2×105, respec-
tively. LES based on traditional eddy-viscosity and eddy-diffusivity models [35] and
DES are also conducted using the same solver introduced in Section 3.3. To evaluate the
performance of the CLES method in predicting compressible flows with separations and
shock waves, the calculated results are compared with the LES results on fine-resolution
grids by Xu et al. [21] and the experimental data at similar Mach and Reynolds num-
bers by Rodriguez [24], Murthy & Rose [23], and Macha [22]. Some important statistical
quantities are listed in Table 1.

Shown in Fig. 2 are the time-dependent lift (dashed lines) and drag (solid lines) coef-
ficients from LES (panel (a)), DES (panel (b)), and CLES (panel (c)). The time-averaged
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Figure 2: Time-dependent lift (dashed lines) and (solid lines) drag coefficients on the circular cylinder from (a)
LES, (b) DES, and (c) CLES.

drag coefficient (CD) and the root-mean-square (rms) value of lift fluctuations (CLrms) are
listed in Table 1. It can seen that all the time-averaged drag coefficients calculated in the
present simulations fall in the range of experimental data, about 1.5 to 1.618, while the
value predicted by CLES is nearly identical to that calculated in LES on fine-resolution
grids by Xu et al. [21]. However, the values of CLrms obtained in the present calculations
are larger than those obtained in experiment by Rodriguez [24] and LES by Xu et al. [21].
The present LES and CLES overestimate CLrms at a 12% level as compared with experi-
mental measurement, while the value given in DES is 24.5% larger than the experimental
value. As is well known, the fluctuating force (e.g., the fluctuating lift) on a circular cylin-
der is highly associated with the vortex shedding phenomenon in the wake, which is
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Figure 3: Power spectral density (PSD) of the time-dependent lift coefficient from the present calculations: (a)
LES, (b) DES, and (c) CLES.

usually identified by the power spectral density (PSD) of the time-dependent lift coeffi-
cient [46, 47]. Fig. 3 shows the PSD of the time-dependant lift coefficient for the present
calculations in terms of Strouhal number, which is defined as St= f D/U∞ with f being
the vortex shedding frequency. The primary frequency corresponds to the peak of the
PSD. As can be seen in Table 1, the primary frequencies for LES, DES and CLES are com-
parable to each other, i.e., 0.187, 0.187 and 0.188, respectively, and are consistent to the
experimental data [23, 24] between 0.18 and 0.2.

Shown as Fig. 4(a) are the normalized mean pressure distributions 〈pw〉/p∞ on the
cylinder surface calculated by using DES, LES, and CLES. It appears that the mean wall
pressures predicted by LES, DES and CLES are nearly identical to each other and coincide
with the experimental data reported by Rodriguez [24] except for the range around the
separation points (i.e., 65◦< θ<95◦). The result obtained in LES with a higher resolution
of 257×257×61 by Xu et al. shows a similar behavior, which is greatly improved when
much finer-resolution grids (513×513×121) are used [21]. Therefore, it is inferred that
the underestimation of the pressure by CLES near the extremum value point comes from
the coarse mesh spacing. It is argued that the unsteady disturbances stemming from the
vortex street decrease gradually from the separation point to the front stagnation point
in weakly compressible flow, but diminish quickly before the separation point for flow
with attached shock waves, which prevent the downstream perturbations from passing
around the cylinder [24]. Fig. 4(b) shows the distribution of normalized rms pressure
fluctuations p′rms/p∞ on the cylinder surface. As can be seen, the rms values of pressure
fluctuations calculated in the present LES, DES, and CLES show little distinctions and are
in good agreement with the experimental data except in the vicinity of the rear stagna-
tion point, where the experimental values decrease gradually to a local minimum. We
plot in Fig. 4(c) the distribution of time-averaged skin friction coefficient 〈C f 〉 obtained in
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Figure 4: Distributions of (a) the normalized mean wall pressure 〈pw〉/p∞, (b) the normalized rms pressure
fluctuation p′rms/p∞, and (c) skin friction coefficient 〈C f 〉 calculated in the present simulations: DES (solid

lines), LES (dashed lines) and CLES (dashed-dotted lines). In panels (a) and (b), the LES data by Xu et al. [21]
(circles) and experimental data (squares) by Rodriguez [24] are plotted for comparison. In panel (c), the
experimental data (squares) by Murthy and Rose [23] are plotted for reference. θ= 0◦ is located at the front
stagnation point.

