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Abstract. One viable approach to the study of haemodynamics is to numerically model
this flow behavior in normal and stenosed arteries. The blood is either treated as New-
tonian or non-Newtonian fluid and the flow is assumed to be pulsating, while the
arteries can be modeled by constricted tubes with rigid or elastic wall. Such a task in-
volves formulation and development of a numerical method that could at least handle
pulsating flow of Newtonian and non-Newtonian fluid through tubes with and with-
out constrictions where the boundary is assumed to be inelastic or elastic. As a first
attempt, the present paper explores and develops a time-accurate finite difference lat-
tice Boltzmann method (FDLBM) equipped with an immersed boundary (IB) scheme
to simulate pulsating flow in constricted tube with rigid walls at different Reynolds
numbers. The unsteady flow simulations using a time-accurate FDLBM/IB numerical
scheme is validated against theoretical solutions and other known numerical data. In
the process, the performance of the time-accurate FDLBM/IB for a model blood flow
problem and the ease with which the no-slip boundary condition can be correctly im-
plemented is successfully demonstrated.

AMS subject classifications: 76Z05, 76M20, 65M06

Key words: Finite difference method, lattice Boltzmann method, immersed boundary method,
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1 Introduction

It was pointed out in a companion paper [1] that a viable numerical solver for blood
flow modeling should at least be able to correctly simulate certain key features of blood
flow. The more important of these are non-Newtonian fluid, incompressible pulsating
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flow that could become erratic, three-dimensional (3-D) flow with complex and changing
boundaries, and flow-structure interaction resulting from elastic wall boundary. In an at-
tempt to develop an alternative numerical solver based on the lattice Boltzmann method
(LBM), Fu and his co-workers [2–6] used their previously developed finite difference lat-
tice Boltzmann method (FDLBM) as base to further extend the FDLBM to handle complex
boundary by incorporating the immersed boundary method [7, 8] to their FDLBM; thus
giving a combined FDLBM/IB numerical scheme [1] where the no-slip boundary condi-
tion is just as easy to implement as any other finite difference scheme used to solve the
Navier-Stokes (NS) equations. This extension retains the ease with which the FDLBM
can still perform computations using Cartesian grids in problems with complex bound-
aries. The FDLBM [2] can correctly resolve incompressible flow [3]; replicate Newtonian
and non-Newtonian flow in microchannel and microtube accurately [2]; simulate incom-
pressible flow with random variations in viscosity and pressure in channel/pipe [4]; and
model 2-D and 3-D buoyant flow [5,6]. Therefore, the FDLBM/IB is not only suitable for
flow with complex boundary, but is also appropriate for incompressible Newtonian and
non-Newtonian flow with external body force, and with random variation of viscosity
and pressure.

With these successes, Fu et al. [1] adopted their FDLBM/IB numerical scheme to
study steady Newtonian flow in constricted tubes at different Reynolds numbers. The
resulting governing equations in the FDLBM/IB scheme are still linear, so they can be
solved locally, explicitly and efficiently using Cartesian grids. The numerical scheme
was further used to investigate Newtonian and non-Newtonian fluid flow in stenosed
arteries and the effect of viscous stress and resistance on disordered flow patterns re-
sulting from the constriction [1]. Their study brought closer to reality the development
of LBM as an alternative to numerically solving the NS equations for blood flow simu-
lation. However, the FDLBM and FDLBM/IB [1–6] developed to-date can only handle
steady flow with and without random fluctuations. Therefore, its extension to unsteady
flow in an axisymmetric domain would represent another forward step to render the
method appropriate for blood flow simulation. The next step in the development of an
LBM solver for blood flow modeling is to build on the steady FDLBM/IB experience [1],
and extend the methodology to unsteady and pulsating flow. This necessitates the ex-
tension of the steady FDLBM and FDLBM/IB algorithms to time-accurate FDLBM and
FDLBM/IB schemes.

The present paper reports on just this development. After validating the time-accurate
FDLBM and FDLBM/IB scheme, numerical simulations of a modeled blood flow prob-
lem, namely that of Newtonian and non-Newtonian fluid flow in constricted tubes, using
the time-accurate FDLBM/IB scheme are investigated and discussed.

2 The FDLBM/IB numerical scheme

A schematic representation of the blood flow problem, modeled by an incompressible
flow through a rigid tube with a localized constriction, is shown in Fig. 1. In this model,
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Figure 1: Schematic diagram of the model problem investigated.

axial symmetry as assumed in [9, 10] is adopted. Since unsteady flow is considered, time
dependent form of the NS equations and the associated lattice Boltzmann equations are
presented below. All equations shown are normalized by appropriate reference parame-
ters. Details of the relevant equations have been given previously [1–6]. Therefore, there
is no need to go through this derivation again. On the other hand, details of the pseudo-
time approach to solve the unsteady FDLBM will be discussed in the next section. Here,
for the sake of completeness, a brief description of the governing unsteady NS equations
and physical boundary conditions of the constricted tube flow, the associated FDLBM
equations, and how the IB method can be implemented into the FDLBM is given.

