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Abstract. We introduce a new multigrid method to study the lattice statics model aris-
ing from nanoindentation. A constrained Cauchy-Born elasticity model is used as the
coarse-grid operator. This method accelerates the relaxation process and considerably
reduces the computational cost. In particular, it saves quite a bit when dislocations
nucleate and move, as demonstrated by the simulation results.
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1 Introduction

As a way of probing mechanical properties of materials in small volumes, nanoindenta-
tion has attracted great attention in last few decades [11, 21]. It is a flexible characteriza-
tion technique by varying indentor geometry and indentation direction in experiments.
Compared to the uniaxial tension, the strain field under an indentor is more complicated
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and highly heterogeneous even for a specimen with isotropic materials. Although the
timescale issue is crucial in many indentation tests [13], (quasi-)static properties, such as
hardness and modulus, are also of great interest for different materials. During nanoin-
dentation, different length scales coexist in the problem due to indenter size, sample size,
dislocation nucleation and dislocation propagation. The atomistic-level simulation tools
are necessary for nanoindentation. However, the computationally intensive nature of
atomistic simulations of these phenomena restricts the simulation cell to a size which is
many orders of magnitude smaller than the typical size of the solid in an experiment.
Thus, many multiscale approaches have been proposed to exploit the nanoindentation
problem. On the other hand, its multiscale nature also supplies a benchmark problem for
multiscale methods [4, 5, 12, 17, 23].

From a numerical point of view, multiscale methods can be divided into two cate-
gories. One is based on the domain decomposition method [24], which combines lattice
statics and continuum model in a concurrent manner [17]. The other is based on the
multigrid method [3, 25], where models are combined in a sequential manner [5, 12].

In this paper, we will focus on the latter. Brandt [4] highlighted many possible ap-
plications of the multigrid method, including molecular statics. Goedecker et al. [12]
employed the linear elasticity as the coarse-grid operator in the two-grid method. The ef-
ficiency of the method is verified by the silicon crystals with some point defects. A more
general approach was proposed by Chen and Ming [5]. They used the one-way multi-
grid method [7], which can automatically bypass many unphysical local minimizers. The
coarse-grid operator was constructed by the Cauchy-Born (CB) rule [2]. The consistency
between the CB elasticity model and lattice statics has been proven under some stabil-
ity conditions [8]. Efficiency of the method is demonstrated by FCC Aluminium crystals
under different homogeneous deformations. Moreover, this method gives qualitatively
reasonable results for nanoindentation with quite a bit cost.

To overcome this issue, we introduce a constrained CB elasticity model as the coarse-
grid operator to accelerate the convergence of the multigrid method. In nanoindentation,
collective motion of atoms in the strain field formally can be separated into two parts: one
is induced by loading applied on boundaries and the other is by dislocation structures
after nucleation. It has been shown in [5] that the former can be effectively captured
by CB elasticity model on coarse grids. It will be shown in the present work that the
constrained CB elasticity model can capture the latter in an effective manner. This will
be done by updating the local strain field around dislocations at the atomistic scale and
then transmitting updated information globally on grids.

In the following, we first briefly review the one-way multigrid method for lattice
statics, and then introduce a constrained CB elasticity model, based on which we propose
an accelerated multigrid method. We show its efficiency by studying the lattice statics
model in nanoindentation. A heuristic explanation of the constrained model will be given
in the appendix.
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2 Methodologies

2.1 Lattice statics and elasticity model

In lattice statics, the equilibrium configuration {yi}N
i=1 is determined by

{y1,··· ,yN}=argmin Etot(y1,··· ,yN), (2.1)

where

Etot(y1,··· ,yN)=V(y1,··· ,yN)−
N

∑
i=1

fi ·yi

with V the potential function, and fi the external force on the i-th atom. The displacement
of the i-th atom is then defined as

ui=yi−xi,

where xi is the position of the i-th atom at the undeformed configuration.
Since lattice statics itself is a discrete model, we need to introduce coarse-grid op-

erators in the context of the multigrid method. The natural choice is the continuum
model, where the displacement field u is determined by solving the following minimiza-
tion problem:

u=argminv∈X

∫

Ω

(

W
(

∇v(x)
)