the present calculations. It is obvious that the friction forces predicted by DES and CLES
are very close to the experimental results published by Murthy and Rose [23] with θ in
the range of 0◦∼ 90◦, while that from the present LES is about twice as large as the ex-
perimental value. The mean separation point can be determined from 〈C f 〉 distributions.
The results are listed in Table 1. The CLES method gives the most accurate estimation
(about 86.1◦) as compared with the experimental value of θ≃85◦ , while the present LES
makes the worst prediction. Since the total drag force is dominated by the wall pressure,
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Figure 5: Mean tangential velocity profiles in the radial direction at six angular positions: (a) θ = 15◦, (b)
θ = 45◦, (c) θ = 75◦, (d) θ = 105◦, (e) θ = 135◦, and (f) θ = 165◦ obtained in LES (dashed lines), DES (solid
lines), and CLES (dashed-dotted lines). Here, dw is the local distance to the cylinder surface and θ = 0◦ is
located at the front stagnation point.

the overestimation of skin friction has little influence on the drag prediction.
We show in Fig. 5 the mean tangential velocity profiles in the radial direction at six

angular positions, i.e., (a) θ=15◦, (b) θ=45◦, (c) θ=75◦ , (d) θ=105◦ , (e) θ=135◦ , and (f)
θ=165◦. Here, dw is the local distance to the cylinder surface. Before the mean separation
point, the mean tangential velocities (Ut) calculated from DES and CLES nearly coincide
with each other, while the mean tangential velocities calculated in LES deviate strongly
from those in DES and CLES, especially in regions a little farther away from the cylinder
surface (see Fig. 5(a), (b) and (c)). The profile from LES is much steeper than those from
DES and CLES in the near wall region, being consistent with the larger value of 〈C f 〉
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Figure 6: Mean temperature profiles in the radial direction at six angular positions: (a) θ = 15◦; (b) θ = 45◦;
(c) θ=75◦; (d) θ=105◦; (e) θ=135◦ and (f) θ=165◦ obtained in LES (dashed lines), DES (solid lines), and
CLES (dashed-dotted lines). θ=0◦ is located at the front stagnation point.

observed in LES. The thickness of the local boundary layer calculated from LES is much
thicker than those calculated from DES and CLES. There is no doubt that the proposed
constraints on Reynolds stress and heat flux allow CLES to achieve better performance
than traditional LES with the same grid resolution. After the separation point, the mean
tangential velocity profile predicted by DES begins to depart from that by CLES, espe-
cially in the near-wall backflow region (see Fig. 5(d), (e) and (f)). Similar patterns are
observed for the mean temperature profiles shown in Fig. 6 at the same angular positions
as in Fig. 5. Before the separation point, the mean temperature given by traditional LES is
higher than those from DES and CLES. After the separation point, the mean temperature
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Figure 7: (a, b, c) Time-averaged streamlines and (d, e, f) instantaneous contours of spanwise vorticity in the
central cross-section plane for flow past a circular cylinder obtained from LES (a, d), DES (d, e), and CLES (c,
f).

profile predicted by DES shows apparent deviation from that by CLES in the near-wall
backflow region, where the inflection points of temperature can be observed.

Shown in Fig. 7 (a)-(c) are ensemble-averaged (averaging in both time and spanwise
direction) streamlines in the cross-section plane near the wall obtained from LES, DES,
and CLES, respectively. Similar flow patterns, such as the main recirculation bubbles,
small attached vortices, etc., are observed for the flow fields obtained from the three simu-
lations. The recirculation lengths calculated from LES and CLES are approximately equal
to each other (around 1.2D), and are a little longer than that from DES (about 1.1D). The
size of the attached vortices on the lee side of the circular cylinder observed in CLES is
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larger than that in DES, but is smaller than that in LES. This is similar to the correspond-
ing results for incompressible case [30]. To gain further insight into the instantaneous
flow structures in the near-wall and near-wake regions, we display in Fig. 7 (d)-(f) the
contours of instantaneous spanwise vorticity for the central cross-section slice obtained
from LES, DES, and CLES, respectively. As can be expected, CLES possesses the same in-
herent property as traditional LES in predicting the “small-scale” fluctuating flow struc-
tures in the wake region. In DES, however, the RANS solution in the near-wall layer has
significant influence on the flow patterns in the wake, which, though solved using LES,
look much smoother than those observed in LES and CLES. Therefore, the compressible
CLES method employed in the present simulations shares the positive properties from
both traditional LES and DES in predicting compressible separated flows at acceptable
computational cost.