2.1 Governing equations and physical boundary conditions

For the present problem, the effect of swirl behind the constriction is neglected [9,10]. The
through flow rate is Q̂=π R̂2

0 Û0/2 and the Reynolds number is given by Re=ρ̂0 Û0 R̂0 / µ̂0,
where R̂0 is the unconstricted tube radius, Û0 is the centerline velocity of a fully de-
veloped steady Poiseuille flow, ρ̂0 is fluid density and µ̂0 is fluid viscosity. All dimen-
sional quantities are represented by a ’hat’; their dimensionless counterparts are without
a ”hat”. The subscript ”0” is used to denote reference state. The dimensionless equations
in cylindrical coordinates are given as

∂ρ

∂ t
+

∂ρu

∂ x
+

∂ρv

∂y
+

ρv

y
=0, (2.1a)

∂ρu

∂ t
+

∂ρu2

∂ x
+

∂ρuv

∂y
+

ρuv

y
=−

∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+

τxy

y
, (2.1b)

∂ρv

∂ t
+

∂ρuv

∂ x
+

∂ρv2

∂y
+

ρv2

y
=−

∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+
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y
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where
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∂u

∂ x
, τyy=

2

Re
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∂y
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Re
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∂u

∂y
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∂v

∂ x

)

. (2.2)
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In these equations, all variables are normalized by their respective reference quantities,
such that,

t =
t̂

T̂
, (x, y)=

(x̂, ŷ)

R̂0

, (u, v)=
(û, v̂)

Û0

, (2.3a)

ρ =
ρ̂

ρ̂0
, p=

p̂

ρ̂0 Û2
0

,
(

τxx , τxy , τyy

)

=

(

τ̂xx , τ̂xy , τ̂yy

)

ρ̂0 Û2
0

. (2.3b)

Here, (x,y) are the axial and radial coordinates, (u,v) are the axial and radial velocity
components along x and y, respectively, t is time and p is pressure. The characteristic
time T̂ can be defined as T̂ = R̂0/Û0 in the absence of external forcing. The unsteady,
compressible form is used here because a pressure correction method is used to iterate
for the incompressible solution (where ρ=constant is specified) and pulsating flows are
considered. Thus, for steady incompressible flow, ρ =constant is recovered at steady
state; the corresponding governing equations reduced to those given in [1]. The constric-
tion geometry (Fig. 1) is described by a cosine curve using α1 and X0 to characterize the
constant length and degree of occlusion, respectively [9, 10],

R (x)=1−
α1

2

[

1+cos

(

π x

X0

)]

, −X0 ≤ x≤X0 , (2.4a)

R (x)=1, |x|≥X0 . (2.4b)

2.2 FDLBM/IB numerical scheme

The FDLBM/IB has been discussed in detail previously [1]; it shows that the modeled lat-
tice Boltzmann equation can recover the steady form of Eqs. (2.1)-(2.2) exactly. Here, for
the sake of completeness, only the lattice Boltzmann equation (LBE) and other relevant
equations are given below. The LBE is

∂ fα

∂ t
+~ξα ·∇ fα +gα = −

1

ϕ
( fα − fα

eq), (2.5)

where the lattice distribution function fα and others to be defined later are normalized by
ρ̂0, such that fα = f̂α/ρ̂0, and α is an index used to denote the velocity lattice. The lattice
model employed is a D2Q9 model; the expression of the equilibrium distribution function
fα

eq and its associated coefficients can be found in [1]. Besides fα, another distribution
function gα is added to help recover the source terms in Eqs. (2.1a)-(2.1c). To implement
the IB method into the FDLBM, an additional external body force is included in the NS
equations through gα. The macroscopic variables are determined from

ρu=
8

∑
α=0

fαξαx , ρv=
8

∑
α=0

fαξαy , (2.6a)

p=
8

∑
α=0

fα
1

2

(

ξ2
αx+ξ2

αy

)

−
1

2
ρ
(

u2+v2
)

+
τxx+τyy

2
. (2.6b)
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Numerically, Eqs. (2.5)-(2.6) are solved using a splitting method (see [1–4]). The first step
is to solve Eq. (2.5) by setting its right hand side to zero. This solution is used as the
initial condition for the second step which is to solve the diffusion equation obtained by
neglecting the advective term in Eq. (2.5). The scheme [1–4] is designed for steady flow,
so the time variable in the equations is considered as a pseudo-time and the previous two
procedures are repeated and iterated on the pseudo-time until the following criterion is
satisfied,

max

∥

∥

∥

∥

∂

(

p+
1

2
ρ
(

u2+v2
)

−
τxx+τyy

2

)
∥

∥

∥

∥

≤
∆t2σ2

2
, (2.7)

thus ensuring that the continuity equation is determined to an error of O(∆t). The oper-
ator ’∂’ denotes the difference between successive time steps and the maximum norm is
taken within the whole spatial domain. The numerical parameter σ can be a constant or
allowed to vary for each iteration step according to

σ= c

√

max

∥

∥

∥

∥

u2+v2+
2p−τxx−τyy

ρ

∥

∥

∥

∥

. (2.8)

Numerical experiments show that the scheme will become unstable if the choice of c
is too small; however, it affects the convergence and accuracy if c is too large, so a small
enough c for stable calculation is required for all simulation cases attempted in this paper.
Further discussion of the convergence criterion for unsteady flow is given below.