− f (x)·v(x)
)

dx. (2.2)

Here Ω is the domain occupied by the material at the undeformed state, X is a suit-
able function space, and W is the stored energy density depending on the displacement
gradient. For example, linear elasticity model [12] can be obtained from (2.2) if W is a
quadratic. A more general proposal is to construct W from the atomistic model via the
CB rule [2].

For simple lattice, the CB rule works as follows. Let F = I+Dv be the deformation
gradient tensor, and E0(F) be the energy of the unit cell in the deformed lattice whose
lattice vectors {ai}3

i=1 are given by

ai =FAi,

where {Ai}3
i=1 are lattice vectors of the undeformed lattice. The stored energy density is

given by

WCB(F)=
E0(F)

υ0
,

where υ0 is the volume of the unit cell in the equilibrium state. Considering a two-body
potential function V2, we write WCB as

WCB(F)=
1

2υ0
∑

s

V2(Fs),

where s runs over the range of the potential function.
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As an illustrative example, we consider one-dimensional chain interacting through
Lennard-Jones potential [15] with the nearest neighbor interaction

V(r)=4

(

(

σ

r

)12
−
(

σ

r

)6
)

, (2.3)

where σ is a parameter representing the atomic length scale. The explicit expression of
WCB as

WCB(F)=
1

r∗

(

|F|−12−2|F|−6
)

(2.4)

with equilibrium bond length r∗= 6
√

2σ.
The CB elasticity then reads

u=argminv∈X

∫

Ω

(

WCB

(

∇v(x)
)

− f (x)·v(x)
)

dx, (2.5)

where WCB is the stored energy density obtained from the CB rule. We refer to [22] for
the expression of WCB when the potential function V is the EAM potential [10].

2.2 The one-way multigrid method

Consider a nested sequence of triangulations T0⊂T1⊂···⊂Tl of Ω. The main steps of the
one-way multigrid method [5] are as follows.

Step 1 Take u0 =0 as the initial guess and minimize the CB elasticity problem (2.5) discretized over

T0 to obtain ũ0.

Step 2 For i=1,··· ,l,

1. Interpolate

ui= I i
i−1ũi−1,

where I i
i−1 is the standard finite element interpolation operator.

2. Take ui as the initial guess and minimize the CB elasticity problem (2.5) discretized on Ti

to obtain ũi.

Step 3 Solve the atomistic problem (2.1) with the CB state x+ũl(x) as the initial guess.

Fig. 1(a) is the schematic picture of the one-way multigrid method. As shown in [5],
it is effective to capture collective motion of atoms due to boundary loading and is insen-
sitive to the initial guesses and the parameters of the relaxation process. As the coarse-
grid operator, the CB elasticity model can effectively capture the atomistic information at
coarse levels for homogeneous deformations.

However, in nanoindentation, the CB elasticity is less effective since the local inhomo-
geneous deformation around the indenter is missing in the continuum model. Take state
C in Fig. 4 as an example. Fig. 2 includes contour plots of the z component difference
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Figure 1: Schematic pictures of multigrid methods for lattice statics. (a) The one-way multigrid method. (b)
The constrained CB (cCB) elasticity accelerated multigrid method.
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Figure 2: Contour plots of the z component difference of the displacement field in an interior slice in the x−z
plane. (a) Difference between the equilibrium solution obtained by the one-way multigrid method in Section
2.2 and the solution obtained by only performing Step 1 and Step 2 in the one-way multigrid method. (b)
Difference between the equilibrium solution and the solution obtained by replacing Step 3 with five minimization
sweeps in the one-way multigrid method.

of the displacement field in an interior slice in the x−z plane. Fig. 2(a) is the difference
between the equilibrium solution obtained by the one-way multigrid method here and
the solution obtained by only performing Step 1 and Step 2 in the one-way multigrid
method. Fig. 2(b) is the difference between the equilibrium solution and the solution
obtained by replacing Step 3 with five minimization sweeps in the one-way multigrid
method. The x component difference is similar to the z component difference and the
y component difference is negligible due to the periodic boundary condition, which are
not included here.