5 The dynamics of shock waves

In flow past a circular cylinder, the compressible effect is of great importance when the
free-stream Mach number is in certain subsonic or transonic range, since complex shock
waves are generated locally and interact with each other and with turbulence. In this
section, we qualitatively study the formation and propagation characteristics of shock
waves by analyzing the data obtained in CLES at Mach and Reynolds numbers of 0.75
and 2×105, respectively.

Show in Fig. 8 are six snapshots of 3D shock waves and vortex structures depicting
different developing stages within a vortex shedding cycle. The vortex structures are
identified by the isosurfaces of the second invariant of the strain rate tensor (Q) with
Q= 1.0, while the shock waves are detected by using the surface method proposed by
Pagendarm et al. [48], in which the shock position is determined by the maximal pressure
gradient in the local streamwise direction, and a thresholding technique is employed to
distinguish significant portions of the shock patterns from weak numerical artifacts with
a threshold value of 0.75. It is clearly seen from Fig. 8 that there are three types of shock
waves, i.e., the shock waves around the cylinder (denoted S1), the shock waves embed-
ded “on” the shear layer (denoted S2), and the shocklets in the wake region (denoted
S3). We first look at the upper part of the flow domain. In Fig. 8 (a), we can see that
shock wave S2 is very strong (for a 2D view, see Fig. 10), and occupies nearly the whole
spanwise width of the cylinder. In the meantime, shock wave S1 begins to emerge, but
is still weak and discontinuous. As time goes on, shock wave S1 moves upstream and
grows stronger, while shock wave S2 bends upward (see Fig. 8 (b)). Furthermore, shock
wave S1 becomes much stronger and interacts with shock wave S2 as shown in Fig. 8 (c).
Then, shock wave S2 gets distorted and broken due to the interferences from the vortex
structures in the shear layer and shock wave S1 (see Fig. 8 (d)). After that, shock wave
S2 breaks into small and weak pieces and shock wave S1 bends upward as seen in Fig. 8
(e). Soon later, both shock wave S1 and shock wave S2 become weaker and weaker and
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Figure 8: Snapshots of 3D shock waves and vortex structures at six successive moments within a period of
vortex shedding extracted from CLES.

almost disappear as shown in Fig. 8 (f). The motion and propagation of shock waves
in the lower part experience a similar process to those observed in the upper part with
a time delay. There also exist complicated interactions between the shocklets and vor-
tex structure in the wake region of the flow domain, which can be seen more clearly in
Fig. 10.

The appearance of the shock waves implies that there shall be supersonic regions
in the flow domain, though the free-stream velocity is subsonic. We show in Fig. 9 the
instantaneous isocontours of the local Mach number (Ml) for the six time slices corre-
sponding to those shown in Fig. 8. It is observed that there are always local supersonic
zones above/under the shear layers and in the wake, which are believed to be associated
with the local strong turbulent fluctuations. The positions of the supersonic zones exhibit
the same periodicity as that for vortex shedding.

In order to see the shock wave/turbulence interaction more clearly, especially in the
wake region, we display in Fig. 10 the instantaneous contours of the dilatation θ (i.e., the
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Figure 9: Instantaneous isocontours of the local Mach number (Ml) in the central cross-section plane at the
same successive moments as in Fig. 8 obtained from CLES. Solid contour lines indicate the supersonic regions
(Ml >1), and dashed contour lines represent the subsonic regions (Ml <1).

divergence of the velocity field, flood) together with those of the spanwise vorticity ωz

(lines) in the central cross-section plane at the same time series as shown in Fig. 8. Here,
regions with θ<−1 are identified as the locations where shock waves occur. As we can
see previously in Fig. 8, the formation and disappearance of shock waves S1 and S2 in the
lower side of the cylinder are similar to those in the upper side, and happen alternatively
and periodically in time. The flow separates from the cylinder surface, forming a shear
layer, which flaps around the cylinder surface and induces the formation of a Kármán
vortex street. One end of shock wave S2 lies on the shear layer and moves up and down
with it. There exist complex interferences between shock S2 and the shear layer. Shock
wave S1 forms on the cylinder surface around the separation point. The flapping of the
shear layer shall induce the oscillation of shock S1 along the cylinder surface, which in
return accelerates the separation of the boundary layer. It can also observed in Fig. 10
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Figure 10: Instantaneous isocontours of the dilatation θ=∂ũi/∂xi (flood for θ<−1) and the spanwise vorticity
(solid lines for positive values and dashed for negative values) for the same slices both in time and in space as
shown in Fig. 9.

that shocklets (S3) form in the near wake region of the cylinder, characterized by strong
negative dilatation [49, 50]. As discussed by Xu et al. [21], these shocklets interact mu-
tually with the turbulence in the wake. The presence of shocklets stimulates a higher
level of turbulence intensity, and meanwhile the strong turbulent fluctuations increase
the possibility of the formation of shocklets.

