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Abstract. In this article we present a new family of high order accurate Arbitrary
Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff
hyperbolic balance laws. High order accuracy in space is obtained with a standard
WENO reconstruction algorithm and high order in time is obtained using the local
space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian
framework considered here, the local space-time DG predictor is based on a weak
formulation of the governing PDE on a moving space-time element. For the space-
time basis and test functions we use Lagrange interpolation polynomials defined by
tensor-product Gauss-Legendre quadrature points. The moving space-time elements
are mapped to a reference element using an isoparametric approach, i.e. the space-
time mapping is defined by the same basis functions as the weak solution of the PDE.
We show some computational examples in one space-dimension for non-stiff and for
stiff balance laws, in particular for the Euler equations of compressible gas dynamics,
for the resistive relativistic MHD equations, and for the relativistic radiation hydrody-
namics equations. Numerical convergence results are presented for the stiff case up to
sixth order of accuracy in space and time and for the non-stiff case up to eighth order
of accuracy in space and time.
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1 Introduction

We present a new class of high order one-step Arbitrary Lagrangian-Eulerian (ALE) fi-
nite volume schemes for stiff hyperbolic balance laws. While the mesh is fixed in an

∗Corresponding author. Email address: michael.dumbser@ing.unitn.it (M. Dumbser)

http://www.global-sci.com/ 301 c©2013 Global-Science Press



302 M. Dumbser et al. / Commun. Comput. Phys., 14 (2013), pp. 301-327

Eulerian description, in Lagrangian type schemes the computational mesh moves with
the local fluid velocity. That means that material interfaces are moving together with the
mesh and thus one can precisely identify their location. In the recent past, a lot of work
has been carried out to develop Lagrangian methods. Some algorithms are developed
starting directly from the conservative quantities such as mass, momentum and total en-
ergy [47, 59] while another class starts from the nonconservative form of the governing
equations [4, 6, 70]. In any discrete scheme one has to decide where to place the degrees
of freedom of each physical variable. The existing Lagrangian schemes in literature can
be generally separated into two main classes: 1) staggered mesh methods, where the ve-
locity is defined at the cell interfaces while the other physical variables are located at the
cell center and 2) cell-centered methods, where all variables are defined at the cell center.

In [52] Munz presented several different Godunov-type finite volume schemes for
Lagrangian gas dynamics and, in particular, he was the first to introduce a Roe lineariza-
tion for Lagrangian gas dynamics. It was found that the Lagrangian Roe linearization
actually does not coincide with the Eulerian one [52]. The resulting maximum signal
speeds of this Roe linearization have subsequently been used to construct robust HLL-
type Riemann solvers in Lagrangian coordinates. Carré et al. [7] describe a cell-centered
Godunov scheme for Lagrangian gas dynamics on general multi-dimensional unstruc-
tured meshes. Their finite volume solver is node based and compatible with the mesh
displacement. In [17], Després and Mazeran propose a way of writing the equations
of gas dynamics in Lagrangian coordinates in two dimensions as a weakly hyperbolic
system of conservation laws. The system contains both the physical and the geometrical
part. Based on the symmetrization of the formulation of the physical part, the authors de-
sign a finite volume scheme for the discretization of Lagrangian gas dynamics on moving
meshes. In [39], Jua and Zhang present a high-order Lagrangian Runge-Kutta DG scheme
for the discretization of two-dimensional compressible gas dynamics. The scheme uses a
fully Lagrangian form of the gas dynamics equations and employs a new HWENO-type
reconstruction algorithm as limiter to control the spurious oscillations, maintaining the
compactness of RKDG methods. The time marching for the semi discrete schemes for
the physical and geometrical variables is implemented by a classical TVD Runge-Kutta
method. The scheme has been shown to achieve second order of accuracy, both in space
and time. Another Lagrangian discontinuous Galerkin finite element method has been
recently proposed in [49]. The method preserves discrete conservation in the presence of
arbitrary mesh motion and thus obeys the Geometric Conservation Law (GCL).

In a series of articles [44–48] Maire et al. develop a general formalism to derive first
and second order cell-centered Lagrangian schemes in multiple space dimensions and
also on general polygonal grids. In [45] the time derivatives of the fluxes are obtained
through the use of a node-centered solver which can be viewed as a multi-dimensional
extension of the Generalized Riemann problem methodology introduced by Ben-Artzi
and Falcovitz [3], Le Floch et al. [5, 33] and Titarev and Toro [62, 63, 66]. In their re-
cent papers [10, 43] Cheng and Shu developed a class of cell centered Lagrangian finite
volume schemes for solving the Euler equations which are based on high order essen-
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tially non-oscillatory (ENO) reconstruction, both with Runge-Kutta and Lax-Wendroff-
type timestepping. To our knowledge, the Lagrangian schemes developed in [10, 43]
are the first better than second order non-oscillatory Lagrangian finite volume schemes
published so far. Further work of Cheng and Shu contains the construction of symmetry-
preserving Lagrangian schemes, see [11, 12].

Apart from real Lagrangian methods, where the mesh actually moves with the lo-
cal fluid velocity, and Arbitrary Lagrangian Eulerian (ALE) schemes, see e.g. [37, 55, 59],
where the mesh moves with an arbitrary mesh velocity that may or may not coincide
with the real fluid velocity [38], there also exist Semi-Lagrangian schemes. This kind
of method is used in general to solve transport equations. Here, the discrete solution
is represented on a fixed Eulerian grid. However, the solution at a mesh point at the
new time tn+1 is computed from the known solution at time tn by following back the La-
grangian trajectories of the fluid to the end-point of the trajectory, which in general does
not coincide with a grid point. The unknown solution at the end-point of the Lagrangian
trajectory is then obtained via interpolation from the known discrete solution at time tn

at surrounding mesh points, see [8, 9, 13, 42, 56].
A completely different class of fully Lagrangian methods can be found in meshless

particle schemes such as the SPH approach [28–31, 50], which has become very popular
to simulate fluid motion in complex deforming domains due to its algorithmic simplicity
and high versatility and flexibility. In alternative to Lagrangian schemes, where the mov-
ing mesh itself keeps track of the evolution of material interfaces, the ghost-fluid method
together with a level-set approach can be used in the Eulerian context on fixed meshes to
maintain a sharp resolution of moving material interfaces, see e.g. [26, 27, 32, 51, 53].

