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Abstract. This is a brief review of the computational modeling of protein-ligand in-
teractions using a recently developed fully polarizable continuum model (FPCM) and
rational drug design. Computational modeling has become a powerful tool in under-
standing detailed protein-ligand interactions at molecular level and in rational drug
design. To study the binding of a protein with multiple molecular species of a ligand,
one must accurately determine both the relative free energies of all of the molecular
species in solution and the corresponding microscopic binding free energies for all of
the molecular species binding with the protein. In this paper, we aim to provide a
brief overview of the recent development in computational modeling of the solvent ef-
fects on the detailed protein-ligand interactions involving multiple molecular species
of a ligand related to rational drug design. In particular, we first briefly discuss the
main challenges in computational modeling of the detailed protein-ligand interactions
involving the multiple molecular species and then focus on the FPCM model and its
applications. The FPCM method allows accurate determination of the solvent effects
in the first-principles quantum mechanism (QM) calculations on molecules in solu-
tion. The combined use of the FPCM-based QM calculations and other computational
modeling and simulations enables us to accurately account for a protein binding with
multiple molecular species of a ligand in solution. Based on the computational mod-
eling of the detailed protein-ligand interactions, possible new drugs may be designed
rationally as either small-molecule ligands of the protein or engineered proteins that
bind/metabolize the ligand. The computational drug design has successfully led to
discovery and development of promising drugs.
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1 Introduction

Structures and functions of biomolecular systems (such as protein, DNA, RNA, and their
complexes with small-molecule ligands) are essential issues for understanding life pro-
cesses at molecular level. Specially, when the biomolecule under consideration is a drug
target, understanding the detailed structure and functions of the drug target at molecular
level will provide a solid base for computational drug design. Information from exper-
iments is always necessary, but often insufficient to achieve a complete understanding
of the detailed structure and functions. Modern computational techniques of molecular
modeling have been recognized to be a valuable complement to experiments, because
an appropriate use of the state-of-the-art molecular modeling techniques can provide
more detailed structural and mechanistic information that cannot be obtained from ex-
periments alone, as demonstrated in many reports such as [1–8].

On the other hand, development of high-accuracy computational approaches to study-
ing the structures and functions of biomolecules is particularly challenging. This is be-
cause many biomolecules is usually large in size and surrounded by a very complex
chemical environment. The chemical environment surrounding a molecule in living sys-
tem always includes a large number of solvent water molecules. Intermolecular interac-
tions between a molecule under consideration (as the solute) and its solvent environment
could dramatically change the structure and functions of the solute molecule. The experi-
mental response of chemical, physical, and biochemical phenomena depends critically on
the solvent effects. Thus, a reliable computational approach must appropriately account
for the solvent effects in the practical computations.

A theoretically ideal computational approach would be to perform electronic struc-
ture calculations on the entire solvated biomolecular system, i.e. the entire biomolecule
with its explicit chemical environment, at a sufficiently high-level ab initio quantum me-
chanical (QM) theory. This is a first-principles approach, which has been proven re-
liable in predicting the structures, properties, and chemical reactions of isolated small
molecules (in vacuum, or in the gas phase). The reliability of the results calculated with
this approach would not rely on any adjustable empirical parameters. Unfortunately, a
high-level ab initio QM calculation on a biomolecule with its adequate chemical environ-
ment is impractical from a computational point of view [9], because the computing time
required for a QM calculation will dramatically increase by adding additional atoms to
the QM-treated system. For this reason, empirical molecular mechanics (MM) and related
methods are currently very popular computational methodologies used in modeling and
simulation of biomolecules.

A MM method simply considers all atoms to be classical particles with atomic forces
determined by a set of parameterized interaction functions (force field), including bonded
interactions (bonds, angles, and dihedral angles), non-bonded van der Waals interac-
tions, and electrostatic interactions based on net atomic charges. By use of an empirical
force field, a classical molecular dynamics (MD) simulation enables the study of time evo-
lution of a large biomolecular system by taking many small successive time steps under
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the force field. In addition to the all-atom models, united-atom models and simpler em-
pirical models based on lattice or off-lattice representations with residue-level resolution
have been developed to simplify the computations.

The MM-based methods are very useful in studying conformational structures and
related properties of biomolecules with a given pattern of the covalent chemical bonds
(first-order structure). A limitation of MM approach is that it cannot account for breaking
or formation of a covalent chemical bond. To overcome the limitation, hybrid QM/MM
methods [10–22] have been developed and used to study a variety of protein-ligand inter-
actions and the mechanisms of enzymatic reactions [23–35]. A QM/MM method means
to quantum mechanically treat some critically important part of a large biomolecular
system under consideration and molecular mechanically treat the remaining part of the
biomolecule and solvent. The QM-treated part of the biomolecular system may be re-
garded as a simplified model (such as the active site model of an enzyme), whereas the
remaining part of the biomolecule and solvent are the MM-treated chemical environment
of the model system. The QM/MM approach allows practical electronic structure calcu-
lations on the most important part of a large biomolecular structure and has been proven
very useful [23–36].

Generally speaking, the above-mentioned three types of computational approaches
(QM, MM, and QM/MM) complement each other. Different types of structural/mechan-
istic problems may be solved by using different types of computational approaches.
However, all of these types of computational approaches are valuable in the state-of-
the-art computational design. The present review concerns the recent development of
the computational strategies and methods related to computational drug design. As dis-
cussed below, it is crucial for a reliable computational drug design to accurately eval-
uate solvent effects on protein-ligand interactions. Generally speaking, the solvent ef-
fects may be accounted for either explicitly (i.e. including actual solvent molecules in the
computation) or implicitly (e.g., using a continuum solvent model based on the Poisson-
Boltzmann equation [37], Generalized Born model [38], or conductor-like screening model
[39]). Thus, in this paper, we will first briefly discuss the solvent effects on protein-ligand
interactions in Section 2 and review the recent development of a unique solvation model
in Section 3. Based on the computational methodology development, we will further re-
view recent development of computational design strategies, along with specific exam-
ples in practical studies of protein-ligand interactions and computational drug design, in
Section 4. Concluding remarks are provided in Section 5.

