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Abstract. This paper proposes a variational binary level set method for shape and
topology optimization of structural. First, a topology optimization problem is pre-
sented based on the level set method and an algorithm based on binary level set
method is proposed to solve such problem. Considering the difficulties of coordination
between the various parameters and efficient implementation of the proposed method,
we present a fast algorithm by reducing several parameters to only one parameter,
which would substantially reduce the complexity of computation and make it easily
and quickly to get the optimal solution. The algorithm we constructed does not need
to re-initialize and can produce many new holes automatically. Furthermore, the fast
algorithm allows us to avoid the update of Lagrange multiplier and easily deal with
constraints, such as piecewise constant, volume and length of the interfaces. Finally,
we show several optimum design examples to confirm the validity and efficiency of
our method.
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1 Introduction

The topology optimization of continuum structures, as one of the most challenging tasks,
has been widely investigated in the relevant literatures [1, 2, 24, 26, 29, 32, 35]. The ho-
mogenization method, which was first developed by Bendsoe and Kikuchi (see [3]), is
a popular and important approach for structural topology optimization. By changing a
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difficult topology design problem into a relatively simpler ‘sizing’ problem, the homog-
enization technique provides a method for simultaneous shape and topology optimiza-
tion. As a simplification and variation of the homogenization method, the solid isotropic
material with penalization(SIMP) method has many advantages and has been widely
considered [2,17,31]. The basic idea of SIMP method is to use of a fictitious isotropic ma-
terial. The elasticity tensor of this material is assumed to be a penalized material density
function which is represented by an exponent parameter. However, both of the homog-
enization method and the SIMP method have a problem of numerical instability such
as checkerboards, mesh-dependencies and local minimal solutions [7, 20]. Furthermore,
there is an approach called the evolutionary structural optimization (ESO) method for
structural topology optimization which was proposed in [30, 33]. In this method, the
design domain is discretized by a finite element mesh, and shape and topology of the
structure are obtained by progressively removing the material region with low stress.

Recently, the level set method, which was first developed for tracking the propagation
of fluid interface [14], has been successfully used to solve a wide range of shape and
topology optimization problems [1,27]. Such method implicitly represents the geometric
boundary by a higher dimensional function. Generally, a signed distance function is
used to represent the level set function and trace the evolution of the boundaries with
respect to time by solving Hamilton-Jacobi partial differential equation [8, 15], with a
suitable normal velocity which is the moving boundary velocity normal to the interface.
During the evolution, the so-called re-initialization [19, 21] process should be performed
periodically to ensure that the level set function is always a signed distance function. This
is a sufficient strategy to maintain numerical accuracy, but it has strong computational
difficulties and is quite inefficient [28].

In order to avoid the unnecessary signed distance function and the re-initialization
of level set function, an alternative piecewise constant level set (PCLS) method was pro-
posed by Lie-Lysaker-Tai [4,9,10]. The PCLS method was originally used to handle image
segmentation [11], see also [25]. In [5, 12], the PLCS method was successfully applied to
solve inverse problems and interface problems. Wei and Wang [29] also proposed a PCLS
method to solve topology optimization problems. Compared with the standard level
set method, the PLCS method can easily create small holes without topological deriva-
tives during the evolution. Thus PLCS method reduces dependence on the initial design.
However, the PLCS method needs to add a piecewise constant constraint to the level set
function.

Binary level seti (BLS) method, as a special PCLS method, was developed in [9, 10]
for problems involving the motion of curves and surfaces. Later it was applied to solve
elliptic inverse problems with discontinuous coefficients [13] and elliptic shape optimiza-
tion problems [36], both of them achieved good results. Compared with general PCLS
method, the biggest advantage of BLS method is that it only requires N level set functions
to represent a structure of m= 2N different material phases. For example, four material
phases can be represented using only two level set functions. The level set function in
BLS method has only two values 1 and -1.
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In this paper, we employ the binary level set method for structural optimization.
The PCLS method uses one function with several different values to represent the dif-
ferent material phases, one value represent one material phase. And the BLS method
uses combinations of several functions with two values to represent different material
phases. According to BLS scheme, we propose an acceleration of algorithm by gradually
converting material from solid to void. This technique allows us to avoid the update of
Lagrange multiplier and easily deal with constraints, such as piecewise constant, volume
and length of the interfaces, which is different from PCLS method in [29]. We reduce sev-
eral parameters to only one parameter, which would substantially reduce the complexity
of computation and make it easily and quickly to get the optimal solution. The new
algorithm does not need to initialize and can produce many new holes automatically.