3 Pseudo-time approach for time-accurate FDLBM

Most numerical schemes designed for solving unsteady incompressible NS equations
adopt either the artificial compressibility or the pressure correction method. Both meth-
ods are made time accurate by treating the time-dependent terms in pseudo time. Real
physical time terms are added in the governing equations and the solution is iterated to
a pseudo-time convergence at each real physical time step. When the pseudo-time terms
vanish, the solution obtained satisfies the complete time-dependent equations. For the
sake of brevity, this approach is denoted as the pseudo-time approach. Detailed discus-
sion of this approach can be found in [13]. The same approach is used to extend the steady
FDLBM [2] to a time-accurate FDLBM. For illustration purpose, only the formulation for
the time-accurate FDLBM is given here; its extension to a time-accurate FDLBM/IB is
straightforward and will not be elaborated further.

For illustration purpose, it is only necessary to consider the Cartesian form of Eq. (2.5),
i.e., the form with gα = 0. In order to accomplish the objective of extending the steady
FDLBM [2] to a time-accurate scheme using the pseudo-time approach, a real, physical
time term is added as a body force, Fα, to Eq. (2.5) with gα =0. The equation can then be
written as

∂ fα

∂ t
+ ξα ·∇~x fα +Fα= −

1

ϕ

(

fα − f
eq
α

)

, (3.1)
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such that

8

∑
α=0

Fα=
∂ρ

∂t′
,

8

∑
α=0

Fαξαx =
∂ρu

∂t′
, (3.2a)

8

∑
α=0

Fαξαy =
∂ρv

∂t′
,

8

∑
α=0

Fα

(

ξ2
αx+ξ2

αy

2

)

=
σ2

2

∂ρ

∂t′
, (3.2b)

where t′ is the real physical time and t is treated as the pseudo-time for iteration purpose.

Similar to the derivation given in [2], multiplying Eq. (2.5) with respect to
(

1, ξα , |ξα|
2/2
)T

,
taking summation over α, and using Eq. (3.2), the following equations are obtained,

∂ρ

∂ t′
+

∂

∂ t

(

∑
α

fα

)

+
∂ρu

∂ x
+

∂ρv

∂y
= −

1

ϕ

(

∑
α

fα − ρ

)

, (3.3a)

∂ρ u

∂ t′
+

∂ρu

∂t
+

∂ρu2+p−τxx

∂x
+

∂ρuv−τxy

∂y
=O(ϕ), (3.3b)

∂ρv

∂t′
+

∂ρv

∂t
+

∂ρuv−τxy

∂x
+

∂ρv2+p−τyy

∂y
=O(ϕ), (3.3c)

∂

∂t

[(

p−
τxx+τyy

2

)

+
1

2
ρ
(

u2+v2
)

]

+
σ2

2

(

∂ρ

∂t′
+

∂ρu

∂x
+

∂ρv

∂y

)

=O(ϕ). (3.3d)

It should be noted that Eqs. (3.3a)-(3.3d) are obtained only for the case where σ is a con-
stant. For time varying σ as in Eq. (2.8), the pseudo-time terms of Eq. (3.3b), Eq. (3.3c)
and Eq. (3.3d) become

∑
α

ξαx
∂ fα

∂t
, ∑

α

ξαy
∂ fα

∂t
, ∑

α

(

ξαx
2+ξαy

2

2

)

∂ fα

∂t
,

respectively, because ξα is now pseudo-time dependent. After reaching steady state with
respect to the pseudo-time t, all pseudo-time terms vanish, irrespective whether σ is a
constant or not. Also, σ is no longer varying with pseudo-time at steady state (i.e. becom-
ing a constant). By noting the setting of ϕ=∆t in the numerical procedures, Eqs. (3.3b)-
(3.3c) and Eq. (3.3d) become the momentum and the continuity equations of the NS equa-
tions, respectively, correct to order of ∆t, and from Eq. (3.3a) ∑α fα will yield ρ.

