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Abstract. We present a solver for the Poisson-Boltzmann equation and demonstrate
its applicability for biomolecular electrostatics computation. The solver uses a level
set framework to represent sharp, complex interfaces in a simple and robust manner.
It also uses non-graded, adaptive octree grids which, in comparison to uniform grids,
drastically decrease memory usage and runtime without sacrificing accuracy. The ba-
sic solver was introduced in earlier works [16, 27], and here is extended to address
biomolecular systems. First, a novel approach of calculating the solvent excluded and
the solvent accessible surfaces is explained; this allows to accurately represent the loca-
tion of the molecule’s surface. Next, a hybrid finite difference/finite volume approach
is presented for discretizing the nonlinear Poisson-Boltzmann equation and enforcing
the jump boundary conditions at the interface. Since the interface is implicitly repre-
sented by a level set function, imposing the jump boundary conditions is straightfor-
ward and efficient.
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1 Introduction

The Poisson-Boltzmann equation is useful for calculating important biomolecular quan-
tities, such as pKa values and energies of binding [12]. However, solving this equation
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numerically has many challenges, the most significant of which are a) charge singular-
ities, b) representing molecular surfaces, c) addressing exponential nonlinearities in the
solution, and d) imposing the correct jump boundary condition. In this work, we present
a solver that addresses some of the computational challenges in novel ways. First, we
describe a simple and robust technique for implicitly representing biomolecular sur-
faces. Next, we demonstrate a novel discretization method for imposing the correct jump
boundary conditions on the surface. Finally, we validate the solver and show its useful-
ness by calculating solvation free energies.

Since the pioneering work of Warwicker and Watson in the early 1980s [39], many
different techniques for solving the Poisson-Boltzmann equation have been developed,
most of which are based on finite difference, finite element, or boundary element meth-
ods. In this work, we do not intend to describe or compare them and refer the interested
reader to [2, 3, 7, 18, 21] and the references therein for recent reviews.

An important characteristic of modern Poisson-Boltzmann solvers is the solver abil-
ity to use variable resolution. This allows to have coarse resolution where the solution is
smooth and fine resolution where the solution varies rapidly. Indeed, one of the advan-
tages of finite element methods over finite difference methods has been the robust adap-
tivity. Finite element methods are able to locally refine the computational mesh based
on an error indicator, increasing resolution as needed, which enabled them to more ef-
ficiently address the exponential nonlinearity in the Poisson-Boltzmann equation [3, 21].
Finite difference solvers can achieve similar results through the practice of focusing, in
which the equation is solved on a coarse mesh, and the solution is used as a boundary
condition for a finer mesh over an interesting subdomain [14].

Recent works have introduced adaptive finite difference methods that discretize the
Poisson-Boltzmann equation on non-uniform grids. In [5], Boschitsch and Fenley intro-
duced a first-order method that solves the nonlinear Poisson-Boltzmann equation on a
graded octree mesh. In [27] and [16], Gibou and coworkers presented a second-order
method for solving the Poisson-Boltzmann equation on a non-graded octree mesh. Nei-
ther use error estimates to refine the mesh, however. Instead, they refine the mesh based
on distance from the molecular surface. The rational is based on the elliptic nature of the
equation, which ensures that the solutions are smooth away from the interface.

Another difference between finite difference and finite element methods is that fi-
nite element methods ensure that cell edges align with interfaces. This is an appealing
feature, as interfaces cutting through cells — as happens in finite difference schemes —
complicate the discretization of boundary conditions. This property, however, comes at
a price; creating a finite element mesh for a geometrically complicated domain, such as
the surface of a protein, can be very expensive [8].

Finite difference methods, on the other hand, do not require the grid to conform to the
boundary. As a result the grid generation, for uniform meshes, is trivial. However, since
the grid does not conform to the boundary, special care must be taken to discretize the
boundary conditions. This is specially important for biomolecular computations since
one has to impose jump boundary conditions on complicated and, potentially, singular
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geometries. Still finite difference solvers are quite popular and important improvements
have been done over the years. Notably, Wei and coworkers have developed a method,
termed ”Matched Interface and Boundary” (MIB), that is able to produce second-order
accurate results through accurately imposing the jump boundary conditions. For more
information on this method, one may refer to [13, 40].

The work presented here builds directly on that of [27] and [16]. Those papers ad-
dressed colloidal systems and electrochemistry, and the solver did not address charge
singularities. Therefore, it was not directly applicable to biomolecule studies. In Sec-
tion 4, we show how to extend the method using the regularization scheme presented by
Chern et al. [9], making it suitable for biomolecular computations.

2 Domain description using level set functions

There are multiple ways of defining a molecular surface. The simplest approach is to use
the van der Waals Surface (vdWS), which represents a molecule with a set of intersecting
spheres of radii ri, where ri is the van der Waals radius of the i-th atom in the molecule.
This surface is not completely accessible to solvent molecules, though, and therefore not
appropriate for implicit solvent models. To address this, one can use the Solvent Acces-
sible Surface (SAS), which is the set of spheres with radii ri+rs, where rs is the solvent
radius [19]. The SAS is commonly used to represent the hydration effects. Unfortunately,
both vdWS and SAS result in geometrical singularities due to self intersection between
spheres. To remedy this problem, it is possible to use the Solvent Excluded Surface (SES),
which are the boundary points that are in contact with a solvent molecule as the solvent
molecule “rolls” over the vdWS [15, 33]. These three surfaces are schematically depicted
in Fig. 1.

