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Abstract. We have introduced a fully second order IMplicit/EXplicit (IMEX) time in-
tegration technique for solving the compressible Euler equations plus nonlinear heat
conduction problems (also known as the radiation hydrodynamics problems) in Ka-
dioglu et al., J. Comp. Physics [22, 24]. In this paper, we study the implications when
this method is applied to the incompressible Navier-Stokes (N-S) equations. The IMEX
method is applied to the incompressible flow equations in the following manner. The
hyperbolic terms of the flow equations are solved explicitly exploiting the well un-
derstood explicit schemes. On the other hand, an implicit strategy is employed for
the non-hyperbolic terms. The explicit part is embedded in the implicit step in such
a way that it is solved as part of the non-linear function evaluation within the frame-
work of the Jacobian-Free Newton Krylov (JFNK) method [8, 29, 31]. This is done to
obtain a self-consistent implementation of the IMEX method that eliminates the po-
tential order reduction in time accuracy due to the specific operator separation. We
employ a simple yet quite effective fractional step projection methodology (similar to
those in [11,19,21,30]) as our preconditioner inside the JFNK solver. We present results
from several test calculations. For each test, we show second order time convergence.
Finally, we present a study for the algorithm performance of the JFNK solver with the
new projection method based preconditioner.
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1 Introduction

In this paper, we present a second order IMplicit/EXplicit IMEX method for solving
the incompressible Navier-Stokes equations. This paper is a continuation of our previ-
ous works [22–24] that concern the radiation hydrodynamics problems. [22] considers the
low energy density radiation hydrodynamics as in a diffusion approximation limit which
can be modelled by the compressible Euler equations plus a nonlinear heat conduction
term in the energy equation. [24] considers the more complicated high energy density
radiation hydrodynamics as in a diffusion approximation limit which can be modelled
by a combination of a hydrodynamical model that resembles to the compressible Euler
equations and a radiation energy model that contains separate radiation energy equation
with nonlinear diffusion plus coupling terms to the material. In both papers, the hydro-
dynamics equations (hyperbolic terms) are treated explicitly and an implicit strategy is
employed for the diffusion plus source terms. The implicit/explicit (IMEX) technique
in [22,24] is implemented in such a way that the explicit part is solved as part of the non-
linear function evaluation within the framework of the Jacobian-Free Newton Krylov
(JFNK) method [8, 29, 31]. In this kind of implementation, there is a continuous interac-
tion between the implicit and explicit blocks. In other words, the improved solutions (in
terms of accuracy) at each non-linear iteration (implicit block) are immediately felt by the
explicit block, then the improved hydrodynamics solutions (explicit block) are readily
available to form the next set of non-linear residuals in the implicit block. We refer the
above described IMEX implementation as to ”a self-consistent IMEX method” in which
all the nonlinearities of the coupled system are converged. These two examples ( [22,24])
represent typical multiple time scale flow problems for which having a second order time
convergent algorithm is an important advancement. We remark that we also applied this
IMEX methodology to a multi-physics problem that tightly couples the neutron diffusion
to a linear mechanics model to simulate experimentally observed certain nuclear fuel ma-
terial behaviors [25]. In [25], the IMEX method is utilized in such a way that the explicit
linear mechanics operator is continuously called within the implicit neutron diffusion
solver.