In this article we introduce a new and better than second order accurate Lagrangian
one-step WENO finite volume scheme for the solution of stiff and non-stiff nonlinear
systems of hyperbolic balance laws. The high order of accuracy in space is obtained
using a WENO reconstruction [2,20,40] and the one-step time discretization is based on a
high order accurate predictor, for which a local space-time discontinuous Galerkin finite
element scheme is used [20, 24, 36].

The outline of this article is as follows: in Section 2 we describe the numerical scheme,
while in Section 3 we show numerical results for three different sets of equations, namely
for the compressible Euler equations, for the resistive relativistic MHD equations (which
provides a natural benchmark of stiff problems) and for the relativistic radiation hydro-
dynamics equations. Results for shock tube problems are shown as well as numerical
convergence results for smooth solutions to validate that the designed order of accuracy
of our schemes is reached. Finally, in Section 4 we summarize our results and give some
concluding remarks and an outlook concerning possible future extensions of our method.

2 Numerical method

In this article we consider general nonlinear systems of hyperbolic balance laws of the
form
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∂Q

∂t
+

∂F(Q)

∂x
=S(Q), x∈Ω(t)⊂R, t∈R

+
0 , Q∈ΩQ ⊂R

ν, (2.1)

where Q is the vector of conserved variables, ΩQ is the space of admissible states (state-
space), Ω(t) is the variable spatial computational domain, F(Q) is the flux vector and
S(Q) is a nonlinear algebraic source term, which can also be stiff.

2.1 ALE-type one-step finite volume schemes

The computational domain Ω is discretized by a set of moving mesh points xi+ 1
2
=xi+ 1

2
(t)

that move with a general mesh velocity Vi+ 1
2
=Vi+ 1

2
(Qi+ 1

2
,xi+ 1

2
,t), i.e.

d

dt
xi+ 1

2
=Vi+ 1

2
(Qi+ 1

2
,xi+ 1

2
,t). (2.2)

The spatial control volumes are defined at the current time tn as Tn
i =[xn

i− 1
2

;xn
i+ 1

2

], where

we have used the notation xn
i+ 1

2

= xi+ 1
2
(tn). By integration over the moving space-time

control volume [xi− 1
2
(t);xi+ 1

2
(t)]×[tn ;tn+1] and application of Gauss’ theorem, the fol-

lowing integral formulation for the balance law (2.1) is obtained:

∆xn+1
i Qn+1

i =∆xn
i Qn

i −∆t
(

FV
i+ 1

2
−FV

i− 1
2

)

+∆xn
i ∆tSi, (2.3)

with the mesh spacing at time tn ∆xn
i = xn

i+ 1
2

−xn
i− 1

2

and the time step ∆t= tn+1−tn. The

cell average at time tn is defined as

Qn
i =

1

∆xn
i

xn

i+ 1
2

∫

xn

i− 1
2

Q(x,tn)dx, (2.4)

the source term is given by

Si=
1

∆xn
i ∆t

tn+1
∫

tn

x
i+ 1

2
(t)

∫

x
i− 1

2
(t)

S(Q(x,t)) dxdt, (2.5)

and the flux at the cell interface on the moving mesh is defined as

FV
i+ 1

2
=

1

∆t

tn+1
∫

tn

(

F(xi+ 1
2
(t),t)−Vi+ 1

2
(t)Q(xi+ 1

2
(t),t)

)

dt. (2.6)
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By choosing Vi+ 1
2
= 0, Eq. (2.3) reduces to a classical Eulerian finite volume scheme on a

fixed mesh, while a Lagrangian-type finite volume scheme is obtained by choosing Vi+ 1
2

to

be the local fluid velocity. Obviously, any other choice of Vi+ 1
2

is also possible and within

the Arbitrary-Lagrangian-Eulerian (ALE) framework. For convenience of notation, we
also introduce

FV(Q,V)=F(Q)−VQ, and AV(Q,V)=
∂FV

∂Q
. (2.7)

While Eq. (2.3) is an exact relation, a numerical scheme is obtained by using a numerical
flux FV

h (q
−
h ,q+

h ), which is a function of two arguments, namely the states q−
h =qh(x−

i+ 1
2

,t)

and q+
h =qh(x+

i+ 1
2

,t) on the left and on the right of the interface, respectively:

FV
i+ 1

2
:=

1

∆t

tn+1
∫

tn

FV
h

(

qh(x−
i+ 1

2

,t),qh(x+
i+ 1

2

,t)
)

dt. (2.8)

In this article, we use two different numerical fluxes, either a simple Rusanov-type flux
[58], or an Osher-type flux as introduced in [23]. The Rusanov-type flux reads

FV
h (q

−
h ,q+

h )=
1

2

(

FV(q−
h ,Vi+ 1

2
)+FV(q+

h ,Vi+ 1
2
)
)

− 1

2
smax

(

q+
h −q−

h

)

, (2.9)

where smax=max(max(|λ(AV(q−
h ,Vi+ 1

2
))|),max(|λ(AV(q+

h ,Vi+ 1
2
))|) is the maximum sig-

nal speed. The Osher-type flux according to [23] reads

FV
h (q

−
h ,q+

h )=
1

2

(

FV(q−
h ,Vi+ 1

2
)+FV(q+

h ,Vi+ 1
2
)
)

− 1

2





1
∫

0

∣

∣

∣AV(Ψ(s),Vi+ 1
2
)
∣

∣

∣ds





(

q+
h −q−

h

)