Probe
Solvent Accessible 

Surface (SAS)

van der Waals 

Surface (vdWS)

Solvent Excluded 

Surface (SES)

Atom A  Atom B  

Figure 1: Common surfaces used in biomolecular computations.

Different methods have been proposed over the years to compute these surfaces. Con-
nolly proposed an analytical algorithm for computing both the SAS and the SES [10, 11],
and Sanner and Oslon described an algorithm for analytically computing the SES and
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providing a triangulated representation of the surface [36]. Analytic representation of the
SES can lead to very accurate computation of molecular surface and volume. However,
this technique requires geometric singularities to be dealt with explicitly. Alternatively,
by using an implicit representation of the molecular surface, one can potentially avoid to
handle any, or most of, singularities explicitly.

Level set methods, originally proposed by Osher and Sethian in [30], are a general,
robust, and flexible framework for implicitly representing and tracking interfaces that
undergo complex topological changes. Applying this idea to biomolecules, a molecular
surface — vdWS, SAS or SES — can be represented as the zero level set of a three dimen-
sional function. More precisely, the level set function, φ(x,y,z), divides the domain, Ω,
into two domains, Ω+ and Ω−, and the interface Γ,











Ω+≡
{

x∈R3 |φ(x,y,z)>0
}

,

Γ≡
{

x∈R3 |φ(x,y,z)=0
}

,

Ω−≡
{

x∈R3 |φ(x,y,z)<0
}

.

A large body of work has focused on computing level set functions for various ge-
ometries. Here we describe the essentials, and we refer the reader to [37] and [29] for
a more thorough survey of the methods. To generate a level set function, one normally
starts with an initial function that correctly predicts the location of boundary. In the case
of the vdWS surface, for example, this initial function may simply be chosen as

φ0(x,y,z)=max
i

{

ri−
√

(x−xi)2+(y−yi)2+(z−zi)2

}

.

However, it is not always possible to obtain a good initial function; for example, no
such simple expression exists for the SES. Furthermore, to obtain a good adaptive grid
and maintain robustness, it is required that the level set function be a distance function,
i.e. |∇φ|=1. To achieve this property, and once an initial level set function, φ0, is chosen,
the reinitialization equation,

∂φ

∂τ
+S(φ0)(|∇φ|−1)=0, (2.1)

must be solved where τ is a fictitious time and S is the numerical sign function, usually
taken as

S(φ0)=
φ0

√

φ2
0+∆x2

.

Compared to traditional methods, using a level set function to represent the molecu-
lar surface is a relatively new technique that has been explored by many different authors.
In [6] the authors described a level set method for capturing the SES by starting from the
vdWS and moving the interface in the normal direction twice to obtain the SAS and SES.
At the end of second pass, however, the SES may contain inaccessible cavities. These
are removed by a third pass in which a sphere is constructed around the outer SES and
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then “shrink-wrapped” to the molecule. Another approach obtains the SES by moving
the boundary only once, but it must impose the correct curvature at toric segments [32].
Although defining the correct curvature seems reasonable, it leads to solving a nonlinear
advection-diffusion equation describing the motion of level set, which is computationally
expensive. Moreover, defining the correct curvature requires the definition of a reduced
surface, leading to extra complication [36].

Alternatively, within the level set framework, it is relatively easy to “redefine” the
molecular surface such that it minimizes the solvation free energy. Different approaches
exists in the literature. For example, in [20] the authors obtain the molecular surface
by evolving the level set function such that it minimizes a certain solvation free energy
functional. In another article by Bates et al. [31], the authors use similar ideas to obtain
the Minimal Molecular Surface (MMS) obtained via mean curvature minimizations.

The method presented here to generate the level set function is similar to [6] in that
we do not explicitly enforce the curvature and aim for the classical definition of SES.
However, instead of moving the level set in the normal direction twice, which would be
expensive, we only reinitialize the level set and note the following:

1. The reinitialization equation, (2.1), is closely related to moving the interface in the
normal direction,

2. After reinitialization, the level set φ=±d is at the distance ±d away from the inter-
face along the normal direction, and

3. Toric segments are automatically generated by the rarefaction waves when unit
normal vectors diverge (see Fig. 2).

Within this new framework, generating the SES is quite simple and efficient. Our algo-
rithm is the following:

1. Start with an approximation for the SAS by looping over all atoms in the molecule:

φ0(x,y,z)=max
i

{

ri+rs−
√

(x−xi)2+(y−yi)2+(z−zi)2

}

. (2.2)

2. Reinitialize the level set function φ′ using Eq. (2.1) with φ0 defined in Eq. (2.2) as
the initial approximation.

3. Obtain the SES by taking the zero level set of φ=φ′−rs.

Fig. 2 schematically illustrates the application of this algorithm. In the rest of this paper,
we adopt the convention that Ω+ refers to the inside of the molecule, Ω− refers to the
outside, and Γ represents the SES.