6 Mach number effects

For compressible flow past a circular cylinder, free-stream Mach number has a signifi-
cant influence on the flow pattern and the statistical quantities of interest. In this sec-
tion, we investigate the role of the Mach number on compressibility effects by using the
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Table 2: Some integral quantities obtained in CLES at various free-stream Mach numbers.

Ma CD CLrms St θsep Lr/D

0.1 0.778 0.399 0.268 105.8◦ 0.383

0.3 0.682 0.168 0.270 94.8◦ 1.01

0.5 1.206 0.659 0.210 85.2◦ 0.566

0.75 1.571 0.287 0.188 86.1◦ 1.24

0.95 1.839 0.0046 - 107.7◦ 1.25

compressible CLES method over a wide range of free-stream Mach number from the in-
compressible limit (Ma= 0.1) to the upper transonic limit (Ma= 0.95). The five selected
simulation cases and the corresponding integral quantities are listed in Table 2. Other
input parameters in the simulations are the same as those utilized in Section 4.

If one assumes that the flow along the streamline ahead of the front stagnation
point is isentropic, the stagnation pressure can be theoretically estimated by psp = (1+
γ−1

2 Ma2)
γ

γ−1 p∞, which implies that the mean pressure coefficient 〈Cp〉 increases mono-
tonically with the increasing Mach number, and is demonstrated by the numerical results
in Fig. 11 (a) where the distributions of mean surface pressure (given by mean pressure
coefficient 〈Cp〉= 2(pw−p∞)/ρ∞U2

∞) calculated in CLES at various Mach numbers are
plotted. In the adverse pressure gradient region, the pressure gradient keeps decreasing
when Mach number increases. Angular position of the minimum pressure coefficient
first moves toward the front stagnation point and then moves back away from that point
as Mach number changes from 0.1 to 0.95. The plateau value of the pressure coefficient,
which is achieved on the lee side of the cylinder, increases first and then decreases with
the increasing Mach number. The Mach number, which distinguishes the opposite be-
haviors of pressure coefficient mentioned above, is between 0.3 and 0.5, and is called
subcritical Mach number and denoted by Msc.

Fig. 11 (b) shows the angular distribution of the rms pressure fluctuations p′rms/p∞

along the cylinder surface for CLES at various Mach numbers. When Ma is less than
Msc, p′rms increases gradually from the front stagnation point to a point where it reaches
the maximum value, and then decreases slowly to form a plateau on the lee side of the
cylinder. It ought to be mentioned that we can hardly see the pressure fluctuations when
Ma=0.1, since p∞ is relatively larger in weak compressible flow than in strong compress-
ible case. When the Mach number is larger than Msc, the rms value of the pressure fluc-
tuations dramatically increases prior to separation and continuously decays to a plateau
after the mean separation point. The sudden change of p′rms around the separation point
is consistent with the experimental observations by Rodriguez [24], who attributed this
phenomenon to the formation of shock waves on the cylinder surface. It is argued that
the oscillating shock waves can prevent the downstream perturbations from propagating
upstream around the cylinder and result in a strong reduction in the unsteady pressure
intensity cross the separation point. Therefore, it is inferred that no apparent shock wave
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Figure 11: Distributions of (a) the mean wall pressure coefficient 〈Cp〉= 2(pw−p∞)/ρ∞U2
∞, (b) the rms

pressure fluctuations p′rms/p∞, (c) the mean skin friction coefficient 〈C f 〉, and (d) the mean wall temperature

〈Tw〉/T∞ obtained in CLES at different free-stream Mach numbers: Ma=0.1 (solid lines), Ma=0.3 (dotted
lines), Ma=0.5 (dashed lines), Ma=0.75 (dashed-dotted lines), and Ma=0.95 (dashed-double-dotted lines).
Here, θ=0◦ indicates the front stagnation point.

structures appear when free-stream Mach number is below the subcritical Mach number
Msc.