2 Solvent effects on protein-ligand interactions

2.1 Protein binding with a given ligand species

In practical drug design, most drug targets are proteins. Thus, for convenience of dis-
cussion, we will focus on proteins below; the general concept of computational methods
discussed here is also applicable to the DNA and RNA targets. A ligand of protein can be
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a naturally occurring biomolecule, such as substrate of an enzyme, or a drug candidate
like inhibitor of an enzyme or agonist/antagonist of a receptor protein. The Gibbs free
energy of binding (∆Gbind) between a protein and a ligand is defined as the Gibbs free
energy change from the free protein plus the free ligand (GP+GL) to the protein-ligand
complex (GP-L):

∆Gbind=GP-L−(GP+GL). (2.1)

Eq. (2.1) applies to the binding of a protein with a given ligand structure. ∆Gbind can be
evaluated by using the thermodynamic cycle shown in Fig. 1. Solvent effects on the bind-
ing free energy, ∆Gbind, can be accounted for either explicitly or implicitly. For example,
within the explicit solvation method, one may explicitly include solvent molecules in the
solvated system and directly simulate the binding process using a biasing force and de-
termine a potential of mean force (PMF) corresponding to the free energy change during
the binding process [40, 41]. However, only a limited number of solvent molecules can
actually be included in the practical simulation and, thus, the bulk solvent effects may
not be accounted for very well.

Gbind(g)
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P(sol)

L(g) P-L(g)
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P(

+
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Figure 1: Thermodynamic cycle for calculating protein-ligand binding free energy (∆Gbind) in solution.
∆Gsolv(P), ∆Gsolv(L), and ∆Gsolv(P-L) refer to the solvent shifts of the Gibbs free energies of the protein
(P), ligand (L), and complex (P-L), respectively.

A more efficient and more popularly used computational method is to implicitly ac-
count for the solvent effects on the binding free energy in the final energy calculations,
even though the protein-ligand binding structure used in the energy calculations may
be determined by using an explicit solvation method (i.e. MD simulation and/or en-
ergy minimization on the explicitly solvated system). Specifically, one may first evaluate
the binding free energy in the gas phase by using an MM- or QM/MM-based method
ignoring the solvent effects on the energies. Then, the solvent shift of the binding free
energy may be calculated by using an implicit solvation method, such as the popu-
larly used Poisson-Boltzmann surface area (PBSA) or Generalized Born Surface Area
(GBSA) [42–44], as demonstrated in reported computational studies on protein-ligand
interactions [7, 45–58].

2.2 Protein binding with multiple molecular species of a ligand

It should be pointed out that all of the computational methods mentioned here, including
the PMF, MM-PBSA, QM/MM-PBSA, MM-GBSA, and QM/MM-GBSA, can be used to
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determine binding free energy for a protein binding with a given ligand species. How-
ever, in practical studies on protein-ligand interactions related to computational drug
design, a ligand could have multiple molecular species (including protonated and de-
protonated states) that coexist in solution. For example, the widely abused nicotine, i.e.
(S)-(-)-nicotine, is a well known agonist for nicotinic acetylcholine receptors (nAChRs).
It has been known [59] that (S)-(-)-nicotine has a total of six molecular species (two neu-
tral species, two cations, and two dications) that coexist in solution, and that the most
favorable molecular species in solution is not necessarily the most favorable molecular
species in a protein binding site. As nAChRs are recognized as important drug targets in
various therapeutic areas, a larger number of small-molecule ligands have been identi-
fied as the agonists, antagonists, or partial agonists of nAChRs. Majority of the reported
ligands contain at least one protonable amine group so that each nAChR ligand can have
multiple protonation states [60].

In general, to appropriately account for a protein target binding with multiple molec-
ular species of a ligand, one must first reliably determine the relative free energies of
all molecular species of the free ligand in solution, and then calculate the microscopic
binding free energy for the protein binding with each molecular species of the ligand
in solution [59]. With all of these two types of energetic data available, one can eval-
uate the distribution of various microscopic protein-ligand structures and the macro-
scopic/phenomenological binding affinity [59]. The distribution of various microscopic
protein-ligand structures will also reveal the primary microscopic binding structure for
the protein-ligand binding [59–61].

Within the two types of energetic data required to determine the phenomenological
binding affinity, the microscopic binding free energy for protein interacting with each
molecular species of the ligand can be determined by using Eq. (2.1) as discussed above.
It is particularly challenging to accurately determine the relative free energies of different
molecular species of the free ligand in solution because the structural differences between
different molecular species are usually associated with the differences in covalent bonds.
Thus, it would be unreasonable to determine the relative free energies of different molec-
ular species of the ligand by simply using an MM-based force field.

To determine the relative free energies of all molecular species of the free ligand in
solution, the structures and free energies of all molecular species of the ligand must be
examined at a sufficiently high level of theory which accurately accounts for the changes
in covalent bonds and the solvent effects. It is desirable to determine the relative free
energies of the free ligand in solution by using a truly reliable QM-based approach. The
primary challenge of the QM calculations for this purpose is the determination of the
solvent shifts of the Gibbs free energies, as discussed below. Thus, in the rest part of this
section and in the next section, we will mainly discuss how to accurately account for the
solvent effects in the QM calculations.
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2.3 First-principles QM approach for determining the solvent effects on the
relative free energies of multiple molecular species of a ligand in solution

First-principles QM approach has become a very powerful tool for studying a variety of
scientific problems [62–65] As well known, ab initio QM calculations on an isolated molec-
ular species can readily achieve the desired chemical accuracy (i.e. the error is smaller
than 1 kcal/mol) so long as one uses a sufficiently large basis set, considers the electron
correlation at a sufficiently high level, and appropriately accounts for the relativistic ef-
fects in the calculation. By performing practical QM calculations at various levels, in
principle one can always try to get results converged to the desired ”exact” solution of a
QM equation, e.g., Schrödinger equation (if the relativistic effects can be neglected) or the
Dirac equation (if the relativistic effects must be included), for a given molecular system
existing in vacuum or the gas phase.

On the other hand, development of first-principle QM approach for molecules exist-
ing in solution is much more challenging and, thus, is now far behind that for molecules
in vacuum. Thus, molecular properties in solution should not be expected to predict with
chemical accuracy by performing QM calculations in vacuum without properly account-
ing for the solvent effects, even if one could perform the calculations at the highest level
of QM theory, i.e. full configuration-interaction (full-CI) with a complete basis set (CBS),
provided that the relativistic effects are negligible (or otherwise are also included). It is
highly desirable that the properties of molecules in solution be described with a similar
level of accuracy that can be achieved for molecules in the gas phase. A major roadblock
is that directly performing ab initio QM calculation on the solute-solvent system including
even a modest number of solvent molecules is impractical from a computational point of
view. Therefore, a realistic treatment of the electronic structure of molecules in solution
is one of the most important issues in theoretical and computational chemistry. Below,
we will focus on the methods for effective treatment of the solvent effects on solute in the
QM calculation.