Finally we note that at the end of this algorithm, the SES may contain inner “cavities”.
To identify and remove these cavities, we incorporate a simple fix. The basic idea is
based on the observation that inner cavities are not, topologically, “connected” to the
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Figure 2: Schematic illustration of the SES generation algorithm. Once the SAS is reinitialized, rarefaction fan
and shock waves propagate into the domain, depending on whether the normal vectors diverge or converge,
respectively. This automatically ensures the formation of toric segments for all the level set contours in Ω+,
including the SES.

boundaries of the computational domain. As a result, any algorithm that can benefit from
this observation, can detect the cavities and remove them. One such simple algorithm is
to solve an auxiliary diffusion equation in the Ω− domain subjected to a zero boundary
condition on the SES surface and a nonzero boundary condition on the computational

(a) (b) (c)

Figure 3: Cavity removal process. (a) A cross-section of the SES generated for the 2C00 molecule with outside
colored in purple and inside in grey. (b) Cavities, colored in green, are detected inside the molecule by checking
if φ< 0 and C= 0 at each grid point. (c) Cavities are removed by simply changing the sign of the level set
function at the corresponding grid points.
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domain boundaries. Specifically, we solve:

∇2C=0, x∈Ω−,

C (x)=0, x∈Γ,

C (x)=b, x∈∂Ω,

where ∂Ω is the boundary of the computational domain, and b is a constant coefficient
different from zero. It is clear that the solution of this problem, defined only in Ω−, is
equal to zero in the cavities, and is different from zero elsewhere. Once the solution is
found, cavities are simply marked wherever φ<0 and C=0. The removal process simply
consists of changing the sign of the level set function in the cavities. Note that a few
iterations of the reinitialization equation may be required to avoid any discontinuity in
the level set function due to changing the sign of the level set function inside the cavities.
Fig. 3 illustrates the application of this algorithm in removing the cavities inside the 2C00
molecule.

3 Octree grid generation

Refining the mesh locally is often preferred to keeping a uniform grid. The solution to
the Poisson-Boltzmann equation is smooth away from the interface, but due to boundary
conditions and formation of the electric double layer, could have very large gradients
near the interface. One way to address this problem is to introduce more grid cells near
the interface. For three spatial dimensions, octree grids have been shown to be an optimal
choice for local grid refinement [1].

When the refinement is performed near the interface, the number of grid points is
proportional to the surface of the molecule rather than the volume of the computational
domain. Moreover, for elliptic problems, the main factor determining the execution
time and memory consumption is the size of the resulting linear system. As such, an
octree-based method can be many times faster and memory-efficient than a uniform
method. The computational advantage of adaptive grids is particularly great when there
are jumps in the solution at the interface, since errors in the jump or its location will
propagate into the entire domain. Adaptive grids are also excellent at resolving rapidly
changing solutions, such as the electrostatic potential inside the electric double layer.
Adaptive grids are therefore advantageous for solving the Poisson-Boltzmann equation
with singular terms.

Octree data structures are described in detail in [34,35], and we present only the basics
here. To construct an octree grid, we initialize a single cell covering the entire domain,
and the grid is subsequently refined. A cell is first split into eight equally sized cubes. The
larger cell is called a parent and the smaller cells are called the children. The difference
in level between a parent and its children is one. Each child can then be split recursively
as often as needed. For graded trees the difference of level between adjacent cells is
at most one. Standard discretization schemes are easily ported to graded trees, but at
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Figure 4: Left: An irregular domain with the adaptive mesh generated with (3.1). Right: A side view of the
same domain representing the implicit function φ. The set of point (x,y) : φ(x,y)>0 defines the interior of the
irregular domain.

the expense of efficiency and ease of grid generation. We use non-graded grids, which
are more complicated to construct schemes for, but lead to significant reduction in the
number of grid nodes. The splitting criteria for each grid point is given in [23, 25]. In
summary, a cell, C, is split if

min
v∈node(C)

|φ(v)|≤Lip(φ)·diagsize(C), (3.1)

where Lip(φ) is the Lipschitz constant for φ, node(C) refers to the set of nodes of the
cell C and diagsize(C) is the length of the diagonal of C. The finest cells will be located
on the interface where most accuracy is needed; the grid is locally uniform in a small
band around the interface. We emphasize that the interface is captured and that the
cells need not conform to the domain’s boundary. Furthermore, the grid generation is
straightforward, since the level set function is known. An example of the adaptive grid
and associated level set function for two spatial dimensions is given in Fig. 4.

4 Governing equations

The electrostatic potential, Ψ, around a biomolecule in a symmetric, binary z:z electrolyte
solution can be described by the nonlinear Poisson-Boltzmann (PB) equation,

−∇·(ǫǫ0∇Ψ)+2cb(x)ezsinh(Ψ)=
Nm

∑
i=1

qiδ(x−xi),

where ǫ is the relative permittivity of the electrolyte, ǫ0 is the permittivity of a vacuum, e
is the charge of a proton, z is the valence of the background electrolyte, cb is the bulk salt
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concentration, kB is the Boltzmann coefficient, T is absolute temperature, qi is the atomic
partial charge, xi is the location of each individual atom and Nm is the number of atoms
in the molecule. Note that the explicit dependence of bulk salt concentration on position
is only to indicate that mobile ions only exist in the solution; that is, cb(x)=0 inside the
molecule. In non-dimensional form, the Poisson-Boltzmann may be written as