We show in Fig. 11 (c) the mean skin friction coefficient 〈C f 〉 calculated in CLES for
different free-stream Mach numbers. As Mach number increases, it is found that the
separation point (i.e., the angular position where 〈C f 〉 first changes its sign) move toward
the front stagnation point along the cylinder wall when Ma is less than Msc, and move
toward the rear stagnation point when Ma is larger than Msc. The variation trend of the
primary separation angle θsep with respect to Mach number Ma can be seen in Table 2. It
shall be mentioned also that the skin friction coefficient decreases monotonically as Mach
number increases in the range of interest before the maximum value.

Shown as Fig. 11 (d) are the mean wall temperature profiles along the cylinder surface
obtained for CLES of flows at various Mach numbers. It is seen that the wall temperature,
and thus the wall viscosity at the same angular position, increases as the Mach number
increases prior to the mean separation point, showing an opposite tendency to that of
skin friction coefficient. Therefore, the velocity gradient on most of the windward wall
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experiments range from ∼105 to ∼106.

shall keep decreasing as Mach number increases, except for the upper transonic limit.
For given Mach number below 0.95, there exists a inflection point on the temperature
profile, after which the mean wall temperature increases quickly to a local maximum
value at the mean separation point, and then decays identically to the temperature of
inflow (T∞). The existence of inflection point is believed to be closely related to the flow
separation phenomena and the oscillating shocks on the cylinder surface. When Mach
number approaches the upper transonic limit (e.g., Ma= 0.95 considered in this paper),
the variation trend of the mean wall temperature beyond the inflection point is rather dif-
ferent from the subsonic cases. The mean wall temperature increases suddenly to a larger
value around the separation point and remains unchanged when traveling toward the
rear stagnation point, which may attribute to the quasi-steady recirculation zone formed
in the lee side of the cylinder.

The drag force on the cylinder is directly related to the pressure distribution along
the cylinder surface shown in Fig. 11 (a). As can be seen in Table 2, the drag coefficient
exhibits an opposite trend to plateau value of the wall pressure when Mach number in-
creases from 0.1 to 0.95, i.e., decreasing when Ma< Msc and increasing when Ma> Msc.
The diverse responses of the drag coefficient to the Mach number in different ranges
agree with the experimental data reported previously [51–53] as shown in Fig. 12. Here,
the total drag is approximated by integrating the pressure around the cylinder surface,
since the friction force is negligibly small. It should be emphasized that although the
Reynolds numbers for these experimental measurements vary from ∼105 to ∼106, these
experimental data provide a consistent and trustable reference for comparison.

Listed also in Table 2 are some other statistical quantities calculated in CLES at differ-
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ent Mach numbers. With the increase of Mach number, the Strouhal number St increases
when Ma is less than Msc, and then decreases. Both the rms lift coefficient fluctuations
CLrms and the recirculation length Lr show a three-stage response to the continuously
changed Mach numbers. The anomalous behaviors of these quantities are worth further
investigation.

7 Wall temperature effects

It has been demonstrated both experimentally [54] and numerically [55] that the temper-
ature field has an important influence on the flow pattern of compressible laminar flow
past a heated circular cylinder, especially when the ratio of the cylinder surface temper-
ature (Tw) to the free-stream temperature (T∞), denoted by T∗= Tw/T∞, exceeds 1.1. In
this section, the effects of wall temperature on compressible flow past a heated circular
cylinder are investigated by using CLES method. Three different wall temperatures are
chosen by setting T∗ equal to 0.4 (cooling wall), 1.0 (neutral wall), and 2.0 (heating wall),
respectively. The free-stream Mach number (Ma=0.75), Reynolds number (2×105), and
other input parameters and numerical setup for CLES are the same as those utilized in
Section 4, except that isothermal wall boundary condition is employed in this study.

We display in Table 3 several typical quantities calculated in CLES using different wall
temperatures. The corresponding results obtained by using the adiabatic wall boundary
condition are also provided for comparison. These quantities include the drag coefficient
CD, the rms lift coefficient fluctuations CLrms, the Strouhal number St, the mean separa-
tion angle θsep, the recirculation length Lr, and the pressure coefficient at the rear stagna-
tion point Cpb. It is found that when the cylinder surface is changed from cooling wall
to heating wall, CD, CLrms, and θsep decrease monotonically, while Lr and Cpb show an
opposite tendency. However, the Strouhal number remains unchanged in regard to the
increasing T∗. In other words, the vortex shedding frequency are hardly affected by the
wall temperature in high Reynolds number compressible flows past a circular cylinder.
This is in sharp contrast to the low Reynolds number case [54, 55], in which St decreases
identically with the increasing value of wall temperature.