This paper is organized as follows. In Section 2, we give a brief introduction of BLS
method. And then, a topology optimization problem is formulated in Section 3 based
on the BLS method. We use the ersatz material approach to compute the equilibrium
equations of the structure. In Section 4, we propose an acceleration of algorithm to solve
topology optimization problem. In Section 5, we present some numerical examples to
validate our method for structural optimization. Finally, we give some conclusions at the
last section.

2 Binary level set method

In order to introduce the binary level set method, we first divide an open bounded set
Ω⊆D⊂Rd (d=2 or 3) into a set of 2N subregions Ω1,Ω2,··· ,Ω2N , such that

Ω=
2N
⋃

i=1

(Ωi∪Γi), (2.1)

where Γi is the boundary of the subregion Ωi. Then we define piecewise constant level
set functions φj (j=1,2,··· ,N) satisfying φ2

j =1, e.g., φj has value 1 or -1 at every point in

Ω. Now 2N subregions can be represented by N level set functions. To illustrate this, we
set N=1, then the level set function φ can be defined as

φ(x)=

{

1, if x∈Ω1,
−1, if x∈Ω2.

(2.2)

The characteristic functions associated with Ω1 and Ω2 can be represented by

ψ1=
1

2
(φ+1) and ψ2=

1

2
(1−φ), (2.3)

respectively. With the characteristic functions, we can describe a predefined property
in Ω with an associated value distinctive in each subregion Ωi, for example, material
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density. Assume the material density ρ(x)= c1 in Ω1 and ρ(x)= c2 in Ω2. Then ρ(x) can
be written as the following sum

ρ(x)=
c1

2
(φ+1)+

c2

2
(1−φ). (2.4)

If we have N=4 subregions, the material density ρ(x) can be defined as follows

ρ(x)=















c1, if φ1(x)=1, φ2(x)=1,
c2, if φ1(x)=1, φ2(x)=−1,
c3, if φ1(x)=−1, φ2(x)=1,
c4, if φ1(x)=−1, φ2(x)=−1,

(2.5)

where we set two level set functions φ1 and φ2. More precisely, the function ρ(x) is given
as

ρ(x)=
c1

4
(φ1+1)(φ2+1)+

c2

4
(φ1+1)(1−φ2)

+
c3

4
(1−φ1)(φ2+1)+

c4

4
(1−φ1)(1−φ2), (2.6)

where ψ1 =
1
4(φ1+1)(φ2+1), ψ2 =

1
4(φ1+1)(1−φ2), ψ3 =

1
4(1−φ1)(φ2+1) and ψ4 =

1
4(1−

φ1)(1−φ2) are the characteristic functions of corresponding subregions.
More generally, we use N level set functions to represent 2N phases. For i=1,2,··· ,2N ,

let (bi−1
i ,bi−1

2 ,··· ,bi−1
N ) be the binary representation of i−1, where bi−1

j =0∨1. Furthermore,
we set

s(i)=
N

∑
j=1

bi−1
j (2.7)

and write characteristic function ψi as the product

ψi=
(−1)s(i)

2N

N

∏
j=1

(φj+1−2bi−1
j ), (2.8)

then ψi = 1 in Ωi, ψi = 0 in Ω\Ωi. For a given set of scalars ci, the piecewise constant
function ρ(x) is defined as

ρ(x)=
2N

∑
i=1

ciψi, (2.9)

which represents the different material density ρ(x)= ci in each subregion Ωi.
With the simple structure of the characteristic functions, we can calculate the length

of the boundary of Ωi and the area inside Ωi by

|Ωi|=
∫

Ω
ψidx and |∂Ωi|=

∫

Ω
|∇ψi|dx. (2.10)
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3 Structure optimization with the BLS Method