We consider this paper as the prototype for the development of a second order IMEX
method for multi-phase flow problems that are modelled by two phase incompressible
Navier-Stokes equations. We note that in a typical multi-phase flow, there is a strong
coupling between the interface and fluid dynamics, thus it is important to introduce an
accurate integration technique that converges all the nonlinearities coming from the cou-
pling of these two different dynamics [27]. This paper will provide us important insights
about how to separate operators of the multi-phase flow model self-consistently. The op-
erators of the single phase incompressible Navier-Stokes equations are separated in such
a way that the momentum advection terms (hyperbolic terms except the pressure) are
solved explicitly, and the viscosity plus pressure terms are treated implicitly. The algo-
rithm is implemented in a similarly way as in [22, 24] that the explicit part is solved as
part of the nonlinear function evaluation within the implicit loop.
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In this paper, we introduce a simple and effective projection method based precondi-
tioner for the JFNK solver. The preconditioner relies on derivation of a simple pressure-
Poisson problem that can be easily solved very efficiently by an algebraic multi-grid
method, and consequently rapid calculation of projected flow velocities. We note that
the velocity correction step can be executed by either accounting viscosity effects or ne-
glecting them. In other words, the velocity correction step can be reduced to a set of sim-
ple algebraic operations so long as the problem does not exhibit fine viscous time scales.
Our algorithm is related to [7] in that it can be viewed as using [7] as a preconditioner to
JFNK. In this way JFNK is used to execute the outer nonlinear iteration discussed in [7].
Our algorithm is also related to the recent work in [18]. In contrast to [18], we replace the
outer Picard iteration with a Newton-based JFNK solver.

One reasonable question that can be raised about our IMEX method is why not evalu-
ating the explicit part outside of the implicit loop which is computationally cheaper. This
approach is previously used in early IMEX methods [3,4,6,30,35,38] for various problems,
i.e., one dimensional scalar advection-diffusion, reaction-diffusion prototype equations,
or more complicated models (the Navier-Stokes equations, the radiation hydrodynamics
equations). We note that on a certain class of problems this traditional IMEX approach
will not produce fully second order time convergent results, in other words, it can suffer
from order reduction in time accuracy unless special care (e.g, performing external iter-
ations outside of the both explicit and implicit loops [28]) is taken. The main reason for
the order reduction is that the explicit and implicit blocks are implemented independent
of each other such that there is no or limited influence from one to other. This lack of
continuous interactions between the two algorithm blocks may lead to non-converging
nonlinearities in the coupled system which are the main source of the time inaccuracies.

The organization of this paper is as follows. In Section 2, the governing equations
are presented. In Section 3, the numerical solution procedure is described. In Section 4,
the computational results are presented. Section 5 contains some concluding remarks.
Finally, appendix provides the interpolation procedures that are used in Section 3.

2 Governing equations

The non-dimensionalized incompressible Navier-Stokes equations in two space dimen-
sion can be written as

ut+u·∇u=−∇p+
1

Re
∆u, (2.1)

∇·u=0, (2.2)

where u=(u,v) is the flow velocity, p is the fluid pressure, and Re is the non-dimensional
Reynolds number [5, 10, 49]. Eq. (2.2) is referred to as the divergence free constraint.
Incorporating with this constraint, (2.1) can be rewritten in the following form

∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y
=−

∂p

∂x
+

1

Re

[∂2u

∂x2
+

∂2u

∂y2

]
, (2.3)
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∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
=−

∂p

∂y
+

1

Re

[ ∂2v

∂x2
+

∂2v

∂y2

]
. (2.4)

3 Numerical algorithm

Finite difference algorithms for the incompressible Navier-Stokes equations are typically
based on staggered or non-staggered (co-located) grids. Non-staggered grids store all
the unknowns at the same locations (cell centers). On the other hand, staggered grids
generally store the pressure at the cell centers whereas the velocity components lies on the
cell faces. Fig. 1 represents staggered versus non-staggered computational cells with the
flow variables placed at the above-described locations. The non-staggered grid solutions
of the Navier-Stokes equations are known to suffer from grid-scale pressure oscillations
unless special cares have been introduced [1, 36]. The staggered grid methods do not
suffer from pressure oscillations, but it brings extra coding complexities [1, 2, 21, 36]. In
this paper, we prefer staggered grid discretizations. The first reason for this choice is
to avoid pressure oscillations. The second is that we would like to extend this work
to study incompressible multi-phase flows in which staggered velocity representations
(face centered velocities) are known to be better suited for solving the interface dynamics
[27, 45, 46].

p
i,ju u

i+1/2,ji−1/2,j

v
i,j−1/2

v
i,j+1/2

i,j

i,j
p

u
vi,j

Figure 1: A solution representation on staggered versus non-staggered cells.