Shown in Fig. 13 (a)-(d) are the distributions of the normalized mean wall pressure
〈pw〉/p∞, the normalized rms value of the pressure fluctuations p′rms/p∞, the mean skin

Table 3: Comparison of some statistical quantities obtained in CLES with adiabatic and isothermal wall boundary
conditions.

Case CD CLrms St θsep Lr/D Cpb

Adiabatic 1.571 0.287 0.188 86.1◦ 1.24 0.458

T∗=0.4 1.572 0.277 0.190 87.4◦ 1.20 0.467

T∗=1.0 1.538 0.256 0.190 84.2◦ 1.38 0.492

T∗=2.0 1.510 0.228 0.190 83.8◦ 1.52 0.515
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Figure 13: Distributions of (a) the mean wall pressure 〈pw〉/p∞, (b) the rms pressure fluctuations p′rms/p∞, (c)
the mean skin friction coefficient 〈C f 〉, and the mean wall density 〈ρw〉/ρ∞ obtained in CLES with isothermal
wall boundary conditions. The results with adiabatic wall boundary condition are also displayed for comparison.
θ=0◦ is located at the front stagnation point.

friction coefficient 〈C f 〉, and the normalized mean wall density 〈ρw〉/ρ∞, respectively,
along the cylinder surface obtained in CLES with isothermal and adiabatic wall boundary
conditions. We can see from Fig. 13 (a) that the mean wall pressures for different thermal
boundary conditions are almost the same when θ . 70◦. For a given angular position
when θ > 70◦, the mean pressure increases for increasing values of wall temperature or
T∗. The discrepancies among the pressures after the points of separations account for the
variations in drag coefficients due to the differences in wall temperature listed in Table 3.

The rms pressure fluctuations for isothermal wall conditions (lines) plotted in Fig. 13
(b) show a similar trend to those for adiabatic wall condition (circles). The rms value of
the pressure fluctuations suddenly increases to a local peak after separation occurs and
continuously decays to a plateau on the lee side of the cylinder. The higher the wall
temperature, the lower the plateau.

The mean skin friction coefficient 〈C f 〉 is significantly influenced by the wall temper-
ature before the mean separation point as shown in Fig. 13 (c). For a given θ in the range
between 0◦ and 70◦, the friction coefficient increases for increasing values of the wall tem-
perature. As an illustration, we plot in Fig. 14 the mean tangential velocity profiles for
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Figure 14: Mean tangential velocity profiles in the radial direction at six angular positions: (a) θ = 15◦, (b)
θ=45◦, (c) θ=75◦, (d) θ=105◦, (e) θ=135◦, and (f) θ=165◦ obtained in CLES with isothermal and adiabatic
wall boundary conditions. θ=0◦ is located at the front stagnation point.

different thermal boundary conditions at six angular positions. As can be seen, the ve-
locity gradients in the radial direction show slight difference on the cylinder surface. In
fact, the velocity gradient decreases with the increasing of the wall temperature when one
zooms in very close to the wall. According to the Sutherland’s law (see Eq. (2.7)), the vis-
cosity for the heating wall case and cooling wall case are µh≃1.65µ∞ and µc≃0.44µ∞, re-
spectively. Therefore, it is the significant change in viscosity that compensates the deficit
of velocity gradient and contributes dominantly to the apparent discrepancies in 〈C f 〉
before the point of mean separation. The slight differences in 〈C f 〉 after the separation
point come from the balance between the velocity gradients (see Fig. 14 (d)-(f)) and the
viscosities. It is interesting to note that although 〈C f 〉 is largest for the heating wall case,
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Figure 15: Distributions of the mean heat fluxes on the cylinder surface obtained in CLES with different thermal
wall boundary conditions. The legend “Tw/T∞=1.0(*)” indicates that the heat fluxes are amplified by a factor
of 3 for clarity. θ=0◦ is located at the front stagnation point.

the drag coefficient CD is smallest in contrast. This is attributed to the largest pressure
on the lee side of the heating cylinder as shown in Fig. 13 (a) and reveals that the wall
pressure contributes dominantly to the total drag force. Another conclusion drawn from
Fig. 13 (c) is that the higher wall temperature leads to earlier flow separation (see the
mean separation angle list in table 3), and results in a longer recirculation domain.

The mean density distributions for various wall temperatures on the cylinder surface
differ strongly from each other as shown in Fig. 13(d), but have similar shape to the
mean wall pressure distributions. As the wall temperature increases, the mean density
gets decreased. In accordance to the thermodynamical equation of state (see Eq. (2.4)),
large variations in temperature will give rise to large variations in density (in the opposite
direction), since the changes in pressure are quite small.