The main, basic strategies to describe the solvent polarizing effect on solute in QM cal-
culations include the supermolecule approach [66], QM/MM strategy [11, 13, 16, 67–71],
and self-consistent reaction field (SCRF) methods [72, 73] although there have been ef-
forts to describe the solvent through different ways such as the statistical mechanical ref-
erence interaction site model (RISM) [74–76] effective fragment potential (EFP) [77] and
ONIOM-XS methods [78, 79]. All of these solvation approaches treat the solute quan-
tum mechanically, and the differences lie only in description of the solvent. The first two
are explicit solvation models. In the supermolecule approach, the solvent molecules are
also described at the QM level, but only a limited number of solvent molecules can be
explicitly included due to the expense of the QM calculations. Thus, the effect of the
bulk solvent cannot be dealt with properly. In the combined QM/MM strategy, the sol-
vent molecules are treated as classical entities, whose charge distribution is described by
partial atomic charges or point dipoles. The SCRF methods consider the solvent to be a
dielectric continuum medium that can be polarized by the solute leading to a reaction
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field that in turn polarizes the solute itself. The reaction field is obtained from classical
electrostatics by solving the requisite Poisson’s equation, or the more general Poisson-
Boltzmann equation (which is necessary to account for ionic strength of ionic solution),
to obtain a mutual potential energy of solute-solvent interaction that is included in the
solute Hamiltonian. Solutions to these electrostatic equations can be conveniently repre-
sented by certain apparent polarization charge density distributions.

There are, at least, two principal advantages of continuum models over explicit sol-
vation models in QM calculations [73]. The first is a significant reduction in the system’s
number of degrees of freedom. For example, if one explicitly treats 1,000 solvent wa-
ter molecules, this adds 9,000 degrees of freedom. Observable structural and dynami-
cal properties of a solute must be averaged over these degrees of freedom, typically by
Monte Carlo or MD simulations. However, if one can treat the solvent as a continuous
medium bathing the solute, the averaging becomes implicit in the properties attributed to
the bath. The second advantage is that SCRF theory based on continuum model provides
a very convenient and accurate way to treat the strong, long-range electrostatic solute-
solvent interactions that dominate many solvation phenomena. These are why the SCRF
methods based on the continuum theory have been being widely employed to investigate
solvent effects on molecular structures, properties, and chemical reactions in solution.

In addition, the SCRF calculation can be coupled with an appropriate use of a super-
molecule model or a combined QM/MM approach or other explicit/discrete solvation
model to further consider some important specific solute-solvent interactions and to de-
velop semi-continuum approach. The combined use of an SCRF procedure and a super-
molecule model may also be called hybrid supermolecule-continuum approach [80–85],
in which the solute and a few solvent molecules are considered as a supermolecule
treated quantum mechanically and the bulk solvent is considered as a dielectric con-
tinuum. Semi-continuum approach, or called combined discrete/continuum approach,
also includes the combination of an SCRF method with a combined QM/MM method
or other discrete solvation model, in which part of the solvent is explicitly accounted for
with certain approximation, such as the point charge representation, dipole polarizability
representation, and effective fragment potential (EFP) representation, and the remaining
bulk solvent is modeled as a dielectric continuum medium.

3 Fully polarizable continuum model (FPCM)

3.1 Basic FPCM method

The continuum approach is currently the most popular choice for describing solvent in
the QM-based electronic structure calculations, due to the reasons mentioned above. De-
spite the advantages of continuum models, previously employed SCRF methods based
on continuum models have limitations that compromise their accuracy in determination
of the effective polarization charge distribution that represents the solvent reaction field.
Many practical SCRF implementations for general molecular-shape cavities describe the
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solvent polarization either explicitly or implicitly in terms of an apparent surface charge
distribution spread over the boundary of the solute cavity. However, unconstrained QM
calculation of the solute electronic structure usually leads to a tail of the wave function
penetrating outside the solute cavity, thereby producing an additional volume polariza-
tion [86] in the reaction field that has been rarely recognized or treated. One of the major
problems existing in most of the previous SCRF implementations is the neglect of vol-
ume polarization or the inaccuracy of its treatment. The effects of volume polarization
can be represented by an apparent volume charge distribution spread throughout the en-
tire dielectric medium. Neglecting charge penetration while retaining the simple dielec-
tric continuum model leads to inconsistencies during the solution of Poisson’s equation
which several groups of researchers have attempted to rectify in cursory fashion through
various ad hoc charge renormalization schemes, such as those used in the polarizable con-
tinuum model (PCM) [87], isodensity surface polarizable continuum model (IPCM) [88],
integral equation formulation of polarizable continuum model (IEFPCM) [89, 90], and
conductor-like screening model (COSMO, or CPCM) [91, 92] implemented in the popu-
larly employed Gaussian program.

In order to accurately treat the long-range electrostatic and associated with them in-
ductive interactions between solute and solvent, an efficient implementation of the sur-
face and volume polarization for electrostatic interaction (SVPE) [93–96] has been devel-
oped based on the continuum model. The SVPE method is also known as the fully po-
larizable continuum model (FPCM) [4, 97–109], because it fully accounts for both surface
and volume polarization in the SCRF calculation. According to the FPCM method [93],
the effective Schrödinger equation of a solute in a solvent environment (with a dielectric
constant ε) can be expressed as

(Hvac+V pol)|ψ〉=E|ψ〉. (3.1)

In this equation, |ψ〉 is the wavefunction of the solute in solution and E is the correspond-
ing energy. The effective Hamiltonian (H) of solute in solution is described as sum of the
solute Hamiltonian Hvac in vacuum and long-ranged solute-solvent electrostatic inter-
action energy V pol: H = Hvac+V pol. According to the FPCM method [93], the potential
energy V pol due to the solute-solvent interaction can concisely and conveniently be rep-
resented by effective solvent polarization charge distributions σ(s) on the solute cavity
surface Γ (i.e. surface polarization charge distribution) and β(r) outside the cavity surface
(i.e. volume polarization charge distribution). Both the surface and volume polarization
charge distributions, i.e. σ(s) and β(r), are determined by solving the Poisson’s equation
for a given solute charge density ρ(r),

∇2Φ(r)=−4πρ(r)

{

1, r⊆Vint,
1/ε, r⊆Vext.