Our numerical algorithm consists of an explicit and an implicit blocks. The explicit
block solves hyperbolic terms (except the pressure gradients) of (2.3) and (2.4), i.e,

∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y
=0, (3.1a)

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
=0. (3.1b)
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The implicit block solves

∂u

∂t
=−

∂p

∂x
+

1

Re

[∂2u

∂x2
+

∂2u

∂y2

]
, (3.2a)

∂v

∂t
=−

∂p

∂y
+

1

Re

[∂2v

∂x2
+

∂2v

∂y2

]
, (3.2b)

together with the divergence free constraint

∂u

∂x
+

∂v

∂y
=0. (3.3)

3.1 Explicit block

The explicit discretization of (3.1) is based on a second order TVD Runge-Kutta method
that is known to preserve the strong stability property of the explicit Euler method in
order to produce non-oscillatory calculations [16, 17, 33, 42, 43, 48]

u1
i−1/2,j =un

i−1/2,j−∆t
[∂(u2)n

∂x
+

∂(uv)n

∂y

]

i−1/2,j
, (3.4a)

v1
i,j−1/2=vn

i,j−1/2−∆t
[ ∂(uv)n

∂x
+

∂(v2)n

∂y

]

i,j−1/2
, (3.4b)

and

u∗
i−1/2,j=(

u1+un

2
)i−1/2,j−

∆t

2

[∂(u2)n+1

∂x
+

∂(uv)n+1

∂y

]

i−1/2,j
, (3.5a)

v∗i,j−1/2=(
v1+vn

2
)i,j−1/2−

∆t

2

[∂(uv)n+1

∂x
+

∂(v2)n+1

∂y

]

i,j−1/2
. (3.5b)

Here, the explicit block is interacting with the implicit block through the highlighted
terms in (3.5). The spatial discretizations involved in (3.4) and (3.5) are as follows

[∂(u2)

∂x

]

i−1/2,j
=

U(uL,uR)2
i,j−U(uL,uR)2

i−1,j

∆x
, (3.6)

where we solve a normal Riemann problem for U,

U(uL,uR)=





uL, if uL
>ǫ and (uL+uR)>ǫ,

uL+uR

2 , if uL
<−ǫ and uR

>ǫ,

uR, otherwise ,

(3.7)

where ǫ is used for the preservation of symmetry [12]. Typically ǫ is a small number near
the square root of machine varepsilon. For double precision, ǫ can be set from 10−6 to
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10−8 [13]. We note that this Riemann solver works quite well for our test cases. Nonethe-
less, one can always choose alternative Riemann solvers such as the Local Lax-Friedrichs
or Roe solvers to evaluate U(uL,uR) [13, 33, 48].

The left and right values of u can be calculated either by using a second order interpo-
lation with minmod slopes or by a third order WENO-type interpolation [33,34,41,48]. In
the appendix, we briefly describe both procedures. We note that the third order WENO-
type interpolation gives sharper solution representations. Moreover, [32] suggests that
the evaluation of the advective terms with a third order scheme preserves the overall
stability property better than a second order one. Therefore we prefer the third order
WENO method for our calculations. However, we also make use of the second order in-
terpolation when we perform a convergence study for the analytical solution test (Section
4.1).

Next we define

[∂(uv)

∂y

]

i−1/2,j
=

(uv)i−1/2,j+1/2−(uv)i−1/2,j−1/2

∆y
, (3.8)

where

ui−1/2,j−1/2=
ui−1/2,j+ui−1/2,j−1

2
, (3.9)

vi−1/2,j−1/2=
vi,j−1/2+vi−1,j−1/2

2
. (3.10)

Notice that we did not use any limiters or a Riemann solver to evaluate (3.9) and (3.10).
The reason for this is that we found through our numerical experiments that using lim-
iters and a Riemann solver to evaluate the corner values removes necessary numerical
dissipation. In result, one has to use finer grids to resolve complicated flow structures
such as sharp vorticity roll ups in Section 4.3.