Unlike conventional LBM where the pressure is assumed to be related to the density
by an equation of state, the pressure of the present scheme is calculated by the distribu-
tion function in Eq. (2.6b). By this definition of pressure, the square bracket of the first
term of Eq. (3.3d) is in fact,

8

∑
α=0

fα
1

2

(

ξ2
αx+ξ2

αy

)

,

which is the kinetic energy due to the lattice velocity. The second bracketed term in
Eq. (3.3d) is essentially the rate of change of mass. Therefore Eq. (3.3d) could be viewed
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as a pressure-correction formula by balancing the lattice kinetic energy with the virtual
compression work [2–6].

A solution for Eq. (3.2) can be obtained by assuming a minimal form for Fα, such that

Fα=Aα+ξαx Axα+ξαy Ayα. (3.4)

Following the same rules as those used to deduce the coefficients of gα [1], one possible
set of solutions for Eq. (3.4) is

A0 = 0, A1 =
1

4

∂ρ

∂t′
, A2 =0, (3.5a)

Ax1 =
1

2σ2

∂ρu

∂t′
, Ax2 =0, (3.5b)

Ay1 =
1

2σ2

∂ρv

∂t′
, Ay2 =0. (3.5c)

The physical time derivative term can be approximated by any finite difference method
and the Euler method is one of the simplest choices,

∂Z

∂ t′
=

Z−Z0

∆t′
, (3.6)

where Z is the updated physical quantity (e.g. ρ, ρu, ρv) iterating in pseudo-time, Z0

is the physical quantity in the previous physical time step and t′ is the step size of the
physical time. For incompressible flow cases considered previously where density is a
constant [2–4], the derivative of density is simply zero.

4 Validation of the time-accurate FDLBM

Two test cases are used to validate the time-accurate FDLBM; they are the Stokes’ 2nd
problem, and an analytical solution of the 2-D incompressible NS equations [14, 15]. In
these two validating examples, (x,y) are respectively the horizontal and vertical coor-
dinates and (u,v) are the horizontal and vertical velocity components along x and y,
respectively. The convergent criteria for pseudo-time within each physical time step are
discussed in detail in the 2-D incompressible NS equations example.

4.1 Stokes 2nd problem

In this simulation, the x-axis coincides with an infinitely long flat plate above which is a
viscous fluid. The boundary at y=0 is oscillating periodically in time such that,

u (y=0, t)=cosnt. (4.1)
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An exact solution for this problem is given by,

u (y, t)= exp

(

−y

√

nRe

2

)

cos

(

nt−y

√

nRe

2

)

. (4.2)

The domain is bounded by 0≤ (x,y)≤1 in the numerical simulation. Periodic boundary
condition is employed at x= 0 and x= 1. The calculation is carried out until a transient
state is reached. The velocity is normalized by the maximum oscillating speed Û, the
axes are normalized by the characteristic length L̂, and the time is normalized by L̂/Û.
The Reynolds number is defined by Re= ρ̂0 Û L̂/µ̂ where ρ̂0 and µ̂ are the dimensional
density and viscosity of the fluid. In the calculation Re= 20 and, n= 4π are specified.
The relatively weak condition as in Eq. (2.7) for iteration in pseudo-time is employed.
Comparisons of the simulations with the analytical solution given in Eq. (4.2) at various
t′ are shown in Fig. 2. It can be seen that the time-accurate FDLBM simulation is in
excellent agreement with the analytical solution at every t′ compared.
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Figure 2: Distribution of the u-velocity along the y-axis at t′: ”—”, exact solution as given by Eq. (4.2); ”x”,
time-accurate FDLBM results.

4.2 2-D analytical solution of incompressible NS equations

An exact solution of the 2-D incompressible NS equations has been given by Kim and
Moin [14] (see also [15]). This 2-D unsteady analytical solution can be used as a bench-
mark to test the time-accurate capability of the unsteady FDLBM scheme used to solve
the dimensionless unsteady incompressible NS equations, Eqs. (2.1a)-(2.1c). The analyti-
cal solutions as given in [14, 15] for p, u and v can be written as

p=−
1

4
(cos2x+cos2y) e−4t/Re, (4.3a)

u=−cosx siny e−2t/Re, v=−sinx cosy e−2t/Re. (4.3b)
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The computational domain for this calculation is defined by 0 ≤ (x,y)≤ π. The initial
and boundary conditions are identical to those specified for the exact solution. Other
numerical parameters are given by ρ=1, σ=5, ∆t=∆t′=1e−4, ∆x=π/100.