(3.2)

Here solute stays within the inner region Vint inside the solute cavity and solvent resides
in the outer region Vext outside the cavity. Such volume separation naturally leads to the
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separation of the electrostatic potential Φ(r) into two parts — vacuum potential Φvac(r)
and reaction potential Φpol(r). Eq. (3.2) is solved numerically for a general irregularly-
shaped solute cavity in the FPCM method, without neglecting ρ(r) when r⊆Vext. Many
other SCRF methods, such as PCM, IPCM, and self-consistent IPCM (SCIPCM) imple-
mented in the Gaussian program, neglect the volume polarization. In other words, when
r⊆Vext, ρ(r) is considered to be zero in the PCM, IPCM, and SCIPCM methods such that
the Poisson’s equation is simplified as the Laplace’s equation. So, those SCRF methods
approximate the reaction potential by accounting only for the surface polarization, aris-
ing from the discontinuity of the dielectric constant across the cavity surface. The surface
polarization can be described as a charge distribution σ(s) on the cavity surface Γ, and it
is proportional to the normal component of the electric field, En(s), on the cavity surface,

σ(s)=−
ε−1

ε+1

1

2π
En(s). (3.3)

The assumption, in which the total electric field is the sum of electric fields produced by
the solute charge distribution and by the surface polarization, i.e.

En(s)=Evac
n (s)+Eσ

n(s), (3.4)

is true only if there is no solute charge outside the cavity. In Eq. (3.4), Evac
n (s) and Eσ

n(s)
refer to the contributions from the solute charge distribution and by the surface polariza-
tion, respectively. As discussed in the previous studies [93], the solute charge penetration
through the cavity surface into the external region has two distinct contributions to the
reaction potential Φpol(r). It contributes directly to the reaction potential through the
volume polarization charge distribution β(r) as given by

Φβ(s)=
∫

V

β(r)

|s−r|
d3r. (3.5)

Here the volume polarization charge β(r) is zero inside the cavity (internal region Vint)
and is equal to −((ε−1)/ε)ρ(r) outside the cavity (external region Vext). Furthermore, it

contributes indirectly to the reaction potential through the electric field E
β
n(s) generated

on the cavity surface Γ,

E
β
n(s)=−

ε−1

ε

∫

Vext

ρ(r)
n(s)(s−r)

|s−r|3
d3r (3.6)

which affects the surface polarization charge distribution when solving the following
equation to self-consistency:

σ(s)=
1

2π

ε−1

ε+1

[

Evac
n (s)+Eσ

n(s)+E
β
n(s)

]

. (3.7)
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The free energy of the solute in solution is written as

G=Eint+
1

2

〈

V pol
〉

=Eint+
1

2

〈

V
pol

σ

〉

+
1

2

〈

V
pol
β

〉

=Eint+
1

2 ∑
i

σiΦi+
1

2 ∑
ik

βikΦik, (3.8)

where Eint = 〈Ψ|Hvac|Ψ〉〈Hvac〉 is the internal energy of solute and is evaluated by us-
ing the Hamiltonian in vaccum. The electrostatic potential (Φ) includes both electronic
and nuclear contributions. The discrete point charges βik (volume polarization charge at
angular ray i and volume layer k) are calculated by using multiple volume layers and
reproduce the exact charge sum rule determined by the well-known Gauss Law:

σ+β=−ρ(ε−1)/ε (3.9)

in which σ, β, and ρ refer to the total surface polarization charge, total volume polariza-
tion charge, and total (net) charge of the solute, respectively.

The aforementioned discussion shows that the FPCM method is capable of determin-
ing volume polarization effects for a general irregularly-shaped solute cavity in addition
to the more commonly treated surface polarization. In other SCRF implementations, vol-
ume polarization effects are ignored or approximately modeled by modifying the surface
polarization charge distribution through the surface charge simulation [110–113] or/and
charge renormalization, or the solute charge distribution is simply represented by a set
of point charges at the solute nuclei.

The accuracy of results obtained from the numerical FPCM computation is related to
the number (N) of surface nodes used to describe the surface polarization charge distri-
bution on the cavity surface and to the number (M) of layers used to describe the volume
polarization charge distribution outside the cavity [93]. According to the FPCM imple-
mentation, if one could employ infinite number of surface nodes and infinite number of
layers outside the cavity, then the calculated numerical results would be exactly the same
as those obtained from the exact analytic solutions of the Poisson’s equation, provided
that both are employed with a same QM approximation level. Practically, the FPCM
calculations converge very quickly with increasing number of surface nodes and with
increasing number of layers. Compared to the exact volume polarization correction de-
termined by the FPCM calculation, all the charge renormalization schemes examined can
sometimes lead to energy corrections of the wrong sign [93]. So, an SCRF calculation with
a charge renormalization scheme could give even worse results than the corresponding
SCRF calculation in which volume polarization is completely ignored.

3.2 Cavity size for the FPCM calculations

Since the solute cavity surface is defined as a solute electronic charge isodensity contour
determined self-consistently during the FPCM iteration process, the FPCM results, con-
verged to the exact solution of Poisson’s equation, rather than the Laplace’s equation,
with a given numerical tolerance [93], depend only on the contour value at a given di-
electric constant and on the QM level of theory used. This single parameter value has
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been determined to be 0.001 a.u. based on an extensive calibration study [94] seeking
the best overall agreement with experimental conformational free energy differences (62
experimental observations) in various polar solutes existing in various solvents. Based
on the fitting process employed in the calibration, the root-mean-squares (rms) devia-
tion of the 62 experimental values from the results calculated by FPCM method using
the 0.001 a.u. contour is 0.096 kcal/mol [94]. The calibration studies [94] also revealed
that the 0.001 a.u. contour is not affected significantly by the volume polarization. For
this reason, the calibrated 0.001 a.u. contour may be used also for the SCRF calculations
using other simplified continuum salvation models in which the volume polarization is
neglected.