The spatial terms for the Y-velocity in (3.4) and (3.5) can be handled similarly.

3.2 Implicit block

The explicit block produces the solution set {u∗,v∗}. These solutions are used in the
implicit discretization of (3.2) and (3.3) which is based on the Crank-Nicolson method
[44, 47], i.e,

un+1
i−1/2,j=u∗

i−1/2,j+
∆t

2
[ f (un+1,pn+1)+ f (un,pn)]i−1/2,j , (3.11a)

vn+1
i,j−1/2=v∗i,j−1/2+

∆t

2
[g(vn+1,pn+1)+g(vn,pn)]i,j−1/2 , (3.11b)

un+1
i+1/2,j−un+1

i−1/2,j

∆x
+

vn+1
i,j+1/2−vn+1

i,j−1/2

∆y
=0, (3.11c)
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where

f (u,p)i−1/2,j=−
(∂p

∂x

)

i−1/2,j
+

1

Re

[∂2u

∂x2
+

∂2u

∂y2

]

i−1/2,j
, (3.12a)

g(v,p)i,j−1/2 =−
(∂p

∂y

)

i,j−1/2
+

1

Re

[ ∂2v

∂x2
+

∂2v

∂y2

]

i,j−1/2
. (3.12b)

The spatial discretizations in this section are based on the second order central differenc-
ing. For instance,

(∂p

∂x

)

i−1/2,j
=

pi,j−pi−1,j

∆x
, (3.13)

(∂2u

∂x2

)

i−1/2,j
=

ui+1/2,j−2ui−1/2,j+ui−3/2,j

∆x2
, (3.14)

(∂2u

∂y2

)

i−1/2,j
=

ui−1/2,j+1−2ui−1/2,j+ui−1/2,j−1

∆y2
, (3.15)

and

(∂p

∂y

)

i,j−1/2
=

pi,j−pi,j−1

∆y
, (3.16)

( ∂2v

∂x2

)

i,j−1/2
=

vi+1,j−1/2−2vi,j−1/2+vi−1,j−1/2

∆x2
, (3.17)

(∂2v

∂y2

)

i,j−1/2
=

vi,j+1/2−2vi,j−1/2+vi,j−3/2

∆y2
. (3.18)

After substitution of the spatial discretizations and the other known values, (3.11) can
be viewed as a nonlinear equations system to solve for {un+1,vn+1,pn+1}. We use the
Jacobian-Free Newton Krylov method to solve this nonlinear system. Upon the conver-
gence of the Newton iteration, we obtain the fully updated solution set {un+1,vn+1,pn+1}.

Remark 3.1. We note that the combination of the explicit and implicit blocks can be put
in a form that is similar to the classical fully implicit Crank-Nicolson method. The main
difference is that one does not have to solve Eqs. (3.4) and (3.5) at every Newton/Krylov
step (as this would be the case in a classical fully implicit Crank-Nicolson method) in our
method. Instead, (3.4) and (3.5) can be called inside of the implicit loop at every few other
Newton/Krylov step. Also, we prefer to describe our algorithm this way, because as we
emphasized earlier that this lays a foundation about how to separate the operators of the
two-phase incompressible flow model that possesses true non-linear coupling between
different dynamics and requires this IMEX kind of execution in order to achieve second
order time convergent calculations.
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3.3 The Jacobian-free Newton Krylov method and forming the IMEX
function

The Jacobian-Free Newton Krylov method is the combination of the Newton method that
solves the system of nonlinear equations and a Krylov subspace method that solves the
Newton correction equations.