, (2.10)

where

Ψ(s)=Ψ(q−
h ,q+

h ,s)=q−
h +s

(

q+
h −q−

h

)

(2.11)

is a straight-line segment path connecting the two states q−
h and q+

h , respectively, and
the integral in Eq. (2.10) is evaluated numerically using appropriate high order Gauss-
Legendre quadrature formulae (see [23] for details). In (2.10), the usual definition for the
absolute value of a matrix holds:

|A|=R|Λ|R−1, (2.12)

where R is the matrix of right-eigenvectors, R−1 is its inverse and |Λ| is the diagonal
matrix of the absolute values of the eigenvalues of A.
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For the mesh velocity, needed in (2.2) and in the fluxes (2.9) and (2.10) we use the
Roe-averaged velocity for Lagrangian gas dynamics according to Munz [52]:

Vi+ 1
2
=

1

2

(

V(q−
h )+V(q+

h )
)

. (2.13)

Note that in Lagrangian gas dynamics, the Roe average for the velocity is just simply
given by the arithmetic average (see [52] for details on the derivation) and not by the
common expression valid in Eulerian coordinates [57].

Finally, the new position of the mesh point xi+ 1
2

at time tn+1 becomes with (2.2) and

(2.13)

xn+1
i+ 1

2

= xn
i+ 1

2
+

tn+1
∫

tn

Vi+ 1
2
dt. (2.14)

Furthermore, in (2.3) also a discrete form of the source term Si must be chosen. Since
equation (2.3) only gives an evolution equation for the cell averages Qn

i but the interface
flux FV

i+ 1
2

needs values at the element interface, a spatial reconstruction operator is needed

that produces suitable interface values from the given cell averages. The original first
order Godunov finite volume scheme uses the simple reconstruction

qh(x−
i+ 1

2

,t)=Qn
i , and qh(x+

i+ 1
2

,t)=Qn
i+1. (2.15)

Higher order spatial and temporal accuracy can be obtained by using a more sophisti-
cated reconstruction operator, described in the following section.

2.2 Polynomial WENO reconstruction on irregular meshes

In this paper we use the polynomial WENO reconstruction algorithm proposed in [20–22]
that produces as output entire reconstruction polynomials and not point values at the cell
interfaces, as the original optimal WENO scheme of Jiang and Shu [40]. Since the details
can be found in the above-mentioned references, here we only give a brief summary
of the algorithm supposing componentwise reconstruction in conservative variables. For
more details on reconstruction in characteristic variables see [35, 40]. The reconstruction
polynomial of degree M is obtained componentwise by requiring integral conservation on
a stencil

S s
i =

i+r
⋃

j=i−l

Tn
j (2.16)

with spatial extension l and r to the left and right, respectively. For odd order schemes
there is only one central stencil (s=1), with l=r=M/2. For even order schemes, there are
two central stencils with l=floor(M/2)+1 and r=floor(M/2) for the first central stencil
(s=0) and l=floor(M/2), r=floor(M/2)+1 for the second one (s=1). For all schemes,
the fully left-sided stencil (s=2) has l= M and r=0 and the fully right-sided stencil has
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l = 0 and r = M. The reconstruction polynomial for each candidate stencil is written in
terms of some spatial basis functions ψm(ξ) as

ws
h(x,tn)=

M

∑
m=0

ψm(ξ)ŵ
s
m :=ψm(ξ)ŵ

n,s
m , (2.17)

with the mapping to the reference coordinate given by

x= x(ξ,i)= xn
i− 1

2
+∆xn

i ξ, and ξ= ξ(x,i)=
1

∆xn
i

(

x−xn
i− 1

2

)

. (2.18)

Throughout this paper we use the Einstein summation convention, implying summation
over indices appearing twice. We furthermore use the Legendre polynomials rescaled to
the unit interval I =[0;1] as basis functions ψm(ξ). Integral conservation on all elements
of the stencil then yields

1

∆xn
j

xn

j+ 1
2

∫

xn

j− 1
2

ψm(x)ŵn,s
m dx=Qn

j , ∀Tn
j ∈S s

i . (2.19)

And, with the definition of the primitive functions of ψm(ξ)

Ψ̄m(ξ)=

ξ
∫

0

ψm(ζ)dζ, (2.20)

one obtains the following compact expression for the linear algebraic system that has to
be solved for the unknown coefficients ŵn,s

m :
(

Ψ̄m(ξ(xn
j+ 1

2
,i))−Ψ̄m(ξ(xn

j− 1
2
,i))
)

ŵn,s
m =

(

ξ(xn
j+ 1

2
,i)−ξ(xn

j− 1
2
,i)
)

Qn
j , ∀Tn

j ∈S s
i . (2.21)

Adopting the usual definitions of the oscillation indicators σs [40] and the oscillation
indicator matrix Σlm [20]

σs =Σlmŵn,s
l ŵn,s

m , Σlm =
M

∑
α=1

1
∫

0

∂αψl(ξ)

∂ξα
· ∂αψm(ξ)

∂ξα
dξ, (2.22)

the nonlinear weights ωs are defined by

ω̃s=
λs

(σs+ǫ)r , ωs=
ω̃s

∑q ω̃q
, (2.23)

where we use ǫ=10−14, r=8, λs =1 for the one-sided stencils and λ=105 for the central
stencils, according to [20, 21]. The final nonlinear WENO reconstruction polynomial and
its coefficients are then given by

wh(x,tn)=ψm(ξ)ŵ
n
m, with ŵn

m=∑
s

ωsŵ
n,s
m . (2.24)



308 M. Dumbser et al. / Commun. Comput. Phys., 14 (2013), pp. 301-327

2.3 Local space-time DG predictor on moving meshes

The reconstruction polynomials wh(x,tn) are then evolved locally within each element in
order to obtain high order time accuracy. Instead of the Cauchy-Kovalewski procedure
based on Taylor series and repeated differentiation of the governing PDE used in the
original ENO method of Harten et al. [35], in the ADER schemes of Titarev and Toro
[62–64, 66, 67] and in the Lagrangian ENO finite volume scheme with Lax-Wendroff time
discretization presented by Liu et al. [43], we use a weak formulation of the governing PDE
in space-time based on the local space-time discontinuous Galerkin method introduced
in [20, 24, 36], which is also capable of dealing with stiff algebraic source terms. Due
to the element-local formulation, the method proposed here is different from the global
space-time DG method of Van der Vegt and Van der Ven [68, 69].