We now describe the problem of structural optimization with the proposed binary level
set method. The boundary of Ω is denoted as Γ= ∂Ω=ΓD∪ΓN with Dirichlet boundary
condition on ΓD and Neumann boundary condition on ΓN. The displacement field u in
Ω is the unique solution of the following linear elastic system







−divσ(u)= f , in Ω,
u=u0, on ΓD,
σ(u)·n= g, on ΓN ,

(3.1)

where the strain tensor ε and the stress tensor σ are given in the usual form as

ε(u)=
1

2
(∇u+∇uT), σ(u)=Eε(u), (3.2)

with E to be the elasticity tensor, f the body forces, g the boundary traction force applied
on the part ΓN, u0 the prescribed displacement on the admissible Dirichlet boundary ΓD

and n the outward normal to the boundary.
The general problem of structure optimization is specified as follows:

min
Ω

J̃(u,Ω)=
∫

Ω
F(u)dx (3.3)

subject to G(u,Ω)=
∫

Ω
dx−Vmax60,

where F(u)= 1
2 Eε(u) : ε(v) is the strain energy density and Vmax is the upper limit of the

volume constraint. The linear elastic system is expressed in a general variational form as
∫

Ω
Eε(u) : ε(v)dx=

∫

Ω
f ·vdx+

∫

ΓN

g·vds, for all v∈U, (3.4)

where U={u:u∈H1(Ω), u=u0 on ΓN} denoting the space of the kinematically admissible
displacement fields. The goal of optimization is to find a minimizer Ω for the optimiza-
tion criterion J̃(u,Ω) which yields an optimized structure. This is a standard notion of
structural optimization [2,16]. For simplicity, the reference design domain D will be par-
titioned into two subregions of solid Ω and void D\Ω (Multiple subregions can be found
in Section 5.4). Thus, the material density ratio ρ is defined as

ρ(φ)=
1

2
(φ+1)+

ǫ

2
(1−φ), (3.5)

as described by Eq. (2.4) in the BLS method. Here φ is the level set function defined by
Eq. (2.2) and c1=1 represent the solid material, c2=ǫ (ǫ>0 is a small constant) represent
the void material. Therefore, the material density ratio ρ is also defined as

ρ(φ)=

{

1, if φ=1,
ǫ, if φ=−1.

(3.6)
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With the BLS function φ, the structure optimization problem (3.3) is now reformulated
as:

min J(u,φ)=
∫

D
F(u)ρ(φ)dx+β

∫

D
|∇φ|dx (3.7)

s. t. : G(φ)=
1

2

∫

D
(φ+1)dx−Vmax60,

H(φ)=(φ+1)(φ−1)=0.

The constraint H(φ)=0 is used to guarantee that there is no vacuum and overlap between
different subregions. The second term in the objective function is the regularization term
required to restrict the solution space because of the ill-posedness of the original problem.
The variational equation (3.4) is written in the energy bilinear and the load linear form as

a(u,v,φ)= l(v,φ), (3.8)

where

a(u,v,φ)=
∫

D
Eε(u) : ε(v)ρ(φ)dx, (3.9a)

l(v,φ)=
∫

D
f ·vρ(φ)dx+

∫

ΓN

g·vds. (3.9b)

We use the Lagrange multiplier method to solve the constrained problem (3.7). The
Lagrange functional of (3.7) is defined by

L(φ,λ)= J(φ)−a(u,v,φ)+l(v,φ)+λ1G(φ)+λ2

∫

D
H(φ)dx, (3.10)

where the Lagrange multipliers λ1∈R and λ2∈L2(D). To solve this problem, we actually
minimize L with respect to φ and maximize L with respect to λ. This is a saddle point
problem, its optimal solution is at a stationary point of the Lagrangian, which yield the
necessary optimality conditions

∂L

∂φ
=0, (3.11a)

∂L

∂λ1
=G(φ)=0, (3.11b)

∂L

∂λ2
=H(φ)=0. (3.11c)

In what follows, we calculate the concrete formula of Eq. (3.11). Using the adjoint variable
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method, the first variation of L in direction h is

∂L

∂φ
·h=

∫

D
F(u)ρ′(φ)·hdx+

∫

D
Eε(u) : ε

( ∂u

∂φ
·h
)

ρ(φ)dx+β
∫

D
∇·

( ∇φ

|∇φ|

)

·hdx

−
∫

D
Eε(u) : ε(u)ρ′(φ)·hdx−

∫

D
Eε(u) : ε

( ∂u

∂φ
·h
)

ρ(φ)dx+λ1

∫

D

1

2
·hdx

+λ2

∫

D
H′(φ)·hdx, (3.12)

where the adjoint field is defined as follows:

a(v,u,φ)= l(u,φ), for ∀u∈U, v∈U,

and

ρ′(φ)=
1

2
(1−ǫ),

H′(φ)=2φ.