The Newton method solves F(W)= 0 (assume Eq. (3.11) is written in this form with
W=(u,v,p)) iteratively over a sequence of linear system defined by

J(Wk)δWk =−F(Wk), (3.19a)

Wk+1=Wk+δWk, k=0,1,··· , (3.19b)

where J(Tk) = ∂F
∂T is the Jacobian matrix and δWk is the update vector. The Newton it-

eration is terminated based on a required drop in the norm of the nonlinear residual,
i.e,

‖F(Wk)‖2< tolres‖F(W0)‖2, (3.20)

where tolres is a given tolerance.
The linear system (3.19) (Newton correction equation) is solved by using the Arnoldi

based Generalized Minimal RESidual method (GMRES) [39] which belongs to the general
class of the Krylov subspace methods [37]. In GMRES, an initial linear residual, r0, is
defined for a given initial guess δW0,

r0=−F(W)−JδW0. (3.21)

Here we dropped the index k convention since the Krylov (GMRES) iteration is per-
formed at a fixed k. Let j be the Krylov iteration index. The jth Krylov iteration mini-
mizes ‖JδWj+F(W)‖2 within a subspace of small dimension, relative to n (the number
of unknowns), in a least-squares sense. δWj is drawn from the subspace spanned by the

Krylov vectors, {r0,Jr0,J2r0,··· ,Jj−1r0}, and can be written as

δWj =δW0+
j−1

∑
i=0

βi(J)
ir0, (3.22)

where the scalar βi minimizes the residual. The Krylov iteration is terminated based on
the following inexact Newton criteria [14]

‖JδWj+F(W)‖2<γ‖F(W)‖2, (3.23)

where the parameter γ is set in terms of how tight the linear solver should converge at
each Newton iterations (we typically use γ=10−3). One particularly attractive features of
the GMRES is that it does not require forming the Jacobian matrix. Instead, only matrix-
vector multiplications, Jv, are needed, where v ∈ {r0,Jr0,J2r0,···}. This leads to the so-
called Jacobian-Free implementations in which the action of the Jacobian matrix times a
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vector can be approximated by

Jv=
F(W+ǫv)−F(W)

ǫ
, (3.24)

where ǫ= 1
n‖v‖2

∑
n
i=1b|wi|+b, n is the dimension of the linear system and b is a constant

whose magnitude is within a few orders of magnitude of the square root of machine
roundoff (typically 10−6 for 64-bit double precision).

Here, we describe how to form the IMEX function F(W). We will refer F(W) as the
IMEX function, since it uses the both explicit and implicit information. The following
pseudo code describes how to form F(W).

Evaluating F(Wk):

Given Wk where k is the current Newton iteration.
Call Explicit block with (un,vn,uk,vk) to compute u∗,v∗.
Form F(Wk)=(Fu,Fv,Fp) based on the Crank-Nicolson method as

Fu =uk
i−1/2,j−u∗

i−1/2,j−
∆t

2
[ f (uk, pk)+ f (un, pn)]i−1/2,j , (3.25a)

Fv =vk
i,j−1/2−v∗i,j−1/2−

∆t

2
[g(vk, pk)+g(vn, pn)]i,j−1/2 , (3.25b)

Fp =
uk

i+1/2,j−uk
i−1/2,j

∆x
+

vk
i,j+1/2−vk

i,j−1/2

∆y
. (3.25c)

3.4 Preconditioning (pressure projection method)

Our preconditioning step is similar to the original MAC projection step of [21] or the
fractional step projection method of [11] in the sense that we both solve an intermediate
pressure Poisson problem derived from predicted flow velocities. Below, we summarize
our preconditioning options. First we write Eqs. (3.2) and (3.3) incorporating with (3.11)
and (3.25) in delta correction-residual form as

δu

∆t
+

1

2

∂δp

∂x
−

1

2Re

[∂2δu

∂x2
+

∂2δu

∂y2

]
=−Fu, (3.26)