−∇·(ǫ∇ψ)+κ2(x)sinh(ψ)=
Nm

∑
i=1

ziδ(x−xi), (4.1)

where the potential has been scaled to the thermal voltage, zi is the non-dimensional
partial charge on the atoms, and κ is the non-dimensional inverse of Debye length. Inside
the molecule, κ = 0. Eq. (4.1) is accompanied with jump conditions at the molecular
surface; that is, we require that

[ψ]Γ =0, [ǫ∇ψ·n]Γ =0. (4.2)

4.1 Technique for representing singular charges

Finite difference methods typically use a Dirac delta function to map discrete charges
onto the grid. This method can obtain second-order accuracy, but comes with challenges.
First, if the mesh is too coarse, then charges near the molecular interface may actually
be smeared out so much as to extend outside the molecular interface. Geng et al. found
this effect to significantly reduce the accuracy of their second-order MIB solver [13]. Our
adaptive meshing technique could address this by introducing additional grid points,
but that would increase the computational cost.

Instead, as in Geng et al. [13], we choose to use a formulation that allows us to repre-
sent the singular charges through their effect on the molecular interface. This technique,
introduced by Chern et al. [9], is to separate the singular part of the solution, associ-
ated with the discrete charges in the molecule, from the regular part. This introduces a
modified jump condition at the interface, which differs from Eq. (4.2) and is discussed in
details in the appendix.

4.2 Newton’s method to address nonlinearity

Another challenge that must be dealt with, is the existence of the nonlinear term. We
have previously addressed this issue in [27] using a Newton’s iteration method and here
the same approach is repeated. Considering a series of solutions ψν, and starting with
an initial guess ψ0, a Taylor series expansion for the nonlinear term is utilized to locally
linearize the Poisson-Boltzmann equation as:

sinh
(

ψ̂ν+1
)

≈sinh
(

ψ̂ν
)

+
(

ψ̂ν+1−ψ̂ν
)

cosh
(

ψ̂ν
)

.



M. Mirzadeh et al. / Commun. Comput. Phys., 13 (2013), pp. 150-173 159

Using this linearization, the Poisson-Boltzmann equation becomes,

κ2(x)cosh
(

ψ̂ν
)

ψ̂ν+1−∇·
(

ǫ∇ψ̂ν+1
)

=−κ2(x)sinh
(

ψ̂ν
)

+κ2(x)ψ̂ν cosh
(

ψ̂ν
)

+ f ,

where the source term, f , represents the singular terms and is not affected by the itera-
tion. Moreover, since the boundary conditions are linear, they are simply applied at each
iteration step ν+1. The iteration scheme is carried on until the difference in the solution
reaches a given tolerance, i.e. we require,

∥

∥

∥
ψν+1−ψν

∥

∥

∥

L∞

<10−6.

5 Spatial discretization

The main difficulty in deriving numerical methods for adaptive Cartesian meshes is ad-
dressing T-junctions accurately (see Fig. 5). In [26], the authors showed that second-order
accurate discretizations can be obtained on highly non-graded Cartesian meshes by com-
pensating numerical error in one or two spatial directions with the derivative in the trans-
verse direction. Furthermore, they showed that such a discretization is always possible
in the case where the solution is sampled at the nodes of each cell. We do not go into
the details of discretizing the Poisson-Boltzmann equation on octree grids and refer the
interested reader to [27] and [16], where the authors detail these ideas and demonstrate
second-order accuracy.

Away from the interface, this finite difference method is utilized to discretize Eq. (A.1).
Close to interfaces we use a finite volume approach to handle the jump conditions in
Eq. (A.2). This approach is presented next. For clarity, we present the jump for the
Poisson-Boltzmann equation in two spatial dimensions, but extending this technique to
three spatial dimensions is straightforward.

5.1 Discretization near the interface

The Poisson-Boltzmann equation with variable coefficient, ǫ, and jump conditions can be
written as follows:

−∇·
(

ǫ∇ψ̂
)

+κ2(x)sinh
(

ψ̂
)

= f (x) , x∈Ω,
[

ψ̂
]

= a(x), x∈Γ,
[

ǫ∇ψ̂ ·n
]

=b(x) , x∈Γ,

where ψ̂ is a scalar to be solved for, f (x), a(x) and b(x) are known scalar functions, and
[

ψ̂
]

and
[

ǫ∇ψ̂ ·n
]

are the jump in the electrostatic potential, ψ̂, and the normal component
of the electric displacement field, D =−ǫ∇ψ̂, respectively. As previously described, Ω

is the whole domain that is split into two subdomains Ω− and Ω+ by the interface Γ.
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Figure 5: The general configuration for non-graded octree cells. A node in the grid is said to be uniform if it is
directly connected to other nodes in each of six directions. Alternatively a node is said to have a T-junction if
it does not have a direct neighbor in at least one of the six possible directions. A node can have at most one
three dimensional and one two dimensional T-junctions.