Effects of the different convergent criterion on the simulation results are analyzed in
this example. As a first attempt, the weaker condition, Eq. (2.7), used in the previous
example is employed. Also, a fixed value for σ, instead of a dynamic form suggested in
Eq. (2.8) is used. In fact, for this problem, even when the dynamic form is employed, the
σ value is found to be almost constant. In addition, the following criteria have also been
examined;

max‖∂(p)‖whole domain≤
∆t2σ2

2
, (4.4a)

max‖∂(u)‖whole domain≤∆t2, (4.4b)

max‖∂(v)‖whole domain≤∆t2. (4.4c)

Table 1 compares the maximum error norm between the numerical solution and the
exact solution over the whole spatial and temporal domain. Since the Euler method is
used to discretize the derivative of the physical time, the accuracy of the scheme is es-
timated to be first order in both physical and pseudo times, i.e., O(φ = t = t′ = 1e−4).
Further, the Lax-Wendroff scheme is used in the streaming step, therefore, the scheme
is only second order accurate in space, i.e., O(∆x2 = (π/100)2 ≈ 9.870e−4 ≈ 1e−3). In
Table 1, the time-accurate FDLBM results of the flow velocities for all Reynolds num-
bers considered are in excellent agreement with exact solutions. On the other hand, the
pressure results for the cases where Re is small (Re= 1 and 10) are not very good. This
is because the use of the pseudo-time iteration criterion, Eq. (2.7), can only ensure mass
conservation up to O(∆t), i.e.

∂ρ

∂t′
+

∂ρu

∂x
+

∂ρv

∂y
=O(∆t). (4.5)

However, the steadiness of the complete temporal term, which is defined by the sum of
the pressure, kinetic energy and the normal stresses, is in fact bounded by the weaker
condition (see Eq. (2.7)). For Newtonian fluid, the sum of the normal stresses is propor-

Table 1: Maximum error norm for the unsteady 2-D problem using convergent criteria Eqs. (2.7) and (4.4).

max‖∆u‖ max‖∆v‖ max‖∆p‖

Re=1 7.7537e-5 7.3868e-5 2.6735e-2

Re=10 1.9189e-4 1.9974e-4 1.6584e-2

Re=100 5.5622e-4 4.8894e-4 2.6660e-3

Re=1000 1.0115e-3 6.6121e-4 2.5661e-3

Re=10000 1.1474e-3 7.0179e-4 2.6789e-3
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tional to the divergence condition,

τxx+τyy=
1

Re

(

∂u

∂x
+

∂v

∂y

)

. (4.6)

Hence; without sufficient accuracy in the steadiness of the pressure term, the error due
to the divergence condition will directly carry over to the pressure and this situation is
even worse for smaller Re, because at small Re the viscous terms are comparatively more
important.

Further investigation has been carried out by repeating the calculation with the same
numerical and physical parameters but using the following two set of stronger criteria

max

∥

∥

∥

∥

∂

(

p+
1

2
ρ|~u|2−

τxx+τyy

2

)
∥

∥

∥

∥

whole domain

≤
∆t2σ2

10
, (4.7a)

max‖∂(p)‖whole domain≤
∆t2σ2

10
, (4.7b)

and

max

∥

∥

∥

∥

∂

(

p+
1

2
ρ|~u|2−

τxx+τyy

2

)
∥

∥

∥

∥

whole domain

≤∆t2, (4.8a)

max‖∂(p)‖whole domain≤∆t2, (4.8b)

while the steadiness of the flow velocity is still given by Eqs. (4.4b)-(4.4c). The criteria of

max
∥

∥∂
(

p+ρ|~u|2/2−
(

τxx+τyy

)

/2
)∥

∥ and max‖∂(p)‖ are changed simultaneously in the
analysis because it is found that their convergent behaviors are almost the same. Since
the value of σ is fixed at 5 in the calculation, ∆t2σ2/10 = 2.5∆t2 can be deduced from
Eqs. (4.7a)-(4.7b). Only the cases with small Re (Re= 1 and 10) are repeated and the re-
sults are shown in Tables 2 and Tables 3 for comparison. The pressure results are much
improved when the stronger convergent criteria are used to control the pseudo-time it-
eration. Hence, it is inferred that the convergent criteria given in Eqs. (4.8a)-(4.8b) and

Table 2: Maximum error norm for the unsteady 2-D problem using convergent criteria Eqs. (4.7) and (4.4b)-
(4.4c).

max‖∆u‖ max‖∆v‖ max‖∆p‖

Re=1 2.9554e-5 3.2069e-5 4.6075e-3

Re=10 1.7692e-4 1.9266e-4 8.2444e-3

Table 3: Maximum error norm for the unsteady 2-D problem using convergent criteria Eqs. (4.8) and (4.4b)-
(4.4c).

max‖∆u‖ max‖∆v‖ max‖∆p‖

Re=1 2.5807e-5 2.9241e-5 2.0033e-3

Re=10 1.7646e-4 1.9032e-4 2.5075e-3
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Eqs. (4.4b)-(4.4c) are suitable for most problems. The convergent criteria can be relaxed
as Re increases if computational time is a consideration.