Fig. 15 shows the distributions of the mean heat fluxes on the cylinder surface calcu-
lated in CLES with different wall temperatures. Here, a positive value means that heat
flows out from the flow field and is transferred into the cylinder through the cylinder sur-
face. When T∗= 0.4, it is clearly seen that the mean heat fluxes are positive everywhere
on the whole surface, implying that the heat flows into the cylinder through the whole
cylinder surface. The cylinder acts as a cooling device for the flow field. When the wall
temperature is increased such that T∗=1.0, the heat fluxes are still positive on most part
of the cylinder surface except for the negligibly small negative values around the rear
stagnation point (see the amplified line). Such a cylinder, called neutral wall cylinder in
this paper, acts as a cooling device in most regions, but acts as a heating device near the
rear stagnation point. When T∗= 2.0, however, the heat fluxes are negative everywhere
on the cylinder surface, indicating that heat flows into the flow field through the whole
cylinder surface, and the cylinder acts as a heating device for the flow field.

For all three isothermal wall boundaries, the absolute values of mean heat fluxes on
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Figure 16: Mean temperature profiles along the radial direction at different circumferential positions ranging
from 0◦ to 60◦ with an increment of δθ=5◦ obtained in CLES with heating wall boundary (T∗=2.0). θ=0◦ is
located at the front stagnation point.

the cylinder surface decrease continuously from the maximum at the front stagnation
point to a local minimum at a circumferential position before the mean separation point,
and then show a short-range increase to reach a local maximum. After that, the absolute
values of mean heat fluxes decay gradually to zero for the neutral wall case, and form a
plateau for the cooling and heating wall cases. The relative distances between the onset
position of separation (p′rms/p∞ = 1%, see squares in Fig. 15) and the mean separation
position measured in the three cases are different from each other, with the largest for
the heating wall case and the smallest for the neutral wall case. The local minimum and
maximum values are closely related to the instantaneous separation phenomenon, which
induces drastic changes in pressure fluctuation (see Fig. 13 (b)). The monotonic decrease
in the mean heat fluxes in the circumferential direction before the onset position is be-
lieved to be caused by the decrease in the temperature gradient in the wall-normal direc-
tion. Shown in Fig. 16 are the mean temperature profiles along the wall-normal direction
at various circumferential angles ranging between 0◦ and 60◦. It is clearly seen from the
zoom for near-wall profiles the temperature gradients in the wall-normal direction get
reduced with increasing circumferential angle θ as conjectured. It can also be found that
the heat boundary layer keeps growing thinker and the mean temperature in the outer
layer of the heat boundary gets lower when one travels from the front stagnation point
to the onset point of flow separation.

In fact, the influences of different thermal wall boundary conditions on the flow and
temperature patterns are mainly concentrated in the near-wall regions of the flow field,
and can be neglected in regions far away from the cylinder surface. Shown in Fig. 17 are
the snapshots (isocontours) of mean temperature around the circular cylinder obtained
in CLES with four different thermal wall boundary conditions, i.e., three isothermal walls
with T∗=0.4 (Fig. 17 (a)), T∗=1.0 (Fig. 17 (b)), T∗=2.0 (Fig. 17 (c)), and an adiabatic wall
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Figure 17: Snapshots of the mean temperature field around the circular cylinder for different thermal wall
boundary conditions: (a) Tw/T∞ = 0.4, (b) Tw/T∞ = 1.0, (c) Tw/T∞ = 2.0, and (d) adiabatic wall. The lines
with arrows in the upper half of the panels show the directions of the heat fluxes.

(Fig. 17 (d)). The solid lines with arrows in the upper half panels indicate the directions of
mean heat fluxes. It is obvious that the heat fluxes in the four panels are almost the same
to the eyes, with a source near the front stagnation point, a sink near the mean separation
point, and a sink in the center wake with x/D∼1.2. There exists a saddle point between
these two sinks, from which heat flows to the sinks. The detailed behaviors of the heat
fluxes in the near-wall regions show a similar pattern as seen in Fig. 15, which can not be
observed in this figure.