Variables are continuous inside each domain, but ǫ, ψ̂ and f can be discontinuous across
the interface. The grid configuration near the interface is depicted in Fig. 6. Integrating
inside both Ω− and Ω+ over the cell surrounding node (i, j), denoted by Ci,j, leads to the

Γ

Ω
+ Ω

•

n
i, j i+ 1, ji− 1, j

i, j − 1

i, j + 1

Ci,j P

δ

Figure 6: Cell Ci,j surrounding the node located at i,j. The point P is the point on the interface Γ that is closest
to the node.
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following equations:

−
∫

Ci,j∩Ω−
∇·

(

ǫ−∇ψ̂−
)

dA+
∫

Ci,j∩Ω−
κ2(x)sinh

(

ψ̂−
)

dA=
∫

Ci,j∩Ω−
f−dA,

−
∫

Ci,j∩Ω+
∇·

(

ǫ+∇ψ̂+
)

dA+
∫

Ci,j∩Ω+
κ2(x)sinh

(

ψ̂+
)

dA=
∫

Ci,j∩Ω+
f+dA,

where superscript + represents quantities in Ω+ and superscript − represents quantities
in Ω−. Since both equations can be treated in the same way, we only describe the equation
in Ω+ in more detail. By using the divergence theorem on the left-hand side we get the
following:

−
∫

∂(Ci,j∩Ω+)
ǫ+∇ψ̂+ ·ndℓ+

∫

Ci,j∩Ω+
κ2(x)sinh

(

ψ̂+
)

dA=
∫

Ci,j∩Ω+
f+dA.

The first term in the previous equation can be split into two integrals: the integral over the
cell faces inside Ω+ and the integral over the interface Γ inside the cell. The integration
over the cell faces inside Ω+ is easily approximated numerically using length fractions
as demonstrated in [28]. For instance, the integration over the right face is discretized as

−
∫

LR

ǫ+∇ψ̂+ ·ndℓ= Li+1/2,j ·ǫ
+ ·

ψ̂+
i+1,j−ψ̂+

i,j

∆x
+O

(

∆x3
)

.

Accurately integrating over the interface inside the cell is more complicated. This is be-
cause, even though the normal to the interface is easily found from the level set function,
we do not know the normal derivative of the solution to the interface. To overcome this
challenge, one can take the following steps. As shown in Fig. 6, we call point P to be the
projection of node (i, j) on the interface Γ, and δ its distance to the interface. Using a first-
order Taylor expansion, the jump in the normal derivative, at point P, may be written
as:

∂ψ̂+

∂n
−

∂ψ̂−

∂n
=

ψ̂+
P −ψ̂+

i,j

δ
−

ψ̂−
P −ψ̂−

i,j

δ
+O(∆x)

=
aP

δ
−

ψ̂+
i,j−ψ̂−

i,j

δ
+O(∆x), (5.1)

where ap denotes the value of the a at node P. Also, the jump in the normal component
of electric displacement field, [ǫ∇ψ̂ ·n], at node P can be expressed as:

ǫ+
∂ψ̂+

∂n
−ǫ−

∂ψ̂−

∂n
=bP. (5.2)

Eqs. (5.1) and (5.2), are two equations for the two unknowns, ∂ψ̂+/∂n and ∂ψ̂−/∂n, and
yield

∂ψ̂+

∂n
=

1

δ(ǫ−−ǫ+)

(

−δbP+ǫ−
(

aP−
(

ψ̂+
i,j−ψ̂−

i,j

)))

+O(∆x), (5.3)

∂ψ̂−

∂n
=

1

δ(ǫ−−ǫ+)

(

−δbP+ǫ+
(

aP−
(

ψ̂+
i,j−ψ̂−

i,j

)))

+O(∆x). (5.4)
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Once the normal derivatives are found, integration over the interface is approximated as

−
∫

Γ∩Ci,j

ǫ+
∂ψ̂+

∂n
= |Γ|

ǫ+

δ(ǫ−−ǫ+)

(

δbP+ǫ−
(

ψ̂+
i,j−ψ̂−

i,j−aP

))

+O(∆x2), (5.5)

−
∫

Γ∩Ci,j

ǫ−
∂ψ̂−

∂n
= |Γ|

ǫ−

δ(ǫ−−ǫ+)

(

−δbP−ǫ+
(

ψ̂−
i,j−ψ̂+

i,j−aP

))

+O(∆x2). (5.6)

This sharp, first-order discretization leads to a system that has twice as many equa-
tions as computational nodes near the interface to account for the jump in the solution
and its gradient. It is, however, symmetric positive definite and only involves first-degree
neighbors. A major advantage of the scheme is that large differences in ǫ+ and ǫ− do not
adversely affect the accuracy.

When combined with the finite differences approach described previously, the result-
ing linear system is symmetric for uniform grids and an invertible M-matrix for octree
grids.

6 Numerical examples

In this part we provide numerical examples to support the accuracy and convergence of
our method. The first example is simply intended to show that our level set method can
accurately represent the complicated surface of complex proteins. The next two examples
are pure mathematical examples built to demonstrate the accuracy of our method in im-
posing the jump conditions as described in Section 5. Next, we consider the Kirkwood’s
dielectric sphere problem [17], a physically meaningful problem that has an analytic solu-
tion. In Example 6.5, the solvation free energy is computed and the results are compared
with the APBS software for a select number of proteins [4]. Finally, we conclude this
section by solving the electrostatic potential on a DNA (1D65) molecule.

6.1 Surface accuracy

In this section, we will shortly comment on the accuracy of our method for generating the
biomolecular surfaces. To do this, we consider two different studies. First, we consider
a “simple” molecule made of three atoms of radii 2 Å, placed on the vortices of an equi-
lateral triangle with the inter-atomic distance of 3 Å. The SES for this molecule is then
generated using our new approach and compared with both analytical and triangulated
representations obtained via the MSMS software [36] with the probe radius of 1.5 Å. The
triangulated surface is generated with the vertex density of 100.