The long range displacement due to the boundary loading, can be captured in Step 1

and Step 2. Dislocations, on the other hand, generate a displacement field with 1/r decay
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where r is the distance to the dislocation core. The second part cannot be captured by
Cauchy-Born elasticity, or Step 1 and Step 2 in the one-way multigrid method (Fig. 2(a)).
Conventional minimization sweeps are efficient to relax atoms locally, but requires a lot of
sweeps to generate a global displacement field. In Fig. 2(b), atoms under the top surface
are nearly in their equilibrium states while interior atoms are not, which implies why the
one-way multigrid method is less efficient in the case.

The good news is that more accurate information around the indenter is obtained
with a few conventional minimization sweeps. If this can be properly incorporated at the
continuum level, the long range effect of dislocations can be captured in a more effective
manner. As we will introduce later, the displacement field around the indenter, obtained
from a few minimization sweeps at the atomistic level, will be restricted on meshes at the
continuum level, constrained and treated as displacement boundary conditions. The CB
elasticity model, together with such boundary conditions, is then called the constrained
CB elasticity model. Since the information of dislocations is included, meshes for the
constrained CB elasticity model are different from those for the CB elasticity model in
general.

2.3 The constrained CB elasticity accelerated multigrid method

We define another sequence of triangulations {Tj}m
j=1 and the choice of these triangula-

tions will be discussed in Section 3. As illustrated in Fig. 1(b), the constrained CB elastic-
ity accelerated multigrid method is described as follows.

Step 1 Take u0=0 as the initial guess and minimize the CB elastic problem (2.5) discretized on T0 to

obtain ũ0.

Step 2 For i=1,··· ,l,

1. Interpolate

ui= I i
i−1ũi−1,

where I i
i−1 is the standard finite element interpolation operator.

2. Take ui as the initial guess and minimize the CB elastic problem (2.5) discretized on Ti to

obtain ũi.

Step 3 Relax (2.1) nr conventional minimization sweeps with the constrained CB state x+ũl(x) as the

initial guess and obtain y(0). We do not resolve all details in (2.1) at this step. Choice of nr will

be discussed in Section 3.

Step 4 For j=1,··· ,m,

1. Decompose

ûj =uc,j+ua,j,

where ûj =y(j−1)−x is the deformation at the atomistic scale, uc,j is the restriction of ûj

on the triangulation Tj and ua,j = ûj−uc,j. The larger components of uc,j are constrained

and treated as displacement boundary conditions in the constrained CB elasticity model,

which results constrained meshes in Fig. 7 for example.
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2. Solve the constrained CB elasticity on Tj with uc,j as the initial guess and obtain ũc,j.

3. Relax (2.1) nr sweeps with the constrained CB state x+ua,j+ũc,j as the initial guess and

obtain y(j).

Step 5 Solve (2.1) with y(m) as the initial guess. All atomistic details are resolved and the number of

sweeps is denoted by n f .

It is worth mentioning that the first three steps are similar to the one-way multigrid
method [5]. In Step 4, we also can solve the constrained CB elasticity model in the frame-
work of the one-way multigrid method. Numerical results show that this strategy cannot
significantly improve the efficiency of the method.

3 Results

To illustrate how the constrained CB elasticity accelerated multigrid method works for
nanoindentation, we start with a small scale problem including 24576 atoms, test all fac-
tors that affect the efficiency of the method, and then end up with a large problem with
1572864 atoms.