δv

∆t
+

1

2

∂δp

∂y
−

1

2Re

[∂2δv

∂x2
+

∂2δv

∂y2

]
=−Fv, (3.27)

∂δu

∂x
+

∂δv

∂y
=−Fp, (3.28)

where δu = un+1−un. Notice that we multiply pressure gradients and viscosity terms
with 1/2 in order to be consistent with the Crank-Nicolson discretization. To derive an
approximate equation for the pressure correction, we ignore the viscosity effects in (3.26)
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and (3.27) and differentiate the rest of the equations in terms of x and y respectively. Then
we use (3.28) to get

∂2δp

∂x2
+

∂2δp

∂y2
=−

2

∆t

[∂Fu

∂x
+

∂Fv

∂y
−Fp

]
. (3.29)

This is the pressure-Poisson problem that we approximately solve as part of our precon-
ditioner. We note that this pressure-Poisson problem can be relaxed by several different
ways such as multi-grid, Gauss-Seidel, or a direct solver [39, 44, 47]. We use an algebraic
multi-grid method for all of our test calculations. However, we compare multi-grid ver-
sus the conventional Gauss-Seidel sweeps when performing nonlinear solver analysis
in Section 4.4. After relaxing (3.29) for the pressure correction, we can precondition the
components of the velocity corrections. The preconditioning of the components of the
velocity corrections without the viscosity effects can be followed from (3.26) and (3.27) as

δu=−
∆t

2

∂δp

∂x
−Fu, (3.30)

δv=−
∆t

2

∂δp

∂y
−Fv. (3.31)

Alternatively, we can relax a Poisson problem for δu and δv derived from (3.26) and (3.27),
i.e,

δu−
∆t

2Re

[∂2δu

∂x2
+

∂2δu

∂y2

]
=−

∆t

2

∂δp

∂x
−Fu, (3.32)

δv−
∆t

2Re

[∂2δv

∂x2
+

∂2δv

∂y2

]
=−

∆t

2

∂δp

∂y
−Fv. (3.33)

Both velocity preconditioners work well if we solve high Reynolds number flows. How-
ever, the second velocity preconditioner results in more effective computations when we
deal with low Reynolds number flows (highly viscous flows) or flows containing bound-
ary layers. This is because the governing system poses a fine time scale (viscous time
scale) for small Re that the numerical method has to obey for stability and accuracy rea-
sons. Clearly, the explicit formulation, (3.30) and (3.31), has to follow this fine time be-
havior by taking small time steps. On the other hand, one can step over (∆t > Re∆x2)
the fine time behavior by using the implicit formulation (3.32)-(3.33). Both options are
compared/analyzed in Section 4.4.

We note that the order of the implementation of the preconditioning procedures de-
scribed above is that first we solve a pressure correction equation then update the ve-
locity corrections by either (3.30)-(3.31) or (3.32)-(3.33). However in a classical second
order fractional step projection method [7,18], the first step is to obtain a set of predicted
velocity corrections from

[
1−

∆t

2Re
∇2

]
δu∗=−Fu,

[
1−

∆t

2Re
∇2

]
δv∗=−Fv, (3.34)
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then solve a Poisson problem for a scalar field,

∂2δφ

∂x2
+

∂2δφ

∂y2
=

2

∆t

[∂δu∗

∂x
+

∂δv∗

∂y
+Fp

]
. (3.35)

The component of the velocity corrections are updated by

δu=δu∗−
∆t

2

∂φ

∂x
, δv=δv∗−

∆t

2

∂φ

∂y
. (3.36)

Then the pressure correction term is calculated with

δp=
[
1−

∆t

2Re
∇2

]
φ. (3.37)

This procedure automatically satisfies the divergence free constraint (3.28). The steps
(3.30) and (3.31) together with (3.29) also satisfy the divergence free constraint. How-
ever the steps (3.32) and (3.33) do not satisfy the divergence free constraint. We note that
the only purpose of the preconditioning is to minimize GMRES iterations. The diver-
gence free constraint is satisfied upon the convergence of the nonlinear Newton itera-
tions. We have compared the second order divergence-free-satisfying fractional step pro-
jection method ((3.34)-(3.37)) versus the non-divergence-free-satisfying procedure ((3.32)-
(3.33)) and observed small differences in terms of the average number of nonlinear and
linear iterations per time steps (refer to Section 4.4).