In order to get an element-local weak formulation of the PDE on the moving space-
time control volume [xi− 1

2
(t);xi+ 1

2
(t)]×[tn ;tn+1], the governing PDE (2.1) is first trans-

formed to the reference space-time element TE = [0;1]2. Therefore, we map the physical
variables x and t onto the reference variables ξ and τ, using an isoparametric mapping,
i.e. for the mapping of the coordinates we use the same basis functions θm that are also
used to represent the numerical solution. In this article we use for θm the Lagrange inter-
polation polynomials of degree M that pass through the tensor-product Gauss-Legendre
quadrature points on the reference element TE =[0;1]2. For details on multidimensional
quadrature formulae see [60]. In the following, the underlying one-dimensional Gauss-
Legendre quadrature points and weights on the unit interval [0;1] are denoted by ζ j and
αj, respectively. Using the space-time basis functions θk, the mapping of x and t onto ξ
and τ simply reads

x(ξ,τ)= x̂mθm(ξ,τ), t(ξ,τ)= t̂mθm(ξ,τ). (2.25)

Here, θm=θm(ξ,τ) and the coefficients x̂m and t̂m denote the nodal coordinates in physical
space and time and ξ and τ are the reference coordinates. A sketch of this isoparametric
mapping is depicted in Fig. 1. Since the time coordinates are the same for each spatial
node, one gets the following simple mapping for the time coordinate:

t= tn+∆tτ, (2.26)

which reduces the Jacobian of the space-time mapping (ξ,τ)→ (x,t) given by (2.25) to

J=

(

xξ xτ

tξ tτ

)

=

(

xξ xτ

0 ∆t

)

(2.27)

and its inverse is given by

J−1 =

(

ξx ξt

τx τt

)

=

(

1
xξ

− 1
∆t

xτ
xξ

0 1
∆t

)

. (2.28)
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Figure 1: Sketch of a third order isoparametric space-time element. Left: physical space-time element. Right:
reference space-time element. The interpolation nodes for the numerical solution and for the mapping, given by
the tensor-product Gauss-Legendre quadrature points, are numbered from 1 to 9. The initial location for the
spatial Gauss-Legendre nodes x̂0,m is also highlighted.

Now, the derivatives of the PDE (2.1) are transformed to derivatives with respect to
the reference element using the chain rule, i.e. we get

∂Q

∂τ
τt+

∂Q

∂ξ
ξt+

∂F

∂ξ
ξx+

∂F

∂τ
τx =S(Q), (2.29)

and with the inverse of the Jacobian of the mapping (2.28) one obtains the PDE rewritten
in reference coordinates:

∂Q

∂τ
+

∆t

xξ

∂F

∂ξ
− xτ

xξ

∂Q

∂ξ
=∆tS(Q). (2.30)

To simplify the notation, we introduce the following operators on the space-time refer-
ence element TE:

[ f ,g]τ =

1
∫

0

f (ξ,τ)g(ξ,τ)dξ, and 〈 f ,g〉=
1
∫

0+

1
∫

0

f (ξ,τ)g(ξ,τ)dξdτ. (2.31)

For isoparametric elements, the discrete solution of PDE (2.30) is approximated using the
same space-time basis functions θm that have also been used for the mapping (2.25), i.e.

qh=qh(x,t)= θm(x,t)q̂m. (2.32)

Eq. (2.30) is now multiplied with space-time test functions θk (the same as the basis func-
tions for the discrete solution and the mapping), and is then integrated over the space-
time reference element TE =[0;1]2. One obtains

〈

θk,
∂

∂τ
qh

〉

+[θk,qh−wh]
0+

〈

θk,
∆t

xξ

∂

∂ξ
Fh(qh)−

xτ

xξ

∂qh

∂ξ

〉

=∆t〈θk,Sh(qh)〉. (2.33)
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Here, the initial condition given by the WENO reconstruction polynomials wh(x,tn) at

time tn has been introduced in a weak form via the jump term [θk,qh−wh]
0. In other

words, the first term of (2.33) is the integral over the smooth part of the solution while
the second term takes into account the jump of the discrete solution from tn to tn,+. Since
we use a nodal basis, the interpolation polynomials for the flux and source terms are given
by

Fh=Fh(qh)= θm(ξ,τ)F̂m, and Sh=Sh(qh)= θm(ξ,τ)Ŝm, (2.34)

with
F̂m=F(q̂m) and Ŝm=S(q̂m). (2.35)

Using the definitions for the WENO reconstruction polynomial (2.24) and the defini-
tions for the discrete space-time solutions (2.32), (2.34) and (2.35) we obtain the following
element-local nonlinear algebraic equation system:

K1
kmq̂m+K

ξx

kmF̂m−K
ξt

kmq̂m=F0
kmŵn

m+∆tMkmŜm, (2.36)

with the definitions of the following matrices:

K1
km =

(〈

θk,
∂

∂τ
θm

〉

+[θk,θm]
0

)

, (2.37)

K
ξx

km =

〈

θk,
∆t

xξ

∂θm

∂ξ

〉

, K
ξt

km =

〈

θk,
xτ

xξ

∂θm

∂ξ

〉

, (2.38)

and
F0

km =[θk,ψm]
0 , Mkm = 〈θk,θm〉. (2.39)

Due to the nodal approach on the tensor-product Gauss-Legendre nodes, the ξ and τ
directions decouple and the above matrices can be easily evaluated dimension by dimen-
sion using one-dimensional Gaussian quadrature. The system (2.36) is solved using an
iterative method similar to the one proposed in [24, 36]:

K1
kmq̂l+1

m +K
ξx

kmF̂l
m−K

ξt

kmq̂l
m=F0

kmŵn
m+∆tMkmŜl+1

m , (2.40)

where the stiff algebraic source term is taken implicitly (see [24] for details). A partic-
ularly efficient strategy for obtaining an initial guess for q̂0

m can be found in [36]. The
equation that determines the location of the spatial coordinates x̂m of the space-time ele-
ment is

dx

dt
=V(x,t), (2.41)

where V(x,t) is the local mesh velocity. In the fully Eulerian case one has V=0, while in
the pure Lagrangian case, V(x,t) is the local fluid velocity. For the local mesh velocity we
use the nodal ansatz

Vh=Vh(x,t)= θm(x,t)v̂m, with v̂m =V(x̂m, t̂m). (2.42)
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The initial distribution of the spatial Gauss-Legendre quadrature points at time tn is given
by

x̂0,m = xn
i− 1

2
+∆xn

i ζm, (2.43)

and the spatial Lagrange interpolation polynomials passing through these points are de-
noted by φm. Formally, a discrete version of the ODE (2.41) can then be obtained using
again the local space-time DG method, see [18]:

(〈

θk,
∂

∂τ
θm

〉

+[θk,θm]
0

)

x̂l+1
m =[θk,φm]

0 x̂0,m+∆t〈θk,θm〉 v̂l
m. (2.44)

The weak formulation for the spatial coordinates (2.44) is iterated together with the weak
formulation for the solution (2.40) until convergence is reached. The temporal coordi-
nates t̂m are always fixed and are given by the Gauss-Legendre points ζ j and the relation
(2.26). The space-time polynomials qh(x,t) are computed for each element in the compu-
tational domain and are then used as arguments for the numerical flux in Eq. (2.8) and
the numerical source term Si is computed using qh(x,t) as follows:

Si =
1

∆xn
i ∆t

tn+1
∫

tn

x
i+ 1

2
(t)

∫

x
i− 1

2
(t)

S(qh(x,t)) dxdt. (2.45)

This completes the description of the high order Lagrangian one-step finite volume algo-
rithm (2.3).

3 Test problems

In this section we show some computational test problems to illustrate the performance
of the scheme in the case of the compressible Euler equations (non-stiff), the resistive rela-
tivistic MHD equations (stiff) and for the relativistic radiation hydrodynamics equations
(moderately stiff).

3.1 Compressible Euler equations

The Euler equations of compressible gas dynamics read

∂

∂t





ρ
ρu
ρE



+
∂

∂x





ρu
ρu2+p

u(ρE+p)



=S(x,t), (3.1)

with the fluid density ρ, the velocity u, the total energy density ρE, a vector of source
terms S and the fluid pressure p, given in terms of the conserved quantities by the equa-
tion of state of an ideal gas as

p=(γ−1)
(

ρE− 1

2
ρu2
)

, (3.2)
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with the ratio of specific heats γ. In this section, we define the local mesh velocity as the
local fluid velocity, i.e. we choose

V=u. (3.3)

3.1.1 Numerical convergence results

In order to assess the accuracy of the method presented in Section 2 we carry out several
simulations of a test problem with smooth solution and exact solution on a series of suc-
cessively refined meshes. For this purpose, we use the so-called manufactured solution
method, which means prescribing the exact solution a priori, inserting the solution in
PDE (3.1) and putting all terms that do not cancel into the source term S(x,t). For our
particular test problem we choose the primitive variables of the exact solution as

ρe(x,t)=1+
1

2
sin(2πx)cos(2πt), ue(x,t)=sin(2πx)cos(2πt), pe(x,t)=1. (3.4)

From there, the vector of conserved variables can be computed as Qe =(ρe,ρeue,pe/(γ−
1)+1/2ρeu2

e )
T. The ratio of specific heats is chosen as γ= 1.4. Inserting (3.4) into (3.1)

yields the source term S(x,t). The initial computational domain is Ω=[−2;2] and is dis-
cretized by an initially uniform mesh of NG control volumes. The boundary conditions
are periodic. Simulations are carried out with third to eighth order Lagrangian one-step
WENO finite volume schemes using the Osher-type flux (2.10) for one period until the fi-
nal time t=1.0. The Courant number is set to CFL=0.9. For each mesh the corresponding
error in L2 norm is computed as

ǫL2
=

√

√

√

√

∫

Ω(te)

(Qe(x,te)−wh(x,te))
2 dx, (3.5)

and the resulting numerical convergence rates are listed in Table 1. From the presented
results we can conclude that the designed order of accuracy of the scheme is reached.

3.1.2 Shock tube problems

In this section we solve a set of several shock-tube problems given in [65] and [10, 43].
The initial conditions of the Riemann problems are

Q(x,0)=

{

QL, if x< xd,

QR, if x≥ xd,
(3.6)

where the initial states left and right are summarized in Table 2. The initial computa-
tional domain is Ω=[xL;xR] and is discretized with 200 equidistant cells, apart from RP5
(Leblanc shock tube), for which 2000 cells are used, and RP0, for which only 100 cells are
used. Simulations have been carried out with the fifth order version of our Lagrangian
one-step WENO finite volume schemes. The first problem (RP0) is the advection of an



M. Dumbser et al. / Commun. Comput. Phys., 14 (2013), pp. 301-327 313

Table 1: Numerical convergence results for the compressible Euler equations using the third to eighth order
version of the Lagrangian one-step WENO finite volume schemes presented in this article. The error norms
refer to the variable ρ (density) at time t=1.0.