Table 1 illustrates the accuracy analysis of this test when the grid is refined. We con-
sider two measures to evaluate the accuracy. The forth column depicts the maximum
distance of the triangulated surface vortices to the zero level set, i.e our representation
of the SES. This is a “local” accuracy measure. The second measure is the comparison
between the surface area of the zero level set, denote as ALS, and the exact analytical area
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Table 1: Point-wise accuracy analysis of SES generation for a 3-atom molecule.

(resmax,resmin) # of Points ∆xmin |φTS|max Order |ALS−AEx|/AEx Order

(32, 8) 6 393 0.47 1.12×10−1 – 2.00×10−2 –
(64, 16) 46 601 0.23 5.98×10−2 0.91 6.06×10−3 1.80
(128, 32) 353 025 0.12 3.15×10−2 0.92 1.79×10−3 1.76
(256, 64) 2 746 817 0.06 1.58×10−2 1.00 6.24×10−4 1.52

(512, 128) 21 668 481 0.03 7.92×10−3 1.00 2.67×10−4 1.22

Table 2: Comparison of total surface area between the present method and the MSMS software.

Protein ID # of Atoms Analytical Triangulated Present work # of Points ∆xmin

1AJJ 513 2 112.84 2 013.42 2 131.66 2 075 015 0.101
6RXN 667 2 341.41 2 226.35 2 350.71 2 488 633 0.097
2ERR 1 638 5 189.28 4 917.44 5 074.78 1 373 760 0.190
1AA2 1 755 4 891.97 4 749.54 4 826.41 2 091 216 0.151
2X6A 4 294 13 612.07 12 975.43 13 174.53 1 295 583 0.313
2TEC 4 936 10 568.21 10 072.36 10 187.27 2 253 537 0.210

computed via MSMS software, denoted as AEx. This is a more global measure. It is easy
to see that the new approach can generate accurate representation of the SES when com-
pared to the MSMS software and the error in the local measure decays linearly with grid
spacing. We use the second-order accurate geometric approach of Min and Gibou [24] to
compute the areas.

As the second test, we choose a set of proteins, compute the total surface area of the
SES, and compare our results to those obtained through the MSMS software. For these
tests, a probe radius of 1.5 Å has been chosen and all level set functions have been ob-
tained on an adaptive grid with (resmax,resmin)=(512,32) while leaving parameters of the
MSMS software to defaults. Table 2 illustrates the accuracy of our method by comparing
surface area calculation results (in Å2) with those of the MSMS software (triangulated)
and analytical calculations (analytic). The results obtained here indicate that level set
method can be used to easily generate accurate molecular surfaces without the need for
explicit handling of geometric singularities.

6.2 Sphere example

In this example, we consider a spherical interface in three spatial dimensions. We take
the exact solution to be ψ+(x,y,z)= x3+y3+z3 and ψ−(x,y,z)=−1−x3−y3−z3, where
ǫ+=2 and ǫ−=80. The radius of the sphere is 1 and the domain is [−2,2]3. Convergence
results given in Table 3, indicate that our method is first-order accurate in L1, L2 and L∞

norms. The resulting numerical error on the different grids used in this analysis is shown
in Fig. 7.
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(a) (b)

(c) (d)

Figure 7: L∞ error plotted for Example 6.2 on the different octree grids considered in the convergence analysis.
Maximum grid resolution in each of figures are (a): resmax = 64, (b): resmax = 128, (c): resmax = 256, (d):
resmax =512.

Table 3: Convergence analysis for Example 6.2.

resmax Grid points L1 Error Order L2 Error Order L∞ Error Order

32 12 739 5.98×10−3 - 8.71×10−3 - 4.22×10−2 -
64 92 965 2.00×10−3 1.58 3.20×10−3 1.44 2.85×10−2 0.57

128 708 745 7.33×10−4 1.45 1.29×10−3 1.31 9.42×10−3 1.60
256 5 531 665 3.27×10−4 1.16 6.64×10−4 0.96 8.08×10−3 0.22

6.3 Biomolecule

In this example, we consider the same parameters as in the previous example, except that
now the interface is the 2ERR molecule. Convergence results are given in Table 4. Our
approach still appears to be first-order in L∞ norm, but second-order accurate in L1 and
L2 norms. The numerical error is represented in Fig. 8.
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(a) (b)

(c) (d)

Figure 8: L∞ error plotted for Example 6.3 on the different octree grids considered in the convergence analysis.
Grid resolutions of each subfigure are (a): resmax =64, (b): resmax =128, (c): resmax =256, (d): resmax =512.

Table 4: Convergence analysis for Example 6.3.

resmax Grid points L1 Error Order L2 Error Order L∞ Error Order

64 19 602 6.00×10−3 - 7.43×10−3 - 2.11×10−2 -
128 146 087 1.41×10−3 2.09 1.73×10−3 2.10 7.2×10−3 1.55
256 1 124 793 3.37×10−4 2.06 4.15×10−4 2.06 5.69×10−3 0.34
512 8 871 297 8.76×10−5 1.94 1.11×10−4 1.90 3.13×10−3 0.86
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6.4 Kirkwood’s solution

Here we consider a more physically relevant example, the Kirkwood’s dielectric sphere.
We refer the reader to the appendix for more details about this solution and its construc-
tion. The Kirkwood sphere chosen here has the radius of 30 Å, a shell thickness of 3 Å
and one negative charge in the middle of the sphere. Moreover, a 1 mM electrolyte was
chosen with ǫ+ = 2 and ǫ− = 80. The convergence results provided in Table 5, clearly
demonstrate that our method is at least first-order. The same analysis is also performed
close to the boundary. The results, presented in Table 6, suggest that indeed the maxi-
mum error appears near the boundary, where the jump conditions are imposed, and thus
the idea of grid refinement near the boundary is justified.