5 Model blood flow problem – pulsating flow in a constricted

tube

Before simulating a pulsating unsteady flow through a constricted tube, an unsteady
entrance flow development in a straight tube as previously examined by He and Ku [16]
is investigated. Successful simulation of an unsteady entrance flow is important for blood
flow simulation studies because numerous blood flow problems are of the entrance flow
type, e.g., flow in the aortic arch or near the origins of arterial branches. After verifying
the entrance flow development with the data of [16], pulsating unsteady flow through
a constricted tube is simulated using the time-accurate FDLBM/IB. Two examples with
Newtonian fluid are presented in detail; one for small Re and small Womersley number,
and another for large Re and large Womersley number. This is then followed by a case of
non-Newtonian fluid (with the CY model). That way, a direct assessment of the effect of
non-Newtonian fluid on the pulsating constricted flow could be carried out by comparing
the pressure drop.

The same dimensionless parameters as in Eq. (2.3) are employed except that time is
now normalized as t= t̂/T̂, where T̂ is the period of the upstream pulsation. The gov-
erning equations are the unsteady incompressible NS equations and, after normalization,
they can be written as

∂u

∂ x
+

∂v

∂y
+

v

y
=0, (5.1a)

α2

2πRe

∂u
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+
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+
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+

uv

y
= −
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∂ x
+

∂τxx

∂ x
+

∂τxy

∂y
+

τxy

y
, (5.1b)

α2

2πRe
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+

∂uv

∂ x
+

∂v2

∂y
+

v2

y
= −

∂ p

∂y
+

∂τxy

∂ x
+

∂τyy

∂y
+

τyy

y
, (5.1c)

where Re is the Reynolds number and α is the Womersley parameter defined as

α= R̂0

√

2π

T̂
/

µ̂0

ρ̂0
. (5.2)

The coefficient of the unsteady term α2/(2πRe) =
(

R̂0/Û0

)

/T̂ is in fact the ratio of the
characteristic time for steady Poiseuille flow to the period of upstream pulsation which
characterizes the unsteadiness. At the centerline (y=0), a reflective boundary given by

∂u

∂y
=0, v=0,

∂ p

∂y
= 0 (5.3)
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is set and no slip condition is specified at the wall (y=1). A prescribed velocity profile is
specified at the entrance and a fully developed condition is assumed at the downstream
exit, i.e.,

∂u

∂ x
=0, v=0. (5.4)

The lattice Boltzmann equation, Eq. (3.1), in the time-accurate FDLBM is used to recover
the set of NS equations as given in Eqs. (5.1)-(5.2).

5.1 Unsteady developing entrance flow

An unsteady entrance flow development in a straight tube is simulated; the prescribed
upstream velocity is given by

u=1+ Asin (2π t), v=0, (5.5)

where A is the amplitude of the pulsation. For this case A= 1 is specified. The initial
condition is assumed to be given by a uniform flow (specified everywhere except the
wall where a no-slip condition is imposed). For simulation purpose, Re=100 is chosen,
which corresponds to the same condition of Remean = 200 in [16]. Thus, current results
can be directly compared with those given in [16], and a validation of the time-accurate
FDLBM can be made.

Time development of the flow at the centerline for the case α=12.5 is shown in Fig. 3.
It is noted that time is normalized by the period of the pulsation so that each unit of time
corresponds to one cycle. Fig. 3 shows that four cycles is required for a transient flow
to be developed. The development of the flow along the x-direction at different phase
angles is shown in Fig. 4. Other simulation data are available for this case (where the data
was obtained by numerically solving the unsteady NS equations [16]). The time-accurate
FDLBM result of the calculated time-averaged value and amplitude of the centerline u-
velocity is compared with the data of [16] in Fig. 5. In addition, the fully developed
u-velocity profile at a downstream location is compared with the data of [16] in Fig. 6;
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Figure 3: Centerline entrance flow development of u versus t: ”– –” upstream; ”—” downstream.
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Figure 4: Centerline entrance flow development of u versus x at different phase angle.
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Figure 5: Comparison of the time-averaged value and amplitude of u along x-axis: ”—”, time-accurate FDLBM
result; ”x”, data of [16].
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FDLBM result; ”x”, data of [16].
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this is essentially the Womersley profile. It can be seen that the current time-accurate
FDLBM simulations are in excellent agreement with the numerical results of [16]; thus
validating the present time-accurate FDLBM approach.

5.2 Pulsating Newtonian flow in a constricted tube

Having verified the accuracy of the time-accurate FDLBM by an unsteady developing
entrance flow, the next step is to assess the performance of the time-accurate FDLBM/IB
in its simulation of a pulsating unsteady flow through a constricted tube. A constriction
model designated as M02 is chosen for investigation; this model has the following prop-
erties, α1=0.5, X0 =2 and an area reduction of 75%. As a first attempt, a low Re number
is studied. In this case, the physical parameters are specified as Re=50 and α=2.5. The
prescribed upstream velocity is

u=
(

1−y2
)

[1+ Asin (2π t)], v=0, (5.6)

where A = 0.5 is assumed. The initial condition is chosen to be the steady state solu-
tion calculated under the same physical and geometric conditions, so that at t = 0, the
upstream velocity profile is exactly matched with the initial condition. The calculation
is carried out for 5 cycles so that a transient state is ensured. The periodic behavior at
transient of the u-velocity and pressure profile is shown in Figs. 7a and 7b, respectively.
In Figs. 8a-d, the streamlines are plotted at different phase angles defined as θ=2πt/360.
The vortex structure is similar to that of the steady case, but it is clear that the size of the
vortex behind the constriction is changing within a cycle.