NG ǫL2
O(L2) NG ǫL2

O(L2) NG ǫL2
O(L2)

O3 O4 O5
100 1.9526E-02 100 5.7994E-03 50 2.1944E-02
200 3.0021E-03 2.7 200 1.2551E-04 5.5 100 1.5756E-03 3.8
400 4.0927E-04 2.9 400 4.9135E-06 4.7 200 8.2557E-05 4.3
800 5.7539E-05 2.8 800 3.1365E-07 4.0 400 3.3144E-06 4.6

O6 O7 O8
50 1.6783E-02 50 9.2252E-03 50 6.9643E-03

100 6.5205E-04 4.7 100 2.7828E-04 5.1 100 1.6253E-04 5.4
200 7.4380E-06 6.5 200 5.6255E-06 5.6 200 6.9410E-07 7.9
400 9.1756E-08 6.3 400 6.8116E-08 6.4 300 2.7163E-08 8.0

Table 2: Initial states left and right for density ρ, velocity u and pressure p for the Riemann problems solved
for the compressible Euler equations. The initial position of the discontinuity (xd) and the initial computational
domain Ω=[xL;xR] are also specified. In all cases γ=1.4, apart for RP5, where γ=5/3.

RP ρL uL pL ρR uR pR xd xL xR

0 1.0 1.0 1.0 0.1 1.0 1.0 0.0 -0.5 0.5
1 1.0 0.0 1.0 0.125 0.0 0.1 0.0 -1.0 1.0
2 0.445 0.698 3.528 0.5 0.0 0.571 0.0 -0.5 0.5
3 1.0 0.0 1000 1.0 0.0 0.01 0.1 -0.5 0.5
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.0 -1.0 1.0
5 1.0 0.0 0.1(γ−1) 10−3 0.0 10−10(γ−1) 3.0 0.0 9.0

isolated moving contact wave with constant pressure and velocity. Any Riemann solver
that resolves exactly stationary contact waves in the Eulerian case should preserve ex-
actly isolated moving contact waves in the Lagrangian case. From Fig. 2 it becomes evi-
dent that the Osher-type flux (2.10) solves the problem exactly, without any intermediate
points in the contact wave, whereas the Rusanov flux (2.9) adds significant numerical dif-
fusion to the problem, as expected. For this problem, the Osher-type flux leads to a pure
Lagrangian scheme, where the mass in each moving control volume remains constant.

In Figs. 3-5 we show the exact solution together with the computational results ob-
tained with Osher-type flux (2.10) and the Rusanov-type flux (2.9) for the other shock
tube problems RP1-RP5. Overall, a very good agreement is noted between the numerical
solution and the exact solution. The Osher flux resolves the contact wave very well in
general. However, some intermediate points are generated, since in the initial phase of
the Riemann problem waves of different nature (shock and rarefaction) overlap with the
contact wave, thus leading to some amount of numerical diffusion in the contact wave.
These results are as expected, since in the present paper an ALE-type approach has been
used, which does in general not impose constant mass in each control volume, in contrast
to purely Lagrangian schemes as the one presented, for example, in [7]. For the Leblanc
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Figure 2: Exact and numerical solution obtained with fifth order Lagrangian one-step WENO finite volume
schemes for RP0 (isolated moving contact wave) at t=0.5 using 100 cells. Left: Osher-type flux (2.10). Right:
Rusanov-type flux (2.9).
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Figure 3: Exact and numerical solution obtained with fifth order Lagrangian one-step WENO finite volume
schemes for RP1 (Sod problem) at t=0.4 (top) and RP2 (Lax problem) at t=0.1 (bottom). Left: Osher-type
flux (2.10). Right: Rusanov-type flux (2.9).

problem, it can be easily noted that the Rusanov flux is much more robust for this prob-
lem due to its larger numerical diffusion compared to the Osher-type scheme. However,
the results presented here are similar to the ones presented in [10, 43].
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Figure 4: Exact and numerical solution obtained with fifth order Lagrangian one-step WENO finite volume
schemes for RP3 at t = 0.012 (top) and RP4 at t = 0.035 (bottom). Left: Osher-type flux (2.10). Right:
Rusanov-type flux (2.9).
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Figure 5: Exact and numerical solution obtained with fifth order Lagrangian one-step WENO finite volume
schemes for RP5 (Leblanc problem) at t=6.0. Left: Osher-type flux (2.10). Right: Rusanov-type flux (2.9).

3.2 Resistive relativistic MHD equations (RRMHD)

The resistive relativistic MHD (RRMHD) equations constitute a hyperbolic system of bal-
ance laws which has a source term that may become stiff. The equations include five
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equations for the fluid motion (conservation of mass, momentum and energy), plus six
equations for the evolution of the electric and of the magnetic field (Maxwell equations).
Furthermore, two additional equations are needed to maintain the constraints on the di-
vergence of the electric and of the magnetic field. In this paper, we use the hyperbolic
divergence cleaning approach according to Dedner et al. [14]. The last equation expresses
the conservation of the total charge. In Cartesian coordinates, using the abbreviations
∂t=

∂
∂t and ∂i=

∂
∂xi

, the resistive relativistic MHD equations can be written as follows [24]:

∂tD+∂i(Dvi)=0, (3.7)

∂tSj+∂iZ
i
j =0, (3.8)

∂tτ+∂iS
i=0, (3.9)

∂tE
i−ǫijk∂jBk+∂iΨ=−Ji, (3.10)

∂tB
i+ǫijk∂jEk+∂iΦ=0, (3.11)

∂tΨ+∂iE
i =ρc−κΨ, (3.12)

∂tΦ+∂iB
i=−κΦ, (3.13)

∂tρc+∂i J
i =0, (3.14)

where the conservative variables of the fluid are

D=ρW, (3.15)

Si =ωW2vi+ǫijkEjBk, (3.16)

τ=ωW2−p+ 1
2(E

2+B2), (3.17)

expressing, respectively, the relativistic mass density, the momentum density and the to-
tal energy density. The spatial tensor Zi

j in (3.8), representing the momentum flux density,
is

Zi
j =ωW2vi vj−Ei Ej−Bi Bj+

[

p+ 1
2(E

2+B2)
]