3.5 Time step control

There have been time step criterion introduced for the Navier-Stokes equations, [15, 20,
36, 49], most of which incorporates with viscosity terms. Our numerical method consists
of implicit and explicit blocks. The explicit block of our scheme solves the hyperbolic
terms of the Navier-Stokes equations that pose normally more stringent advective time
scales (considering that Reynolds number is high in all of our test problems). Therefore
it is sufficient to follow explicit time steps to produce accurate and stable solutions. The
explicit time steps are computed by

∆t=Cmin

{
∆x

max|u|
,

∆y

max|v|

}
, (3.38)

where C is a constant number (typically C=0.5 [33, 48]).
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4 Numerical results

4.1 Travelling wave problem

The following solutions (also referred to as the travelling wave solutions) are known to
analytically satisfy (2.1) and (2.2)

u(x,y,t)=0.75+0.25cos(2π(x−0.75t))sin(2π(y−0.75t))e−8π2 t/Re, (4.1a)

v(x,y,t)=0.75−0.25sin(2π(x−0.75t))cos(2π(y−0.75t))e−8π2 t/Re, (4.1b)

p(x,y,t)=−
1

64
[cos(4π(x−0.75t))+cos(4π(y−0.75t))]e−16π2 t/Re. (4.1c)

We will compare our numerical solutions against (4.1). We initialize the numerical solu-
tions by setting t= 0 in (4.1) and carry out our computations in a doubly-periodic unit
square. In Tables 1, 2, and 3, we compare five different mesh solutions at time=0.5. In all
calculations the Reynolds number is set to be equal to 10000. We use the following time
steps for our convergence study, ∆t = ∆x/4 assuming ∆x =∆y which can be related to
(3.38) by setting C=1/4. Tables 1-3 show decrease in errors in L2 sense and convergence
rates due to the consecutive mesh (and so time step) refinements. The convergence rate
between the two consecutive mesh refinements is calculated by

rate= log2(Error∆x/Error∆x/2), (4.2)

where Error = ‖φnum−φexact‖2 with φ representing the variable of interest. We have
checked the convergence rates for both X and Y velocities and the pressure field. Tables
1-3 clearly indicate that we have obtained the desired rate of accuracy (second order)
for each variable. We note that we use second order interpolations when constructing
the left and right state variables involved in Section 3.1. This is done to perform a con-
sistent convergence analysis using consistent spatial and time discretizations (both are
second order). We also note that if we use the third order WENO-type construction for
the left/right state variables, then the convergence rates tend to become higher than two
as one would expect.

Table 1: Convergence rates in X-velocity (u) for problem (4.1).

Mesh Refinement ‖unum−uexact‖2 Convergence
h=1/16 2.07×10−2 rates

h=1/32 5.48×10−3 1.92

h=1/64 1.37×10−3 1.99

h=1/128 3.40×10−4 2.01

h=1/256 8.43×10−5 2.01
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Table 2: Convergence rates in Y-velocity (v) for problem (4.1).

Mesh Refinement ‖unum−uexact‖2 Convergence
h=1/16 2.07×10−2 rates

h=1/32 5.48×10−3 1.92

h=1/64 1.37×10−3 1.99

h=1/128 3.40×10−4 2.01

h=1/256 8.43×10−5 2.01

Table 3: Convergence rates in pressure field for problem (4.1).