Thus, the concrete formula of Eq. (3.11) is as follows:

∂L

∂φ
=−

1

4
(1−ǫ)Eε(u) : ε(u)+β∇·

( ∇φ

|∇φ|

)

+
1

2
λ1+2φλ2. (3.13)

We introduce an artificial time term and solve the following ordinary differential
equation to the steady state (see [12, 23, 34])







φt+
∂L

∂φ
=0,

φ(0)=φ0.

(3.14)

In our approach, we use the explicit update scheme

φn+1=φn−∆tn ∂L

∂φ
(φn,λn), (3.15)

where ∆t is time step.
Finally, the BLS algorithm for structural optimization is presented as follows:

Algorithm 3.1. Initialize level set function φ0 on the entire domain D. The parameter
ǫ,λ0

1,λ0
2 and tolerance τ0 are given. For n=0,1,2,··· ,

1. Solve the problem (3.8) using linear finite elements for the state variable un.

2. Compute the sensitivities ∂L
∂φ (φ

n,λn) depending on un. Terminate if ||∇φL(φn,λn)||<τn.

3. Update the level set function φn+1 by (3.15).
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4. Update the Lagrange multipliers λn+1 and τn+1.

5. If not convergent, set n=n+1 and go to step 1.

To achieve this algorithm, we also need to determine two things. One is the choice of
time step ∆tn which should satisfy the CFL condition

∆tn
<h

/

max
∣

∣

∣

∂L

∂φ
(φn,λn)

∣

∣

∣
. (3.16)

The other is how to update Lagrange multiplier λ. There are several ways to deal with
the problem, such as augmented Lagrangian method [6, 18, 34], projection Lagrangian
method [9,36] and so on. No matter which method we use, it is complex and troublesome
to update the Lagrange multiplier λ in the numerical examples, since the law of changes
of parameter is difficult to accurately describe. In this paper, in order to avoid the update
of Lagrange multiplier and taking into account the special nature of the algorithm, we
present another more convenient and efficient approach whose details can be found in
the next section.

4 Acceleration of algorithm

We have the following facts. With piecewise constant level set method for solving shape
optimization, the level set function in the region far from the interface converges quickly
to piecewise constant. Once the topology structure for the optimal design is determined,
the interface is smooth. But it still takes rather many steps for φ to form the disconti-
nuity near the interface. Therefore, several algorithms [13, 34, 36] have been proposed to
accelerate convergence.

In our approach, level set function φn is required to be 1 or −1 in each iteration, which
means that the function φn is discontinuous on the entire domain. Therefore, the condi-
tion H(φ) = 0 is directly established. This phenomenon is not automatically generated
during the iteration, but we enforce it.

In order to illustrate our algorithm, we first divide the domain D into quadrilaterals
or triangles. And the level set function φ equals 1 or −1 on each element. For simplicity,
we initialize level set function φ0 = 1 on all elements. Since the condition H(φ)= 0 has
been established, the Eq. (3.13) becomes

∂L̃

∂φ
=−

1

4
(1−ǫ)Eε(u) : ε(u)+β∇·

( ∇φ

|∇φ|

)

+
1

2
λ1. (4.1)

Noticing the update of φn

φn=φn−1−∆tn ∂L̃

∂φ
(φn−1,λn−1

1 ), (4.2)
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we can see that the level set function φn is most possibly from 1 to −1 on those elements

where the relatively value of ∆t ∂L̃
∂φ (φ

n−1,λn−1) are large. At each iteration, the time step

∆tn and the Lagrange multiplier λ1 are equal in each elements, thus we just need to find
the elements which have large value of