δi
j, (3.18)

where δi
j is the Kronecker delta, while W=1/

√
1−v2 is the Lorentz factor of the fluid. In

this paper we have assumed the equation of state of an ideal gas, namely

p=(γ−1)ρǫ=γ1(ω−ρ), (3.19)

where γ is the adiabatic index, γ1 =(γ−1)/γ, ǫ is the specific internal energy and ω=
ρǫ+ρ+p is the enthalpy. The source term J appearing in (3.10) is the current vector, given
by Ohm’s law, for which we assume the following expression [41, 54],

Ji =ρcvi+σW[Ei+ǫijkvjBk−(Ejvj)v
i], (3.20)

where ρc is the charge density in the laboratory frame.
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The system of equations (3.7)-(3.14) is written as a hyperbolic system of balance laws
as in (2.1) and it has source terms in the three equations (3.10) that are potentially stiff,
see [54]. In the stiff limit case (σ → ∞) the resistive relativistic MHD equations reduce
to the ideal relativistic MHD equations (RMHD), for which several test problems with
exact solution are known, see [1, 34, 71]. For the system (3.7)-(3.14) a family of high order
one-step schemes in Eulerian coordinates has been proposed in [24], while in this paper
we use a Lagrangian method.

3.2.1 Numerical convergence results

The smooth unsteady test case with exact analytical solution used here was introduced
for the ideal relativistic MHD equations by Del Zanna et al. [16] and was solved for the
first time on unstructured triangular meshes with high order PNPM schemes in [19]. Since
the resistive MHD equations tend asymptotically to the ideal ones in the stiff limit (σ→
∞), this is an ideal test case to assess the accuracy of our scheme in the stiff limit of the
governing PDE system.

The test case consists of a periodic Alfvén wave whose initial condition at t = 0 is
chosen to be ρ=p=1, Bi=B0(1,cos(kx) ,sin(kx))T, vi=−vA/B0 ·(0,By,Bz)T, Ei=−ǫijkvjBk

and φ=ψ=q=0. We furthermore use the parameters k=2π, γ= 4
3 and B0=1, hence the

advection speed of the Alfvén wave in x-direction is vA = 0.38196601125, see [16] for a
closed analytical expression for vA. The computational domain is Ω=[0;1] with periodic
boundary conditions and the final time at which we compare the exact solution with the
numerical one is chosen as t=0.5. Since in this test case the fluid velocity in x-direction
is vx = 0, we move the mesh artificially with the fluid velocity in y-direction, i.e. we
set V = vy. Since this test case was constructed for the ideal relativistic MHD equations,
we have to use a very high value for the conductivity (σ = 108) in the resistive case to
reproduce the ideal equations asymptotically. In all our computations a constant Courant
number of CFL=0.5 is used.

Table 3 shows the errors and the orders of convergence measured in the L2 norm for
the flow variables vy and Ey. The number NG denotes the number of grid points along the
x-axis. We find that the nominal order of accuracy M+1 has been reached for all schemes
from third to sixth order of accuracy in space and time under consideration, even for the
electric field Ey, which is one of the variables onto which the stiff relaxation source term
is acting.

3.2.2 Shock tube problems

In this section we solve two out of a series of test problems proposed by Balsara in [1] for
the ideal relativistic MHD equations. In particular, we solve the resistive RMHD equa-
tions with a large value for the conductivity σ to validate the behaviour of our method in
the presence of stiff source terms. The initial condition is given by two piecewise constant
states separated by a discontinuity at x=0. The left and right values for the primitive vari-
ables are reported in Table 4. Furthermore, we set Ei =−ǫijkviBk, φ=ψ= q=0 and γ= 5

3 .
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Table 3: Numerical convergence results for the stiff limit (σ= 108) of the resistive relativistic MHD equations
(RRMHD) using third to sixth order Lagrangian one-step WENO finite volume schemes. The error norms refer
to the variable vy (velocity in y-direction) and to the relaxed variable Ey (electrical field in y-direction).

NG L2 O(L2) L2 O(L2)

Variable vy Variable Ey

O3

100 8.2658E-02 1.1382E-02

200 1.2933E-02 2.7 1.7733E-03 2.7

400 1.6965E-03 2.9 2.3318E-04 2.9

800 2.1272E-04 3.0 2.9843E-05 3.0

O4

100 1.5487E-02 3.0653E-03

200 5.1306E-04 4.9 9.7284E-05 5.0

400 1.9320E-05 4.7 3.2709E-06 4.9

800 9.3922E-07 4.4 1.8739E-07 4.1

O5

100 5.9185E-03 7.2904E-04

200 2.9331E-04 4.3 3.6769E-05 4.3

300 4.2396E-05 4.8 5.3220E-06 4.8

400 1.0396E-05 4.9 1.3026E-06 4.9

O6

50 1.8839E-02 3.6056E-03

100 6.2118E-04 4.9 1.1061E-04 5.0

200 1.0376E-05 5.9 1.6986E-06 6.0

300 8.4098E-07 6.2 1.5450E-07 5.9

Table 4: Initial left (L) and right (R) states for the resistive relativistic MHD shock tube problems and final
times te.