3.3 Effects of volume polarization effects

Practical FPCM calculations were carried out to determine solvation effects on a vari-
ety of conformational free energy differences [93], NMR chemical shifts [95, 109], pKa

[4, 100, 102, 107], and (free) energy barriers for chemical reactions [97, 101, 103–105, 114].
The calculated results indicate that the SCRF calculations can consistently reach high ac-
curacy only when the volume polarization is accurately determined. For example, with
the calibrated 0.001 a.u. contour the solvent shifts of nitrogen chemical shift in CH3CN
determined by the FPCM calculations are in good agreement with the available experi-
mental data, whereas the solvent shifts determined by the corresponding SCRF calcula-
tions neglecting volume polarization are ∼12 times larger than the FPCM results [95].

3.4 Available software with the FPCM functionality

The basic FPCM method was initially implemented in a local version [93], and then the
publicly available version, of the GAMESS program [115]. More recently, the FPCM
method has been implemented in a local version [116] of Gaussian program [117]. In
the newest local version (M. J. Vilkas and C.-G. Zhan, unpublished results) of the Gaus-
sian program, the analytical first energy derivatives have been developed for the FPCM
method so that the FPCM method can be used for the geometry optimizations and also
for the vibrational frequency calculations by using numerical second energy derivatives
based on the analytical first energy derivatives.

3.5 Non-electrostatic solute-solvent interactions

It should be pointed out that the SVPE or FPCM method itself only accurately evaluates
the dominant electrostatic part of the solvation free energy. The relatively less-important
non-electrostatic solute-solvent interactions, including the cavitation, dispersion, and
Pauli repulsion, should be estimated otherwise or after the SVPE or FPCM calculation
itself. The non-electrostatic interactions are usually short-range, whereas the electrostatic
interactions are usually long-range. For most practical chemical applications, accurate
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determination of the electrostatic part of the solvation free energy is good enough, as
demonstrated in the previous computational studies [96–98, 103–108, 110, 114]. This is
because the non-electrostatic contributions can be cancelled out for many chemical prob-
lems [104], such as the calculated free energy barriers and reaction free energies. Usually,
the non-electrostatic contributions to the total solvation free energy of a reaction system
usually do not change significantly during the reaction process. For example, the es-
timated non-electrostatic contributions to the total solvation free energies of transition
state structures are very close to those of the corresponding reactants [104].

When it is necessary to determine the absolute free energy of solvation, the non-
electrostatic contributions must be estimated. The non-electrostatic contributions may
be estimated either empirically [118] or by using a hybrid supermolecule-continuum
approach (see below). For the empirical approach, a new method, denoted by SMVLE
(which represents the Solvation Model including surface, Volume, and Local Electrostatic
effects and atomic surface tensions) [119], has been developed recently. The SMVLE
method, which has been implemented in the GAMESS program, can accurately predict
absolute aqueous free energies of solvation by combining (1) the SVPE method [116], (2)
semiempirical atomic surface tensions as used in the SM6 model [120], and (3) a new
functional form that explicitly accounts for the local electrostatic effect. Specifically, the
free energy of solvation is a sum of three terms:

∆Gsolv =∆GSVPE+GCDS+GL, (3.10)

where ∆Gsolv is the absolute solvation free energy, ∆GSVPE is the bulk electrostatic portion
calculated by SVPE method, GCDS is the semiempirical term based on atomic surface ten-
sions, and GL is the semiempirical electric-field-dependent term; see ref. [119] for the de-
tailed equations. The parameters for SMVLE have been calibrated against a broad range
of solutes, including 272 neutrals and 143 ions [119]. The predicted aqueous solvation
free energies by the parameterized SMVLE method correlate very well with experiment
and have a value of the square of the correlation coefficient equal to 0.9945 and a slope of
0.9847. Comparisons with previous SMx solvation models show that the SMVLE model
not only has comparable accuracy for neutrals but that it also impressively increases the
predictive accuracy for ions. The semiempirical terms derived from the electric field
have been found to be primarily responsible for the increase in predictive accuracy for
ions. The outward-directed normal electric fields that make the most important contri-
butions account for strong interactions between the ionic solute and the nearby solvent,
which makes the addition of explicit water molecules unnecessary. These encouraging
results [119] demonstrate that the parameterized SMVLE is accurate and effective in pre-
dicting absolute solvation free energies not only for neutral molecules, but also for ions
exhibiting strong solute-solvent interactions.

3.6 FPCM-based hybrid supermolecule-continuum approach

Concerning the short-range non-electrostatic interactions between the solute and solvent,
pure dielectric continuum solvation models completely ignore the solvent structure, and,
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therefore, might not account for some important effects caused by specific solute-solvent
interactions, especially for chemical reactions assisted directly by solvent molecules. The
pure reaction field calculation can be improved by coupling with a supermolecule model
that includes solute and a few solvent molecules interacting with the solute.

An FPCM-based hybrid supermolecule-continuum approach [80–85] has been devel-
oped to predict free energies of solvation. In the FPCM-based hybrid supermolecule-
continuum approach, the solute and part of the solvent surrounding the solute is treated
quantum mechanically and the remaining bulk solvent is considered to be a dielectric
continuum medium accounted for by using the FPCM method. According to this ap-
proach, the calculated results can systematically be improved by increasing the number
of quantum mechanically treated explicit solvent molecules. It has been shown [81–85]
that the FPCM-based hybrid supermolecule-continuum calculations can quickly con-
verge to the infinite number of explicit solvent molecules. For example, the free energy
barriers calculated for the base-catalyzed hydrolysis of amides at the CCSD(T)/aug-cc-
pVDZ level are converged at n=5 [85], and the absolute hydration free energy of the pro-
ton calculated at high levels are converged at n=4 [81]. The FPCM and the FPCM-based
hybrid supermolecule-continuum approach have been used to solve a variety of crucial
scientific problems, including those that cannot be solved by experiment alone [80–85].

4 Determination of protein-ligand interaction and computational

drug design

The basic computational methods discussed above provide a foundation for practical
computational studies on a variety of protein-ligand interactions and, thus, for rational
drug design. Below we will briefly discuss some representative computational studies
and rational drug design efforts, illustrating how one can employ the state-of-the-art
computational approaches to study of protein-ligand interactions and perform rational
drug design.