∂Q

∂φ
=−

1

4
(1−ǫ)Eε(u) : ε(u)+β∇·

( ∇φ

|∇φ|

)

. (4.3)

In those elements, we set φn =−1. We introduce a parameter θ(0< θ < 1) to control the
number of elements on which the value of level set function φn would convert from 1 to
−1. For example, when we want to turn five percent elements from solid to void, we can
set θ=0.95. Then, we list the acceleration of algorithm as follows:

Algorithm 4.1. Initialize level set function φ0=1 on the entire domain D. The parameter
ǫ,θ0 are given. For n=0,1,2,··· ,

1. Solve the problem (3.8) using linear finite elements for the state variable un.

2. Compute the sensitivities ∂Q
∂φ (φ

n) depending on un.

3. Find out θn times the maximum of ∂Q
∂φ (φ

n), then set the corresponding level set function φn+1=

−1. Terminate if G(φ)<0.

4. If not convergent, set n=n+1 and go to step 1.

Usually the value of θ cannot be chosen under a uniform criterion for different prob-
lems. From the numerical experiments we observe that the parameter θ needs to grad-
ually reduce when the iterative number n increases. For example, we can set θ = 0.95
at the beginning. After several iterations, we can reduce the parameter θ to 0.9 or even
smaller. The selection of parameter θ directly affects the speed of iteration (the details
can be found in the next section). Actually, the choices of the three parameter λ1,λ2,∆t
of Algorithm 3.1 are simplified as one parameter θ of Algorithm 4.1. This makes the
optimization problem much simpler.

5 Numerical experiments

In this section we present several examples of topology optimization with a set of 2D
minimum compliance problems, which use the finite element method to solve the equi-
librium equations. In those examples, the linear elastic material has Young’s modulus=1,
Poisson’s ratio=0.3. We assume for void materials the Young’s modulus=0.001. Except
for specified cases, a quadrangular mesh is used for discretizations of both the level set
function and the displacement. We have also tried other kind of physical problems in [22],
which conform the validity and efficiency of our method.
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5.1 Cantilever beam

As a benchmark problem for the proposed method, stiffness maximization of a cantilever
is performed, as illustrated in Fig. 1. The working domain is a rectangle of size L=2,H=1
with zero displacement boundary condition on the left side and a vertical point load P=1
at the center of the right side. The domain is discretized with a 160×80 rectangle mesh
and the value of the Lagrange multiplier λ1 is fixed at 50 during the optimization process.
The volume fraction of solid material is 50%. We set the regularization parameter β =
0.001 and acceleration factor θ0 = 0.95 at the beginning. The initial design is set to be
the structure that is fully distributed with solid material in the whole design domain as
showed in Fig. 2(a).

Figure 1: Fixed design domain and boundary condition of a cantilever example.

(a) k=0 (b) k=6 (c) k=12

(d) k=18 (e) k=24 (f) k=27

Figure 2: The evolution of the cantilever structure.

Fig. 2 shows the evolution process of the optimal topology of the cantilever beam and
Fig. 3 shows the convergent process of the optimization. The same BLS method as PCLS
method does not require any re-initialization of the level set function. From Fig. 2 we can
clearly see that many new holes are easily produced in the iterative process. It is difficult
to achieve in the conventional level set method. The result also confirms the validity of
our acceleration of algorithm. Only 27 steps are needed to get the optimal design.
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Figure 3: Convergence of the objective function for the cantilever of Fig. 2.

Next, we investigate the effect of acceleration factor θ with three different cases (see
Fig. 4). The result shows that different values effect not only the topology of the final
design but also the speed of convergence. Smaller value leads to smoother boundary,
simpler topology and faster convergence. On the contrary, larger value may yield many
holes with rough boundary and slower convergence.

n=0 n=4 n=8 n=13

(a) Case 1

n=0 n=9 n=18 n=27

(b) Case 2

n=0 n=15 n=30 n=45

(c) Case 3

Figure 4: Effect of the different acceleration factor θ: (a) θ0 =0.92; (b) θ0 =0.95; (c) θ0 =0.96.