Case ρ p u v w By Bz Bx te

1L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5 0.4

1R 0.125 0.1 0.0 0.0 0.0 -1.0 0.0 0.5

2L 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 0.55

2R 1.0 1.0 -0.45 -0.2 0.2 -0.7 0.5 2.0

The conductivity in our test cases is chosen as σ=103 for the first test problem and σ=105

for the second one. The computational domain is Ω= [−0.5;0.5] with Dirichlet bound-
aries consistent with the initial condition in x-direction. We use an initially equidistant
grid with 400 points. The numerical results are shown together with the exact solution in
Figs. 6 and 7. The exact solution is the one for the ideal RMHD equations, as published
in [34]. The essential wave structures of the ideal RMHD Riemann problem can be noted.
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Figure 6: Numerical solution obtained for shock tube problem 1 (σ = 103) of the resistive relativistic MHD
equations using a third order Lagrangian one-step WENO finite volume scheme and exact solution of the ideal
RMHD equations. Results are shown for density ρ, transverse velocity v, pressure p and magnetic field By.
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Figure 7: Numerical solution obtained for shock tube problem 2 (σ = 105) of the resistive relativistic MHD
equations using a third order Lagrangian one-step WENO finite volume scheme and exact solution of the ideal
RMHD equations. Results are shown for density ρ, transverse velocity v, pressure p and magnetic field By.
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3.3 Relativistic radiation hydrodynamics

As an additional test, we have considered the solution of the special relativistic radiation
hydrodynamics equations. In the truncated moment formalism introduced by [61], it is
possible to write such equations, at least in the optically thick regime, in the conservative
form required by Eq. (2.1) (see [25] and [72]). In one spatial dimension, the vectors of the
conservative variables in Eq. (2.1), of the fluxes and of the sources are respectively given
by

Q=













D
S
τ
Sr

τr













, F=













vD
Z
S
Rr

Sr













S=













0
Gr

Gt
r

−Gr

−Gt
r













. (3.21)

The first three equations express the usual conservation of mass, momentum and energy
of the fluid, and the corresponding conservative variables (D,S,τ) have the same defi-
nition as in (3.15)-(3.17), except for the fact that the electromagnetic fields are zero. The
last two equations, on the other hand, represent the time evolution of the flux and of the
energy density of the radiation field as measured in the laboratory frame, with

Sr=
4

3
ErW

2v+W fr(1+v2), (3.22)

τr=
4

3
ErW

2+2W frv− Er

3
. (3.23)

The primitive variables of the radiation field are the flux fr and the energy density Er

as measured in the comoving frame of the fluid, and they are formally related to the
specific intensity of the radiation Iν [72]. Finally, the quantities Z and Rr entering (3.21)
are defined as

Z=ωW2v2+p, (3.24)

Rr=
4

3
ErW

2v2+2W frv+
Er

3
. (3.25)

The sources of the radiation field Gt
r and Gr depend on the physical interaction between

radiation and matter and can be written as

Gt
r=χt(Er−4πB̃)W+(χt+χs)v fr (3.26)

Gr=χt(Er−4πB̃)vW+(χt+χs) fr , (3.27)

where 4πB̃= aradT4 is the equilibrium black body intensity, while χt and χs are the ther-
mal and the scattering opacity coefficients, respectively, which are ultimately responsible
for the stiffness of these equations. The temperature T of the fluid is computed from
the ideal-gas equation of state through the simple relation T = p/ρ. We also recall that,
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Table 5: Initial left (L) and right (R) states for the two relativistic radiation hydrodynamics shock tube problems
considered.

Case ρ p v Er χt/ρ γ arad

1L 1.0 4.0×10−3 0.2425 2.0×10−5 0.2 5/3 7.812×104

1R 3.11 4.512×10−2 8.014×10−2 3.46×10−3

2L 1.0 60.0 0.995 2.0 0.3 2 1.543×10−7

2R 8.0 2.34×103 0.781 1.14×103

while the conversion from the purely hydrodynamical conservative variables to the cor-
responding primitive variables is not analytic and it requires the solution of an algebraic
equation [15], the conversion from the conservative radiation variables (Sr,τr) to the cor-
responding primitive variables ( fr,Er) is just linear and follows directly from (3.22)-(3.23).

In the verification of our numerical scheme, we have considered two shock-tube tests,
with initial conditions reported in Table 5. The first test involves the propagation of a
mildly relativistic strong shock, while the second one generates a smooth highly rela-
tivistic wave. Each test is evolved in time until stationarity is reached. The semi-analytic
solution that is used for comparison with the numerical one has been obtained following
the strategy described by [25]. The scattering opacity coefficient χs has been set to zero,
while the value of the thermal opacity coefficient χt is reported in Table 5 and it produces
configurations that are moderately stiff. Fig. 8 shows the comparison of the numerical
solution with the exact one, where we have adopted a third-order WENO reconstruction,
with CFL=0.4 and 100 initially equidistant grid points. In Fig. 9 we show the evolution of
the residual of the density ρ. It can be noted that initially the residual stagnates at a rather
high level due to the presence of many transient waves inside the computational domain.
Once the transient waves have left, the residual drops very quickly to machine precision.
These results confirm the ability of the new scheme in solving the relativistic radiation
hydrodynamics equations. It has furthermore been shown that the proposed high order
numerical scheme is able to simulate correctly, both, time dependent problems as well as
steady state problems.

4 Conclusions

We have developed a new high order one-step Arbitrary-Lagrangian-Eulerian (ALE)
WENO finite volume scheme for the solution of nonlinear systems of hyperbolic balance
laws with stiff source terms. The presented approach has been validated against exact
reference solutions available for smooth and discontinuous solutions of three different
hyperbolic systems, namely the Euler equations of gas dynamics, the resistive relativis-
tic MHD equations and the relativistic radiation-hydrodynamics equations. In all cases
the algorithm was found to be very robust and at the same time very accurate. To our
knowledge, it is the first time that such high orders have been reached with ALE-type fi-
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Figure 8: Numerical solution obtained for shock tube problem 1 (left panels) and for shock tube problem 2 (right
panels) of the relativistic radiation hydrodynamics equations using a third order Lagrangian one-step WENO
finite volume scheme. Results are shown for density ρ, velocity v, and energy density of the radiation field Er.
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Figure 9: Evolution of the residual in the variable ρ for test problem 1 (left) and test problem 2 (right).
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nite volume schemes. In the near future we plan to extend the schemes presented in this
article to structured and unstructured meshes in multiple space dimensions. Again, the
building blocks will be a high order WENO reconstruction [21,22] and a local space-time
DG predictor [20, 24, 36].
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