4.1 Determine the most favorable molecular species of ligand interacting with
a protein

For a protein binding with multiple molecular species of a ligand, each molecular species
may form a microscopic binding complex with the protein. Thus, one may have multi-
ple microscopic binding complexes for a pair of protein and ligand. The computational
methods mentioned above allow us to predict the relative free energies of various pos-
sible molecular species of the free ligand in solution and to calculate the microscopic
binding free energy of each species with the protein. With all of these energetic data,
one can determine the statistical distribution of the various molecular species in the pro-
tein binding site [59], because the relative free energies associated with the determined



44 F. Zheng and C.-G. Zhan / Commun. Comput. Phys., 13 (2013), pp. 31-60

microscopic protein-ligand binding complexes can be evaluated as

∆GP-L(i)=∆GL(i)+∆Gbind(i), (4.1)

where ∆GL(i) is the relative free energy of the ith molecular species of the free ligand in
solution, ∆Gbind(i) represents the microscopic binding free energy for the protein with
the ith molecular species of the ligand, and ∆GP-L(i) is the relative free energy of the ith
microscopic binding complex between the protein and the ith molecular species. The
most favorable microscopic binding complex, or the most favorable molecular species in
the protein binding site, is associated with the lowest ∆GP-L(i) value.

According to Eq. (4.1), the lowest ∆GP-L(i) value is not necessarily associated with the
lowest ∆GL(i) value. In other words, the most favorable molecular species of a ligand in
the protein binding site is not necessarily the most favorable molecular species of the
free ligand in solution. For example, (S)-(-)-nicotine can have three types of protonation
states: the free base (deprotonated state, neutral species), singly protonated state (cation),
and doubly protonated state (dication). Both computational and experimental studies
have consistently demonstrated that the dominant molecular species of the free (S)-(-)-
nicotine in a neutral (aqueous) solution or an aqueous solution with the physiologic pH
(pH 7.4) is a singly protonated state. However, the combined MM-PBSA and FPCM-
based QM calculations [121] have revealed that the most favorable molecular species of
(S)-(-)-nicotine in the active site of cytochrome P450 2A6 (CYP2A6) is the free base (the de-
protonated state). CYP2A6 is a crucial enzyme responsible for nicotine metabolism in the
body. The finding of the most favorable molecular species of nicotine from the combined
MM-PBSA and FPCM-based QM calculations provides an essentially important starting
point for further computational studies on the detailed metabolic pathway of nicotine at
the molecular level. In fact, following the combined MM-PBSA and FPCM-based QM cal-
culations, further first-principles QM/MM-free energy (QM/MM-FE) calculations have
been performed to uncover the detailed reaction pathways and the corresponding free
energy profiles for CYP2A6-catalyzed metabolic reactions of nicotine [121]. The compu-
tational results [121] are consistent with available experimental data and provide a solid
base for future rational design of novel drugs that aim to control the nicotine metabolism.

It should also be pointed out that the most favorable molecular species of a ligand
in the binding site of a protein is not necessarily the same as that of the same ligand in
the binding site of another protein. For example, whereas the most favorable molecular
species of (S)-(-)-nicotine in the active site of CYP2A6 is the free base [121], the most
favorable molecular species of (S)-(-)-nicotine in the binding sites of nAChRs is always
a singly protonated state according to the FPCM-based QM calculations in combination
with the microscopic binding free energy calculations [59–61].

These examples demonstrate that, for a reliable computational determination of the
most favorable molecular species of a ligand in the binding site of a protein, one must
accurately determine both the relative free energies of all molecular species of the free
ligand in solution and the corresponding microscopic binding free energies.
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In addition, based on the FPCM-based QM calculations along with other computa-
tional modeling and simulations, a reliable computational strategy [1, 2] has been devel-
oped to study the structural identity of a catalytic ligand bridging metal ions in the active
sites of metalloenzymes. The computational strategy has been employed to successfully
determine the active site structures and catalytic mechanisms of phosphotriesterase (PTE)
and phosphodiesterase (PDE) [1–6]. These computational studies on the detailed protein
structures demonstrate how computational modeling and simulations can be carried out
to assess the protein structure questions not resolvable from the X-ray diffraction tech-
niques.

4.2 From microscopic binding to phenomenological binding affinity

The FPCM-based QM calculations in combination with the microscopic binding free en-
ergy calculations can also be performed to determine not only the most favorable molec-
ular species of a ligand in the binding site of a protein, but also the phenomenological
binding affinity associated with all molecular species of a ligand binding with a protein.
In particular, the relative ∆GP-L(i) values calculated by using Eq. (4.1) can be used to de-
termine the Boltzmann distribution of all molecular species of the ligand in the binding
site. Based on the determined Boltzmann distribution of the all molecular species, one
can conveniently evaluate the phenomenological binding affinity which is experimen-
tally observable, as demonstrated in a computational study [59].

In particular, the FPCM-based QM calculations in combination with the microscopic
binding free energy calculations were carried out to study how the α4β2 nAChR binds
with various molecular species of two typical agonists, (S)-(-)-nicotine and (R)-(-)-desch-
loroepibatidine [59], each of which are distinguished by different free bases and proto-
nation states. Based on the computational results, predictions were made regarding the
corresponding microscopic binding free energies. Hydrogen bonding and cation-π inter-
actions between the receptor and the respective ligands were found to be the dominant
factors differentiating the binding strengths of different microscopic binding species. The
calculated results and analyses demonstrate that for each agonist, all the species are in-
terchangeable and can quickly achieve a thermodynamic equilibration in solution and at
the nAChR binding site. This allows us to evaluate the equilibrium concentration dis-
tributions of the free ligand species and the corresponding microscopic ligand-receptor
binding species. The calculated equilibrium concentration distributions of the ligand
species clearly show their pH-dependence and provide the microscopic information re-
quired for further determination of the phenomenological binding affinity of the ligand
with the α4β2 nAChR [59]. The predicted equilibrium concentration distributions, pKa

values, absolute phenomenological binding affinities of the ligand species and their pH-
dependence are all in good agreement with available experimental data, which suggests
that the computational strategy of studying interactions of ligands with receptors from
their microscopic binding species and affinities to the phenomenological binding affinity
is reliable for studying protein-ligand binding, and thus, should be a valuable approach
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for future rational design of drugs targeting the α4β2 nAChR [59].

Besides the studies on α4β2 nAChR binding with the above two agonists, the same
computational approach has also been employed to study how α4β2 nAChR and other
nAChR subtypes bind with their agonists and antagonists, leading to the detailed un-
derstanding of the observed relative binding affinities and the subtype selectivity of the
ligands [60,61]. It is essential for rational drug design to achieve a detailed understanding
of the observed relative binding affinities and the subtype selectivity of the ligands.