We consider a FCC Aluminium crystal with EAM potential [6, 10]. The CB elastic-
ity model is approximated by the hexahedron element with standard eight-point Gauss
quadrature rule. Newton-Raphson (NR) method with the linesearch [9] is employed to
solve the continuum model, and conjugate-gradient (CG) method with Fletcher-Reeves
formula and bisection linesearch [19] are used to solve the atomistic model. Resulting
linear systems are solved by a parallel sparse direct solver MUMPS [1]. We simulate the
indentation process along [1̄10] (dislocation) direction with a rectangular indenter (Fig. 3).

[111] [11−2]

[−110]

55A39A

183A

7A

P

Figure 3: Schematic representation of nanoindentation along dislocation direction. The indenter width is 6.98Å.
The occupied domain is 55.9Å×39.5Å×182.5Å in the small problem, and 223.5Å×158.0.5Å×729.9.5Å in the
large problem.
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Figure 4: Load-displacement curve in nanoindentation. (a) Full picture. (b) Local picture after zooming in the
ellipse.

The [111],[112̄] and [1̄10] directions are viewed as x,y and z axes, respectively. We impose
periodic boundary conditions on both x and y directions, while Dirichlet boundary con-
dition on the top surface under the indenter and the bottom surface in the z direction,
and stress free boundary condition on the remaining part of the top surface. The width
of the indenter is 6.98Å.

For the small scale problem, the domain Ω is approximately 55.9Å×39.5Å×182.5Å.
The load-depth curve is plotted in Fig. 4(a). To illustrate the nucleation of dislocations,
we choose an ellipse over the region where the slope of the curve is noticeably changed.
After zooming in, we select four representative points labeled by A, B, C and D sequen-
tially, among which C is the transition point with the largest strength of loading. We
visualize the atomic configuration by Atomeye [16] for states A, B, C and D in Fig. 5 and
Fig. 6. The number of atoms touching the given atom is defined as its coordinate number.
For an ideal FCC crystal, the ones with coordinate number 12 are called regular atoms,
while the others are called irregular atoms. Table 1 shows the one-to-one correspondence
between color and coordinate number. In particular, the coordinate number of atoms as-
sociated with the dislocation here is 13. There is no dislocation for state A. Dislocations
have nucleated from state B. At state C, dislocations grow but still stick to the inden-
ter. Dislocations leave the indenter and propagate along the dislocation direction at state
D. Before the load-displacement curve decreases, dislocations indeed occurred (state B).
Therefore, one cannot decide the onset of plasticity by this curve. This study reveals the
deficiency of the commonly used criterion for dislocation nucleation, and it is conform-
ing with experiment results [18] and numerical results based on cylindrical indenter [14],
although the system we test here is small.

Table 1: One-to-one correspondence between color and coordinate number.

Color Purple LightSteelBlue MediumVioletRed LightGoldenrod Blue

Coordinate number 7 8 11 12 13
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(a) (b)

Figure 5: Atomic configuration of states A and B around the indenter. (a) State A. (b) State B.

(a) (b)

Figure 6: Atomic configuration of state C and D around the indenter. (a) State C. (b) State D.

In what follows, the CPU time is recorded on LSSC-III with one Intel X5550 processor
as a measure of the computational cost. Table 2 shows the CPU time of NR method for
CB elasticity.

Table 2: CPU time of NR method vs. mesh (Steps 1 2 in Section 2.2).

Mesh 8×4×2 8×4×8 8×4×32

CPU time (s) 2.2 0.5 2.1

Table 3 shows the CPU time of CG method in the one-way multigrid method for lat-
tice statics. This problem has local inhomogeneous deformations around the indenter.
The largest CPU time is required at state C which has the most inhomogeneous defor-
mations. Dislocations carry away certain plasticity when they leave the indenter and
inhomogeneity around the indenter is weakened. This explains that CPU time at state D
is smaller than that at state C.

Table 3: CPU time of CG method vs. depth (Step 3 in Section 2.2).