In order to study the effects of the thermal wall boundary conditions on the tem-
perature distribution in near-wall regions of the cylinder, we plot in Fig. 18 the mean
temperature profiles along the radial direction at six different angular positions using
isothermal wall conditions (lines) and adiabatic wall condition (circles). It is clearly seen
that the temperature profiles nearly coincide with each other when the distance to the
wall dw exceeds 1%D before the mean separation point. However, the influences of ther-
mal wall boundary conditions can propagate much further in the radial direction after
the mean separation point. For instance, the mean temperatures measured at θ = 135◦

for different thermal wall conditions still differ from each other at dw ∼ 0.18D as can be
found in Fig. 18 (e). This discrepancy in response to the thermal wall boundary condi-
tions in the near-wall regions comes from the fact that the flow is relatively stable before
the separation, and is chaotic after the separation. Similar conclusion can be drawn for
the near-wall mean velocity profiles as shown in Fig. 14 and the mean density profiles
(not shown here).
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Figure 18: Mean temperature profiles along the radial direction at six angular positions: (a) θ=15◦, (b) θ=45◦,
(c) θ=75◦, (d) θ=105◦, (e) θ=135◦, and (f) θ=165◦ obtained using CLES with different thermal boundary
conditions. θ=0◦ is located at the front stagnation point.

8 Conclusions and discussions

In this paper, a recently developed constrained large-eddy simulation method for com-
pressible flows [31] is used to investigate compressible flow past a circular cylinder at an
inflow Reynolds number Re=2×105 and various free-stream Mach numbers.

Firstly, The compressible CLES method is tested and validated by simulating com-
pressible flow past a circular cylinder at a free-stream Mach number of 0.75 with adia-
batic wall boundary condition. Typical integral and statistical quantities, including the
mean drag coefficient, the rms lift fluctuations, the Strouhal number, the mean wall pres-
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sure, the rms wall pressure fluctuations and the skin friction coefficient, are compared
with those obtained in present DES and LES on the same mesh, the experimental data,
and those reported by Xu et al. [21] using traditional LES method on a finer mesh. It is
found that the CLES method combines the most positive aspects from traditional LES
method and hybrid RANS/LES (e.g., DES) method, respectively. With relatively coarser
grid resolution and larger time step, CLES method can predict the realistic flow struc-
tures in the wake and reliable integral quantities as compared with those obtained in LES
with much finer mesh [21]. The present DES fails to figure out the fluctuating structures
in the near wake of the cylinder because of the smooth RANS solution close to the cylin-
der surface. The present LES, however, overestimates the skin friction coefficient by a
factor of two, and fails to predict the mean velocity and temperature profiles along the
radial direction due to the coarse resolution of the computation grids. The formation and
propagation of three types of shock waves as well as shock wave/shock wave and shock
wave/turbulence interactions are studied by visualizing the CLES data. It turns out that
the CLES method can successfully simulate the complicated shock wave dynamics very
well. Therefore, we believe that the present CLES method should be a promising tool for
simulation of compressible wall-bounded turbulent flows with massive separations.

Secondly, Mach number effects on the flow patterns and typical aerodynamic quanti-
ties are studied with the free-stream Mach number varying from the incompressible limit
(Ma=0.1) to the upper transonic limit (Ma=0.95). It is found that there exists a subcritical
Mach number Msc (between 0.3 and 0.5), at the which the mean separation angle achieves
its minimum value. Main thermodynamic quantities obtained in the range of Ma< Msc

show opposite variation trend to those in the range of Ma>Msc. Some parameters, such
as the rms lift coefficient fluctuations and the recirculation length, show a three-stage re-
sponse to the increasing Mach numbers. The final stage behavior of these quantities shall
be closely associated with the upper transonic effect, which is not investigated in detail
in the present paper.

Finally, wall temperature effects on the flow and temperature fields as well as the
aerodynamic quantities are investigated with three different isothermal wall boundary
conditions, i.e., a cooling wall (Tw/T∞ = 0.4), a neutral wall (Tw/T∞ = 1.0), and a heating
wall (Tw/T∞ = 2.0). The results demonstrate that as the wall temperature increases, the
drag coefficient, the rms values of the lift coefficients and the mean separation angle de-
crease, while the recirculation length and the pressure coefficient at the rear stagnation
point increase. The vortex shedding frequency remains unchanged for the three isother-
mal wall conditions. The influences from the wall temperature are concentrated mainly
in the near-wall layer, especially before the mean separation point. The patterns for the
flow, temperature, and density fields are hardly affected by the wall temperature in re-
gions far away from the cylinder surface.

It shall be mentioned that the flow patterns and the behaviors of the integral quan-
tities may become anomalous and interesting when the free-stream Mach number is
around the upper transonic limit as observed from the experimental data. The inflow
Reynolds number may also have significant effect on the flow pattern and shock wave
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dynamics. These issues are not listed in the content of the present paper and are worth
further research.
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