The general strategy of the ”from-microscopic-binding-to-phenomenological-binding”
approach [59] could also be useful in future studies of other types of ligand-protein in-
teractions involving multiple molecular species of a ligand and in other related rational
drug design endeavors.

4.3 Determine whether a ligand of a receptor protein should be an agonist or
antagonist

A receptor protein, such as a nAChR (ligand-gated sodium channel), may have two dif-
ferent states: open- and closed-channel states. For convenience, here we discuss nAChR
as an example. In theory, to computationally predict whether a nAChR ligand should be
an agonist or antagonist, one may first determine how the ligand binds with the closed-
channel state (the rest state) of the nAChR and then carry out a sufficiently long MD
simulation on the determined nAChR-ligand binding structure in a reasonable model of
the physiological environment. If the ligand is an agonist, then the channel should even-
tually open during the MD simulation. If the ligand is an antagonist, then the channel
should not open during the MD simulation. Practically, this theoretically ”reasonable”
approach does not work for a nAChR. This is because the average time required to open
nAChR channels is in milliseconds (ms), e.g., ∼59 ms for α4β2 nAChR [122, 123] and,
therefore, the MD simulation on a nAChR-ligand complex must be performed for at least
many milliseconds to be really meaningful. Such a time scale is insurmountable for a
fully relaxed (real-time) MD simulation (with a usual time step of 1 or 2 fs) of a protein
system as large as a nAChR on any supercomputer in the World at this point of time.
Currently, a meaningful MD simulation (with a usual time step of 1 or 2 fs) on a fully sol-
vated nAChR system can only be performed for nanoseconds by using supercomputing
time in days.

In fact, targeted MD simulations (i.e. the MD simulations with certain artificial forces
that accelerate the change of nAChR structure from the starting closed/open-channel
state to the targeted open/closed-channel state) were performed on nAChRs to study
some major molecular motions related to the opening and closing of nAChR channels
[124]. As expected, the artificial forces speeded up the opening/closing of the channel
so that the channel opening/closing could be simulated in only nanoseconds. However,
when the targeted MD simulation is performed on a nAChR-ligand complex, the channel
opening/closing can always be observed due to the use of the artificial forces no matter
whether the ligand is an agonist or antagonist. So, the targeted MD simulations cannot
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be used to predict whether a nAChR ligand is agonist or antagonist.

In a recently reported computational study [125], a practical and fast computational
approach was developed to predict whether a nAChR ligand is an agonist or antagonist
by calculating the microscopic binding free energies for both the open and closed states
of α4β2 nAChR interacting with the protonated and deprotonated forms of 27 representa-
tive ligands (agonists and antagonists) along with the FPCM-based QM calculations. The
FPCM-based QM calculations were carried out to determine the relative free energies of
the protonated and deprotonated forms and, thus, the pKa of agonist/antagonist. The
modeled receptor-ligand binding structures and calculated binding free energies consis-
tently reveal that all of the antagonists bind more favorably with the closed-channel state
of the receptor, whereas all of the agonists bind more favorably with the open-channel
state. Depicted in Fig. 2 are the modeled structures of the closed-channel state binding
with a representative antagonist and the open-channel state binding with a representa-
tive agonist. These results help to better understand why an agonist can open the chan-
nel, whereas an antagonist cannot. The binding free energies calculated for the favorable
binding of antagonists with the closed-channel state and for the favorable binding of
agonists with the open-channel state are all close to the corresponding experimentally-
derived binding free energies [125]. The good agreement between the computational
and experimental data suggests that the determined binding structures and calculated
binding free energies are reasonable.

The computational results [125] led to propose a novel computational strategy and
protocol that can be used to theoretically predict whether a nAChR ligand should be an
agonist or antagonist. According to the computational protocol [125], one only needs to
calculate the relative binding free energies for a ligand binding with both the open- and
closed-channel states of the receptor and, thus, determine the most favorable channel
state of the receptor binding the ligand, as the agonist and antagonist bind more favor-
ably with the open- and closed-channel states, respectively. This protocol and the general
computational strategy are expected to be valuable in structure-based rational design of
novel agonists and antagonists of nAChRs as therapeutic agents. For example, a pos-
sibly more potent agonist of α4β2 receptor may be designed to have a more favorable
binding with the open-channel structure, whereas a possibly more potent antagonist of
α4β2 receptor may be designed to have a more favorable binding with the closed-channel
receptor.

4.4 Determine the interaction between a drug and its catalytic antibody

A unique, efficient computational approach [126] has been developed to study competing
reaction pathways and the corresponding free energy barriers for the chemical reaction
of a substrate catalyzed by a catalytic antibody without performing the time-consuming
QM/MM calculations. The computational approach has been used to study cocaine hy-
drolysis catalyzed by an anti-cocaine catalytic antibody (mAb 15A10) [126]. The efficient
computational approach capable of studying the antibody catalysis is based on the re-
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Figure 2: (A) A side view of the closed-channel structure of α4β2 nAChR binding with a representative antag-
onist. LBD refers to ligand binding domain, TMD to transmembrane domain, and ID to intracellular domain.
For comparison, the corresponding open-channel structure is superimposed and in blue color. The phospholipid
bilayer is in light blue color. (B) and (C) local view of one of the two equivalent ligand-binding sites at the
extracellular ligand-binding domain of the receptor, in which the antagonist is shown in stick and the agonist in
stick and blue color. Labeled are the functional loops in the right panels (A-F, and β1-β2 loop). In comparison
between the closed-channel and the open-channel structures, one of the most obvious differences exists in the
motion of the C loop induced by the ligand binding. Such a difference is represented by the red-curved arrow
and labeled with the distance. For clarity, the β2 subunit and the hydrogen atoms of the agonist/antagonist
are not shown. (D) Molecular structure of the antagonist in the binding structure. (E) Molecular structure of
the agonist in the binding structure.

action coordinate calculations on the non-enzymatic hydrolysis of cocaine in solution by
using an FPCM-based first-principles QM approach [106] and the MD simulations on the
antibody binding with each of the possible molecular species of cocaine existing in the
reaction process (including both the reactant and transition-state structures) [126].