5.2 Michell-type structure

We consider a Michell-type structure in this example. The working domain is a rectangle
of size L=2,H=1 with fixed boundary conditions on the left and right lower edges and a
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Figure 5: Fixed design domain and boundary condition of a Michell-type structure.

vertical point load P=1 on the center of the bottom (see Fig. 5). The domain is discretized
with a 160×80 rectangle mesh. The volume fraction of solid material is 40%. We set the
regularization parameter β=0.001 and acceleration factor θ0=0.90 at the beginning. The
same initial design as in the cantilever beam structure example is set.

The evolution of optimal topology of the Michell-type structure is showed in Fig. 6.
We can see that it converges quickly as it only need 20 iterations for convergence.

(a) n=0 (b) n=7

(c) n=14 (d) n=20

Figure 6: The evolution of the optimal design.

5.3 MBB beam

A MBB beam structure optimization problem is considered in this section. The working
domain considered is a rectangle of size L= 4,H= 1 with fixed boundary conditions on
the left and right lower edges and a vertical point load P=1 on the center of the top (see
Fig. 7). The domain is discretized with a 240×60 rectangle mesh. The volume fraction
of solid material is 40%. We set the regularization parameter β= 0.001 and acceleration
factor θ0 = 0.80 at the beginning. The initial design is set so as the structure is fully dis-
tributed with solid material in the whole design domain.
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Figure 7: Fixed design domain and boundary condition of a MBB beam.

Fig. 8 shows the evolution of the optimal topology of this MBB beam. The same
phenomenon that it converges quickly to the optimal structure as the first two examples
can be found in this example.

(a) n=0 (b) n=2

(c) n=4 (d) n=7

Figure 8: The evolution of the optimal design.

5.4 Michell-type structure with three materials

In this subsection, a numerical example with three materials is presented to confirm the
validity of proposed optimization method. At this moment, we only need two level
set function φ1 and φ2 and the material density ρ(x) is defined by Eq. (2.5). Thus, the
structure optimization problem (3.3) is now reformulated as:

min J(u,φ1,φ2)=
∫

D
F(u)ρ(φ)dx+β1

∫

D
|∇ψ1|dx+β2

∫

D
|∇ψ2|dx+β3

∫

D
|∇ψ3|dx

s. t. : G(φ)=
∫

D
ψidx−Vi60, i=1,2,3,

H(φ)=(φ2
1−1)(φ2

2−1)=0,

where ψi are the characteristic functions of corresponding subregions.
We consider a Michell-type structure with multiple loads at its bottom as show in

Fig. 9. The working domain is a rectangular of size L=2, H=1. The domain is discretized
with a 120×60 rectangle mesh. In Fig. 9, the structure has a fixed and a simple support
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Figure 9: Fixed design domain and boundary condition of a MBB beam.

at the bottom corners with P1=30 and P2=5. Three materials are used with the modulus
of elasticity of c1=4, c2=2 and c3=1 separately and with the same Poisson’s ratio of 0.3.
Their maximum volume ratios are given all as 0.15. We first use Algorithm 4.1 to divide
the domain into two parts with one part φ1=1 and the other φ1=−1, respectively. Then
we use this as the new initial value and use Algorithm 4.1 again to distinguish the other
φ2 until we obtain the optimal solution. The initial design and some intermediate and the
final optimization results are shown in Fig. 10. We further illustrate the changes of the
objective function in Fig. 11.

Figure 10: The evolution of the optimal design.
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Figure 11: Convergence of the objective function for the cantilever of Fig. 10.

6 Conclusions

In this paper, we have presented a variational binary level set method for shape and
topology optimization of structural. In this method, different material phases are repre-
sented by distinct unions of different level sets. The BLS method has the same advantage
as the piecewise constant method. It does not need to re-initialize level set function and
can easily create small holes without topological derivatives during the evolution. Com-
pared to the general PCLS method, we need less values of piecewise constant function.
This means that BLS method can represent 2m material phases with m level set functions,
which would substantially reduce the computational complexity. Furthermore, by reduc-
ing several parameters to only one parameter, we obtain a numerical technique for effi-
cient and robust implementation of the proposed method. Since we only need to adjust
one parameter, we can get the optimal solution much easily and quickly. From numerical
computation, we can see that the method we obtained is a mesh-independency scheme
and the optimal result is depending on the initial guess of θ.
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