A case with larger Re, larger Womersley parameter, and larger amplitude of velocity
fluctuation at upstream is also examined. The physical parameters chosen are Re= 100,
α = 12.5 and A= 1.0. With this upstream setting, the upstream velocity is still positive
but can be zero at θ=180◦ . The vortex structure at transient for eight different θ is more
complex and is shown in Fig. 9. More than one vortex can be observed behind the con-
striction which is different from the smaller Re case (Fig. 8). The development of the
vortices within one cycle is shown in Fig. 9. Successful capture of the pulsatile behavior
of the constricted tube flow by the current time-accurate FDLBM/IB and the interesting
change of the vortex shown encourage further study of the pulsatile constricted flow for
different Re and α and for 3-D flow where the constriction surface can vary with time and
flow. These cases are not treated in the present paper. Instead, a non-Newtonian fluid
flow through a constricted tube is studied in order to assess the effect of non-Newtonian
fluid effect on the constricted flow behavior.

5.3 Pulsating non-Newtonian flow in a constricted tube

In this section, the ability of the scheme to simulate pulsating non-Newtonian fluid flow
through constricted tube is demonstrated. Again the constriction model designated as
M02 is chosen for investigation. The only difference between the current case and those
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Figure 7: Pulsating u-velocity and pressure profile at centerline for model M02 at Re= 50 and α = 2.5: (a)
u-profile; (b) p-profile.
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Figure 8: Streamline plots at different phase angle θ for model M02 with Re=50 and α=2.5: (a) θ=0◦; (b)
θ=90◦; (c) θ=180◦; (d) θ=270◦.
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Figure 9 Streamline plots at different phase angle for model M02 with Re = 100 and = 12.5.
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of the Newtonian fluid flow cases is in the viscosity model. The non-Newtonian Carreau-
Yasuda (CY) viscosity model is chosen to replicate the shear thinning phenomena of
blood flow as discussed in [1]. Detailed description of the CY model can be found
in [1, 17–19]. The viscosity coefficient is no longer constant. In dimensionless form, µ
can be expressed as follows,

µ=
1

Re∞

+

(

1

Rez
−

1

Re∞

)

[

1+ (λ |γ̇|)a] n−1
a . (5.7)

The scalar measure of the rate of deformation |γ̇| is as defined in [19], i.e.,

|γ̇|=
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2 ∑
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γ̇ijγ̇ji=
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2
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)2

+2

(

∂v

∂y

)2

for 2D, (5.8)

and the two specific Reynolds numbers corresponding to the viscosity at zero (µ̂z) and
infinite (µ̂∞) shear rate are defined as

Rez=
ρ̂0Û0R̂0

µ̂z
, Re∞=

ρ̂0Û0R̂0

µ̂∞

. (5.9)

The physical parameters employed in the calculation are a=0.644, n=0.392, Rez=25.324,
Re∞ = 253.24, λ = 14.59 [1] and α = 2.5 where α, the Womersley number, is normalized
by µ̂z. The prescribed upstream velocity is the same as that given by Eq. (5.6) with A=
0.5 and all other boundary conditions are identical to the Newtonian cases. The vortex
structure within a cycle at transient is shown in Fig. 10. Similar to the Newtonian cases,
the size of the vortex is changing periodically except the vortex is larger on average. This
result is similar to that of the steady case [1].

A wealth of information is available from these Newtonian and non-Newtonian fluid
flow simulations. The present paper would become too long if these data were fully
analyzed to decipher the characteristics of this model blood flow problem. It is more
appropriate to devote a separate paper to a study of these characteristics. However, one
important parameter that is quite relevant to the understanding of stenosis could be ex-
tracted from these simulations. This parameter is the pressure drop δ p̂ given by the flow
with and without a constriction. Defining δ p̂ as the difference between the pressure far
downstream of the constriction and the pressure at the same location calculated without
the constriction, the mean pressure drop δ p̂m can be calculated from

δ p̂m =
1

T̂

∫ t̂0+T̂

t̂0

δ p̂ d t̂, (5.10)

where δ p̂ is by nature fluctuating (periodically) as a consequence of the inlet flow. In
order to assess the behavior of δ p̂m, several more cases are calculated; the conditions
for these cases are tabulated in Table 4 together with the calculated dimensionless mean
pressure drop δpm (normalized by ρ̂0Û2

0) for these cases.
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Figure 10: Streamline plots at different phase angle θ for M02 with CY model and α= 2.5: (a) θ = 0◦; (b)
θ=90◦; (c) θ=180◦; (d) θ=270◦.