Depth(Å) 0.55 1.64 1.91(A) 2.00(B) 2.03(C) 2.55(D)

CPU time (s) 698.5 1382.1 3420.0 3412.7 18235.2 9111.8

In what follows, we discuss some factors that affect the efficiency of the constrained
CB elasticity accelerated multigrid method. The first one is the choice of the constrained
CB elasticity model, which closely depends on triangulations {Tj}m

j=1. For the time being,

we choose the constrained points according to the magnitude of local deformations. Since
the atomistic system undergoes inhomogeneous deformation around the indenter, we
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(a) (b)

Figure 7: Constrained meshes in x−z plane. Red solid squares are constrained and their information will not
be updated when solving the CB elasticity, while blue points are updated. (a) 8×8×4. (b) 8×8×8.

select mesh points under the indenter as the constrained points. When solving the CB
elasticity model on {Tj}m

j=1, we fix the constrained points and only relax the rest ones.

Fig. 7 is the x−z section of meshes for the constrained CB elasticity model. Red solid
squares are constrained points and their information is not updated when solving the
constrained CB continuum model, while blue points are updated. We set meshes for the
constrained CB continuum model as in Table 4.

Table 4: Meshes for the constrained CB continuum model.

Triangulation T1 T2 T3 T4 T5

Mesh 8×8×4 8×8×8 8×8×16 8×8×32 8×8×64

The second one is the choice of nr. We solve the constrained CB elasticity on T1 and
T2. For state C, we choose different nr and count n f (Step 5 in Section 2.3); see Table 5.
Results show that the best value for nr is smaller than five. This observation is similar to
pre-smoothing and post-smoothing steps in traditional multigrid methods [25].

Table 5: CPU time (Step 5 in Section 2.3) vs. nr.

nr 1 2 3 5 10

CPU time (s) 2648.0 2679.5 2671.2 2735.8 3008.4

The last one is the choice of m. Still for state C, we fix nr=3 and measure the total CPU
time in terms of m. Before that, we need to measure CPU time on different meshes and
atomistic level and add them together. CPU time on different meshes is shown in Table
6, and the total CPU time in the constrained CB elasticity accelerated multigrid method
is shown in Table 7 when m=2. From Table 8, we can see that m≤2 is the best choice.

Compared with the one-way multigrid method, the constrained CB elasticity accel-
erated multigrid method saves quite a bit. For state C, the ratio of the total CPU time
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Table 6: CPU time on different meshes (Steps 1, 2, 4.1, 4.2 in Section 2.3) when m=2.

Mesh T0 T1 T2 T1 T2 Sum

CPU time (s) 2.2 0.5 2.1 19.3 86.5 110.6

Table 7: The total CPU time of the constrained CB elasticity accelerated multigrid method for state C when
m=2.

Contribution Step 1, 2, 4.1, 4.2 Step 3, 4.3 Step 5 Sum

CPU time (s) 110.6 89.6 2903.5 3103.7

Table 8: The total CPU time of the constrained CB elasticity accelerated multigrid method vs. m at state C.

m 1 2 3 4

Total CPU time (s) 3029.8 3103.7 3310.2 3552.8

Table 9: Total CPU time (in seconds) of different methods for different states.

State A B C D

The cCB elasticity accelerated multigrid method 2478.5 3075.2 3103.7 2000.2

The one-way multigrid method 3424.8 3417.5 18240.0 9116.6

Ratio 72% 90% 17% 22%

between these two methods is

3103.7

2.2+0.5+2.1+18235.2
≈17%.

With the above preparations, we use the constrained CB elasticity accelerated multi-
grid method to simulate the whole nanoindentation process. In particular, we list results
of states A, B, C and D in Table 9. We learn from the table that the constrained CB elastic-
ity model can effectively accelerate the convergence of the relaxation process and reduce
the computational cost to a reasonable level. When dislocations occur and move, it saves
over 80% computational cost.