Table 5: Convergence analysis for the Kirkwood’s solution in Example 6.4 in the whole domain.

resmax Grid points L1 Error Order L2 Error Order L∞ Error Order

64 18 747 5.61×10−3 - 1.13×10−2 - 5.02×10−2 -
128 138 005 1.09×10−3 2.36 2.72×10−3 2.05 1.09×10−2 2.20
256 1 057 257 3.11×10−4 1.81 8.83×10−4 1.62 3.47×10−3 1.65
512 8 273 105 1.01×10−4 1.62 3.32×10−4 1.41 1.23×10−3 1.49

Table 6: Convergence analysis for the Kirkwood’s solution in Example 6.4 near the boundary.

resmax Grid points L1 Error Order L2 Error Order L∞ Error Order

64 18 747 4.26×10−2 - 4.32×10−2 - 5.02×10−2 -
128 138 005 8.31×10−3 2.36 8.43×10−3 2.34 1.09×10−2 2.20
256 1 057 257 2.37×10−3 1.81 2.44×10−3 1.78 3.47×10−3 1.65
512 8 273 105 7.68×10−4 1.63 8.06×10−4 1.60 1.23×10−3 1.49

6.5 Solvation free energy

In this section, we provide numerical examples that illustrate the accuracy of our method
in computing the electrostatic solvation free energy of certain proteins. One may refer

Table 7: Solvation free energy.

Protein ID # of Atoms ∆Gsol ∆xmin ∆Gsol (APBS) ∆x (APBS) Rel. difference

1AJJ 513 −2.234×103 0.14 −2.228×103 0.52 1.23×10−1

6RXN 667 −2.274×103 0.14 −2.313×103 0.51 1.71×10−2

2ERR 1 638 −3.859×103 0.27 −4.016×103 0.56 4.00×10−2

1AA2 1 755 −3.233×103 0.19 −3.327×103 0.52 2.87×10−2

2X6A 4 294 −5.388×103 0.44 −5.699×103 0.71 5.61×10−2

2TEC 4 936 −4.227×103 0.30 −4.486×103 0.71 5.96×10−2
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to the appendix for details on the method used in computing the free energy. To com-
pare our results, we have used the APBS software to solve the same problem. In all of
our calculations we have used an adaptive octree grid with (resmax,resmin)=(512,32). As
for physical parameters, we set the bulk concentration to 10 mM and the dielectric co-
efficients to ǫ+ = 2 and ǫ− = 78.3 for the molecule and electrolyte, respectively. Table 7
illustrates the computed solvation free energy, using Eq. (C.1), in kJ/mol and compares
the results with energies computed using APBS software. It is easily seen that the pre-
sented method is capable of producing accurate results even for complicated proteins.

6.6 Application: Electrostatic potential on a DNA strand

In this last section we illustrate the results of a Poisson-Boltzmann computation for a
DNA strand (1D65). Fig. 9 illustrates the electrostatic potential, in units of thermal volt-
age, on the surface of the molecule. It is interesting to note how the shape of the protein
and the electrostatic potential are affected as the grid is refined. As shown in Fig. 9,
coarser grids can only capture the overall shape of the protein whereas more details are
only obtained on octree grids with higher resolutions. This, indeed, is a good example
that illustrates certain levels of accuracy are only attainable with very high levels of re-
finement. One should note that this level of resolution (resmax =1 024 for level 10) is only
feasible on an adaptive grid. Where a uniform grid of the same maximum resolution
would require about one billion grid points, this calculation was made on an adaptive
octree grid with only about four million grid points (∼0.4%).

7 Conclusion

In this paper, we have incorporated the idea of level set methods as a central framework
for developing Poisson-Boltzmann solvers for biomolecular electrostatics computation
on non-graded adaptive Cartesian grids. By using a Green’s function formulation for
singular charges and enforcing jump conditions at interfaces, the solver can efficiently
handle singular charges. This is an extension of our earlier Poisson-Boltzmann solver,
which was designed for simulating supercapacitors and colloids. Because the scheme can
now address singular charges, it is suitable for simulating biomolecular electrostatics.

The solver is validated and its accuracy in computing the correct SES, electrostatic po-
tential and solvation free energy is measured. Convergence tests suggest it is first-order
in the L∞ norm but close to second-order accurate in L1 and L2 norms. Due to the solver’s
adaptivity and rapid mesh-generation, it is suitable for simulating small biomolecules on
desktop workstations. Additionally, the finite-difference discretization of the Poisson-
Boltzmann equation is straightforward to implement and very robust. Lastly, we believe
that other researchers in this field will find that implicit geometry representations and
capturing methods provide a robust framework.
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(a) Level 5, resmax =32 (b) Level 6, resmax =64 (c) Level 7, resmax =128

(d) Level 8, resmax =256 (e) Level 9, resmax =512 (f) Level 10, resmax =1 024

Figure 9: The electrostatic potential on a DNA strand for different levels of refinement.
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Appendix

A Technique for handling singular charges

Here the technique introduced by Chern et al. [9], treating singularity as a jump condi-
tion, is described in detail. First, the solution to the electrostatic potential, ψ, is split into
regular, ψ̂, and singular,ψ̄, parts:

ψ= ψ̂+ψ̄.