Table 4: Mean pressure drop δpm for various cases of simulated Newtonian and non-Newtonian fluid flow in
constricted pipes.

Upstream Condition δpm

Case given by A α Re=50 Re=100 CY Model

1 Steady flow [1] 0 0 2.9333 2.0818 1.5063

2 Eq. (5.6) 0.5 2.5 3.1562 2.2881 1.7035

3 Eq. (5.6) 1.0 2.5 3.7776 2.8042 2.2244

4 Eq. (5.6) 1.0 12.5 3.5362

From these results, it can be seen that, for Newtonian fluid, the mean pressure drops
are larger than those for the steady cases. Further, when the upstream fluctuation ampli-
tude A increases, i.e., using A= 1.0 instead of A= 0.5 for upstream condition, the mean
pressure drop also increases. Larger α leads to greater pressure drop while larger Re
gives rise to a smaller pressure drop. However, the mean pressure drop δpm decreases
as Re is increased from 50 to 100. The behavior for non-Newtonian (CY model) fluid in
pulsatile flow is similar to that of the steady case. The mean pressure drops are smaller
than those for Newtonian cases, and they are also smaller than that for the steady flow
case.

The coefficient of the unsteady term in Eqs. (5.1)-(5.2) is in fact the ratio of the char-
acteristic time for steady Poiseuille flow to the period of upstream pulsation that charac-
terizes the unsteadiness. Numerically, it appears that this ratio plays a more dominant
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role than α, the Womersley number. Since this ratio is given by α2/(2πRe), its value for
Case 2 and 3 listed in Table 4 can be calculated as 0.0199 and 0.00995 for Re=50 and 100,
respectively. For Case 4, the corresponding α2/(2πRe) values are 0.4974 and 0.2487, re-
spectively. Therefore, it can be seen that fixing Re and doubling α, α2/(2πRe) is increased
by a factor of 4. On the other hand, fixing α and doubling Re, α2/(2πRe) is decreased
by half. Convergent difficulty has been found when calculating Case 4 with Re=50 and
α=12.5. This is not surprising because α2/(2πRe) increases by 25 times compared to Case
2 and 3 with Re=50 and α=2.5. Consequently, the simulation for Case 4 with α=12.5 and
Re= 50 is very sensitive to the initial conditions specified. Attempts are being made to
investigate whether this case can be solved using a finer grid, or whether a transition to
turbulent flow has occurred. If transition has indeed occurred, the axisymmetric laminar
model assumed here is no longer valid. In non-Newtonian fluid, viscosity is not constant;
thus leading to varying Re and α2/(2πRe) in the course of the simulation. The variation
of α2/(2πRe) in the calculation compounds the difficulty encountered in the simulation
of Case 4 assuming a CY model for the non-Newtonian fluid. These numerical attempts,
therefore, suggest that the time ratio α2/(2πRe) is a more important parameter than α in
the numerical simulation of pulsatile flow through constricted tubes.

6 Conclusions

The first objective of this paper is to extend the steady FDLBM [2–4] to a time-accurate
scheme. Once accomplished, the second objective is to use the same methodology to ex-
tend the steady FDLBM/IB [1] method to a time-accurate one so that the time-accurate
FDLBM/IB numerical scheme can be used to treat axisymmetric pulsating flow with
complex wall boundaries. The first objective has been successfully accomplished; the
effectiveness and accuracy of the time-accurate FDLBM scheme is fully demonstrated.
This is evident by the excellent agreement between current results and those given by
known analytical solution and deduced from well tested numerical simulations of the NS
equations for 2-D unsteady flow and unsteady entrance flow development in a straight
tube. The time-accurate methodology is extended to the FDLBM/IB scheme [1] and the
resultant numerical algorithm is used to investigate a model blood flow problem, i.e., an
axisymmetric pulsating flow in a constricted tube with 75% area reduction at different
sets of Re and α for both Newtonian fluid and non-Newtonian fluid (CY model). These
models are similar to those used by previous researchers to simulate blood flow through
stenotic arteries. The results show that the flow behind the constriction is dependent on
both Re and α. For example, at low Re and α, only one vortex is observed, while more
than one vortices are calculated for the higher Re and α case examined. Furthermore,
it is found that non-Newtonian fluid gives rise to a smaller pressure drop compared to
Newtonian fluid under the same flow conditions. Through these examples, the ability
and performance of the time-accurate FDLBM/IB numerical scheme is validated. Thus,
the algorithm is ready for extension to treat 3-D flow of non-Newtonian fluid through
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a constricted tube where the tube wall and the constriction surface can be elastic and
fluid-structure interaction plays a key role in the flow behavior.
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