We finish this section with a larger problem with 1572864 atoms. The occupied do-
main is approximately 223.5Å×158.0.5Å×729.9.5Å. The load-depth curve is reported in
Fig. 8(a) with five representative points labeled by A, B, C, D and E sequentially, and
atomic configurations in Figs. 8(b), 9(a), 9(b), 10(a), and 10(b), respectively.

Similar to the previous example, dislocations have nucleated from state B (2.01Å)
while the maximum load is achieved at state C (2.06Å). An interim state D (2.12Å) is
observed where only dislocations in the left leave the indenter. All observations here,
consistent with results of the small problem, are conforming with experiment results [18]
and numerical results [14]. Results of state A, B, C, D and E in Table 10 show that the con-
strained CB elasticity model can effectively accelerate the convergence of the relaxation
process and save over 70% CPU time when dislocations nucleate and move.
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Figure 8: (a) Load-displacement curve in the larger problem. (b) Atomic configuration of state A around the
indenter in the larger problem.

(a) (b)

Figure 9: Atomic configuration of states B and C around the indenter in the larger problem. (a) State B. (b)
State C.

(a) (b)

Figure 10: Atomic configuration of states D and E around the indenter in the larger problem. (a) State D. (b)
State E.

Table 10: Ratio of CPU time between the constrained CB accelerated multigrid method and the one-way
multigrid method for different states in the large scale problem.

State A B C D E

Ratio 90% 41% 30% 30% 25%

4 Discussions

The selection of constrained points in the constrained CB elasticity model in Section 3 is
based on local deformations. This can be done in a more rigorous way by a posteriori
error estimate [20], which has shown its robustness and efficiency in various situations.
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To understand why the constrained CB elasticity can accelerate the relaxation process
in nanoindentation, we look at a one-dimensional chain with N+1 atoms and Lennard-
Jones potential up to the nearest neighbor interaction and give an explanation in the
appendix.

Multigrid method has been proven to efficiently capture the collective motion of
atoms, while domain decomposition method can separate different length scales into
parts and then treat them in a divide-and-conquer manner [17]. Further work will in-
volve with the combination of these two methods which can solve problems more effi-
ciently in general situations.
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Appendix: Illustration of the efficiency of the constrained CB

elasticity

We keep the left-most atom fixed and apply the displacement δ for the right-most atom,
i.e.,

u1=0, uN+1=δ.

We choose positions of atoms in the undeformed state as the horizontal coordinates and
their displacements as the vertical coordinates. For simplicity, only nearest neighbor in-
teraction will be considered. By the symmetry argument, the force of a atom is 0 if its
distances to two neighbors are equal. Thus in a minimization step, only those atoms
whose distances to their two neighbors are not equal will be updated.

Let us firstly study conventional lattice statics. In Fig. 11, red circles denote positions
of atoms before one minimization step, whose displacements ui = 0, i= 2,··· ,N. Dotted
line in blue is the exact displacement field (elastic state), whose deformation ui = (i−
1)δ/N, i = 2,··· ,N. Circles in black are atoms whose positions are updated during one
minimization step. We describe the five sub-figures in Fig. 11 as follows:

1. Initial guess.

u
(1)
i =0, i=2,··· ,N.

2. Update configuration according to one minimization step. Only position of the
first atom (next to the right-most atom) is changed since other atoms are all in the
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Figure 11: Step by step illustration of lattice statics under tensile deformation. Loci of atoms in the undeformed
state and their displacements are chosen as horizontal coordinates and vertical coordinates, respectively. Atoms
before one minimization step are denoted by red circles, while dotted lines represent the elastic state (exact
displacement). Circles in black are atoms whose positions are updated during one minimization step since only
nearest neighbor interaction is considered. Initial configuration and configurations after four minimization steps
are illustrated from top to bottom.

equilibrium state.

u
(2)
i =0, i=2,··· ,N−1, u

(2)
N =

1

2
δ.

3. Only configuration of the second atom (next to the right-most atom) is updated.

u
(3)
i =0, i=2,··· ,N−2, u

(3)
N−1=

1

4
δ, u

(3)
N =

1

2
δ.