The singular part of the potential is defined such that

ψ̄=

{

ψ∗+ψ0, if x∈Ω+,
0, if x∈Ω−,

where ψ∗ is the Coulombic potential due to singular charges,

ψ∗=
Nm

∑
i=1

zi

4πǫ+
1

|x−xi|
,

and ψ0 fulfills:

∇2ψ0=0, if x∈Ω+,

ψ0=−ψ∗, on Γ.

Using this decomposition, the regular part of the solution may be obtained by solving

−∇·
(

ǫ∇ψ̂
)

+κ2(x)sinh
(

ψ̂
)

=0, (A.1)

subjected to the following modified jump conditions:
[

ψ̂
]

Γ
=0,

[

ǫ∇ψ̂ ·n
]

Γ
=−ǫ+∇

(

ψ∗+ψ0
)

·n|Γ. (A.2)

B Kirkwood’s dielectric sphere

To test the accuracy of our solutions, we use the Kirkwood dielectric sphere, as presented
in [17]. Consider an ionic solution with dielectric constant ǫ−. In the electrolyte, a sphere
of radius b is placed with dielectric constant ǫ+, which we take to be unity. Inside the
sphere, we consider M discrete point charges, q1,··· ,qM. Using a polar coordinate system,
with the origin at the center of the sphere, the solution to the electrostatic potential, for
r<b, is given by

V1=
M

∑
k=1

qk

4πǫ+|r−rk |
+ψ,

ψ=
∞

∑
n=0

n

∑
m=−n

BmnrnPm
n (cosθ)eimφ,
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where |r−rk| is the distance from the charge qk and ψ is the contribution to the potential
from the charge distribution in the surrounding electrolyte. The functions Pm

n are the
associated Legendre functions. The potential in the shell, b< r< a, is given by

V2=
∞

∑
n=0

n

∑
m=−n

(

Cmn

rn+1
+Gmnrn

)

Pm
n (cosθ)eimφ,

and the potential in the electrolyte solution, r> a, is given by

V3=
∞

∑
n=0

n

∑
m=−n

(

Amn

rn+1

)

Kn(κr)exp(−κr)Pm
n (cosθ)eimφ,

Kn (x)=
n

∑
s=0

2sn!(2n−s)!

s!(2n)!(n−s)!
xs,

where κ is the usual Debye parameter. The coefficients Amn, Bmn, Cmn, and Gmn are found,
for each set of m and n, by imposing the interface jump conditions. The interested reader
is referred to [17] for more details on the derivation of these equations.

C Calculating electrostatic energies

The total electrostatic free energy of a biomolecule is given by [38]:

∆GT =
∫

Ω

(

ρfψ−2kBTcb

(

cosh

(

ψe

kBT

)

−1

)

−
ǫ

2
|∇ψ|2

)

dV ,

where ρf is the charge density of the singular charges, cb is the ion concentration of the
bulk, kB is the Boltzmann constant, T is the absolute temperature, e is the charge of a
proton, ǫ is the dielectric constant of the electrolyte and ψ is the electrostatic potential
field. In this equation, the first, second and last term correspond to the energy due to
singular charge interactions, osmotic pressure and the energy stored in the electric field.
Since the existence of a jump in the dielectric coefficient indicates a discontinuity in the
electric field, it is desired to replace the last term by an equivalent term that only de-
pends on the potential itself and not its gradient. This is easily done by incorporating the
Poisson-Boltzmann equation [22] which results in the following equation:

∆GT =
∫

Ω

(

1

2
ρfψ−2kBTcb

(

cosh

(

ψe

kBT

)

−1

)

+ψecb sinh

(

ψe

kBT

))

dV

−
1

2

∫

∂Ω
ǫ

∂ψ

∂n
ψdA.

To obtain the solvation free energy, it is required that we subtract the energy associ-
ated with a reference state. This reference state is taken to be the energy stored in the
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electric field that is only due to the singular charges in a medium with the same dielectric
constant as that of the molecule. Using Green functions, this energy is given by

∆Gref=
1

2

Nm

∑
i=1

Nm

∑
j=1
j 6=i

qiqj

4πǫ+
∣

∣ri−rj

∣

∣

,

where qi is the charge of the i-th atom, ǫ+ is the dielectric constant of the molecule, Nm is
the total number of atoms in the molecule and ri is the position vector of the center of the
i-th atom. Using the decomposition for the potential, as described in Section A, and the
fact that ψ=0 on ∂Ω, the final form of solvation free energy may be written as:

∆Gsol=∆GT−∆Gref

=
1

2

Nm

∑
i=1

qi

(

ψ0+ψ̂
)

−2kBTcb
∫

Ω−

(

cosh

(

ψ̂e

kBT

)

−1

)

dV

+ecb
∫

Ω−
ψ̂sinh

(

ψ̂e

kBT

)

dV . (C.1)
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