The computational studies led to predict the free energy barriers for the competing
reaction pathways of the cocaine hydrolysis catalyzed by mAb 15A10. On the basis of
the calculated binding free energies, one can evaluate the free energy barrier shift from
the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each
reaction pathway. The free energy barriers for the antibody-catalyzed cocaine hydrolysis
were predicted to be the corresponding free energy barriers for the cocaine hydrolysis in
water plus the calculated free energy barrier shifts. Based on the predicted free energy
barriers, the dominant reaction pathway for the antibody-catalyzed cocaine hydrolysis
was determined [126]. The calculated free energy barrier shift of −6.33 kcal/mol from
the dominant reaction pathway of the cocaine benzoyl ester hydrolysis in water to the
dominant reaction pathway of the antibody-catalyzed hydrolysis of cocaine benzoyl ester
is in good agreement with the experimentally-derived free energy barrier shift of −5.93
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kcal/mol (corresponding to the experimental rate acceleration kcat/k0=23,000), while the
calculated binding free energy of −4.88 kcal/mol for the cocaine-antibody binding agrees
with the experimentally-derived binding free energy of −4.97 kcal/mol (estimated from
the experimental KM value of 220 µM) [126].

In light of the good agreement between the calculated energetic results and avail-
able experimental kinetic data, the computational protocol for calculating the free energy
barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hy-
drolysis may be useful in future rational design of possible high-activity mutants of the
catalytic antibody as anti-cocaine therapeutics. The general computational strategy for
calculating the free energy barrier shift may also be valuable for studying a variety of
chemical reactions catalyzed by other antibodies or proteins through non-covalent bond-
ing interactions with the substrates [126].

4.5 Design new drugs based on computational modeling of protein-ligand
interaction

Based on computational modeling of the detailed protein-ligand interactions, one can ra-
tionally design potentially valuable new drugs. A new drug to be designed may be a
small-molecule ligand, such as inhibitor of an enzyme or agonist/antagonist of a recep-
tor protein which aims to control/regulate the physiologic process involving the protein.
The small-molecule drugs can be designed based on structural and energetic understand-
ing of the protein-ligand interactions. The structure-based drug design includes virtual
screening of known compounds collected in a library (for drug lead identification) [127]
and de novo design which aims to design novel compounds (for drug lead identification
and/or lead optimization).

A new drug to be designed may also be a protein mutant for a protein drug de-
sign effort. One type of protein drugs is the enzyme therapy which aims to detoxify the
toxic compounds (such abused drugs) in the body. For example, the FPCM-based first-
principles QM calculations [97, 106] on the reaction mechanism for the non-enzymatic
hydrolysis of cocaine in solution were followed by further MD simulations and QM/MM
calculations [31, 128–132] on the detailed mechanism for the enzymatic hydrolysis of co-
caine, leading to discovery of highly efficient cocaine hydrolases [133–138] as promising
candidates for anti-cocaine therapeutics [139–145]. The first one [133] of these cocaine hy-
drolases discovered by Zhan’s group has already been developed into an investigational
new drug (known as TV-1380) by Teva Pharmaceutical Industries Ltd; the outcomes of
the human clinical trials have revealed that this new drug is safe and efficacious for hu-
man [146].

The general concept of the enzyme therapy development for treatment of cocaine
overdose and addiction may also be used to explore possible enzymes suitable for treat-
ment of other drugs of abuse or detoxification of other toxic compounds (e.g., chemical
warfare nerve agents). In order to design a therapeutically useful enzyme which can me-
tabolize a given ligand, one will first need to examine all possible metabolic pathways
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of the ligand and identify a favorable metabolic pathway producing biologically inac-
tive metabolites. If a favorable metabolic pathway and the corresponding native enzyme
can be identified, then the general computational design approaches that have been used
to design cocaine hydrolases may be employed to design high-activity mutants of the
chosen ligand-metabolizing enzyme against the ligand. When necessary, further com-
putational design will be performed to extend the in vivo half-life of the discovered en-
zyme so that the enzyme can be long-acting. In fact, thermostable mutants of bacterial
cocaine esterase (CocE) have been designed and discovered successfully through com-
putational modeling [147–150]. One of the designed and discovered CocE mutants (i.e.
T172R/G173Q) [147] has been licensed to Reckitt Benckiser Pharmaceuticals Inc for co-
caine overdose treatment. Investigational new drug (IND) application for human clinical
use of the T172R/G173Q mutant product (RBP-8000) has been filed to the US Food and
Drug Administration (FDA) in July 2011.

The encouraging outcomes of the drug discovery and development efforts based on
computational modeling have demonstrated that computational drug design is valuable
not only for small-molecule drug discovery, but also for protein drug discovery and de-
velopment [139–144, 151].

5 Summary and concluding remarks

Computational modeling has been recognized as a powerful tool in understanding de-
tailed protein-ligand interactions at molecular level and in rational drug design. To the-
oretically account for a protein binding with multiple molecular species of a ligand, one
must accurately predict the relative free energies of all of the molecular species of the
free ligand in solution and the corresponding microscopic binding free energies for all
of the molecular species binding with the protein. A reliable first-principles QM method
is required to predict the relative free energies of various molecular species of a ligand
because the structural differences between different molecular species are usually asso-
ciated with the differences in covalent bonds. As well known, it is extremely challeng-
ing to accurately determine the solvent effects in the first-principles QM calculations on
molecules in solution. It has been a dream of the theoretical and computational chemists
that QM-based electronic structure calculations on molecules in solution can achieve the
chemical accuracy. However, the encouraging results obtained from the recently reported
FPCM-based QM calculations suggest that the chemical accuracy of solvation-included
first-principles QM calculation is now possible. The combined use of the FPCM-based
QM calculations and other computational modeling and simulations enables us to ac-
curately account for a protein binding with multiple molecular species of the ligand in
solution.

FPCM-based QM calculations in combination with various other types of computa-
tional modeling and simulations have been carried out to study a variety of protein-
ligand interactions, such as predicting the most favorable molecular species of ligand in-
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teracting with a protein, the phenomenological binding affinity and its pH dependence,
whether a ligand of a receptor protein should be an agonist or antagonist, the interaction
between a drug and its catalytic antibody and associated catalytic reaction mechanism.
Based on the computational modeling of the detailed protein-ligand interactions, pos-
sible new drugs may be designed rationally as either the small-molecule ligands of the
protein (if the protein is a drug target) or engineered proteins (if the ligand is a toxic
compound which must be removed from the body). The computational drug design has
led to practical discovery and development of promising drugs. One may expect to see
more and more practical applications of the computational modeling in understanding
the detailed protein-ligand interactions and in rational drug design, discovery, and de-
velopment.
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