4. Configurations of the first and third atoms (next to the right-most atom) are up-
dated.

u
(4)
i =0, i=2,··· ,N−3, u

(4)
N−2=

1

8
δ, u

(4)
N−1=

1

4
δ, u

(4)
N =

5

8
δ.

5. Configurations of the second and fourth atoms (next to the right-most atom) are
updated.

u
(5)
i =0, i=2,··· ,N−4, u

(5)
N−3=

1

16
δ, u

(5)
N−2=

1

8
δ, u

(5)
N−1=

3

8
δ, u

(5)
N =

5

8
δ.

The second atom (next to the left-most atom) will be updated only after N minimization
steps. Therefore, at least O(N) minimization steps are needed in lattice statics to obtain
the elastic state. Since the optimal computational cost for one minimization step is O(N),
the total computational cost is O(N2).

We now turn to the performance of the constrained CB elasticity accelerated multigrid
method (Fig. 1(b)). We use the displacements of green points as the boundary condition
in the constrained CB elasticity model. The descriptions for the six sub-figures are as
follows:
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Figure 12: Step by step illustration of the constrained CB elasticity accelerated multigrid method under tensile
deformation. Loci of atoms in the undeformed state and their displacements are chosen as horizontal coordinates
and vertical coordinates, respectively. Atoms before one minimization step are denoted by red circles, while
dotted lines represent the elastic state (exact displacement). Circles in black are atoms whose positions are
updated during one minimization step. Green points are boundary points used in the constrained CB elasticity
model and their displacements are treated as boundary conditions for the constrained CB elasticity model. Initial
configuration and configurations after the five minimization steps are illustrated from top to bottom.

1. Initial guess.

u
(1)
i =0, i=2,··· ,N.

2. Update configuration according to one minimization step. Only configuration of
the first atom (next to the right-most atom) is changed since other atoms are all in
the equilibrium state.

u
(2)
i =0, i=2,··· ,N−1, u

(2)
N =

1

2
δ.

3. Update configuration according to the constrained CB elasticity. Configurations of
all atoms left to the constrained atoms are updated.

u
(3)
i =

i−1

2(N−1)
δ, i=2,··· ,N.

4. Only configuration of the first atom (next to the right-most atom) is updated ac-
cording to one minimization step.

u
(4)
i =

i−1

2(N−1)
δ, i=2,··· ,N−1, u

(4)
N =

u
(3)
N−1+uN+1

2
=

3N−4

4(N−1)
δ.

5. Update configuration according to constrained CB elasticity.

u
(5)
i =

i−1

N−1

3N−4

4(N−1)
δ, i=2,··· ,N.
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6. Only configuration of the first atom (next to the right-most atom) is updated ac-
cording to one minimization step.

u
(6)
i =

i−1

N−1

3N−4

4(N−1)
δ, i=2,··· ,N−1, u

(6)
N =

u
(5)
N−1+uN+1

2
=

7N2−18N+12

8(N−1)2
δ.

If N is large enough, u
(2)
N = δ/2, u

(4)
N = 3δ/4 and u

(6)
N = 7δ/8 asymptotically. A simple

induction gives that u
(2k)
N =(2k−1)δ/2k. We know the exact deformation of the N-th atom

uN = (N−1)δ/N. Therefore, the exact deformation of the N-th atom can be obtained
only after O(log2 N) iterations asymptotically, and then the exact deformation of other
atoms can be obtained by the constrained CB elasticity model as shown above. Since the
optimal computational cost for one minimization step is O(N), the total computational
cost is asymptotically O(N logN).

In nanoindentation, the constrained CB elasticity model plays a similar role as that
in the one-dimensional example. The constrained CB elasticity model can effectively
capture the collective motion of atoms induced by dislocations, and then accelerate the
convergence. Therefore, the constrained CB elasticity accelerated multigrid method is
more efficient than the conventional lattice statics.
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