Mesh Refinement ‖unum−uexact‖2 Convergence
h=1/16 9.24×10−3 rates

h=1/32 2.80×10−3 1.72

h=1/64 7.55×10−4 1.89

h=1/128 1.94×10−4 1.96

h=1/256 4.90×10−5 1.98

4.2 Lid driven cavity problem

Steady state solutions of the two dimensional lid driven cavity flow (e.g, refer to [9,15,36,
40]) has become a classical test problem in that one can check the accuracy and efficiency
of the designed numerical schemes for different Reynolds numbers and different lid ve-
locities that determine the wall boundary conditions. In this paper, we consider a unit
square cavity with a top lid moving with the speed of unity (Fig. 2). The initial flow val-
ues are set to be zero inside the cavity. The Y-velocity is set to be zero on the walls at both
normal and tangential directions (referred to as the no-slip and no-penetrating velocity

U

dp/dy = 0v = 0u = U

u = 0 v = 0 dp/dy = 0

u = 0

v = 0

dp/dx = 0

u = 0

v = 0

dp/dx = 0

Figure 2: Lid driven cavity initial problem representation (lid is moving with a constant velocity U).
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VORTICITY with Re = 1000 PRESSURE with Re = 1000

VORTICITY with Re = 5000 PRESSURE with Re = 5000

Figure 3: Steady state solutions of the lid driven cavity problem on 256×256 mesh and for two different Reynolds
numbers.

boundary conditions). Similarly, the X-velocity is set to be zero on all walls except the top
wall where it is set to be equal to the lid velocity. We use the homogeneous Neumann
boundary conditions for the pressure on all walls. Fig. 2 also illustrates the boundary
condition settings. This problem is numerically difficult to tackle, because there is a jump
in X-velocity. Therefore, not only we will be testing the accuracy but also we will be
testing the stability and the robustness of our numerical method.

Fig. 3 shows the steady state solutions for the vorticity and pressure fields. These
solutions are computed on 256×256 mesh. The results at the top half corresponds to the
solutions for Re = 1000 and the bottom half corresponds to the solutions for Re = 5000.
Notice that the vorticity roll ups are more apparent for higher Reynolds numbers. We
note that our results are calculated on a relatively coarser mesh compare to [9]. However,
the resolutions of the flow structures are comparable. Fig. 4 shows our time convergence
study for the X/Y-velocities and pressure. To measure the time convergence rates, we
run the code with a fixed mesh (e.g, 256×256) and different time step refinements to a
final time (e.g, t=0.5 at which the flow is still transient). Then we measure the L2 norm
of errors between two consecutive time step refinements and plot the rate of decrease in
these errors. The calculations in the convergence study are carried out for Re=1000. Fig. 4
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Figure 4: L2 norm of the time errors of the numerical solutions of the lid driven cavity problem on 256×256
mesh at time=0.5 and with Re=1000.

clearly shows the second order time convergence for all flow variables. An observation
that can be made about the pressure error plot in Fig. 4 is that the error tends not to
be second order for the last two time step refinements. This is because for the last two
refinements the truncation term is dominated by the spatial errors. And these spatial
errors will be maintained at this level of time step refinement unless we refine the mesh.

4.3 Thin shear layer problem

This problem is solved in [7] to study the convergence rates of their second order projec-
tion method applied to the incompressible Navier-Stokes equations. The problem con-
sists of a pair of horizontal shear layers of finite thickness, perturbed by a small amplitude
vertical velocity. The initial problem setting is as follows

u(x,y,0)=





tanh
(

y−0.25
ρ

)
, for y≤0.5,

tanh
(

0.75−y
ρ

)
, for y>0.5,

(4.3)

v(x,y,0)=δsin(2πx), (4.4)
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Time = 0.4 Time = 0.8

Time = 1.2 Time = 1.8

Figure 5: Vorticity solutions from the thin shear layer problem on 128×128 mesh.

Time = 0.4 Time = 0.8

Time = 1.2 Time = 1.8

Figure 6: Vorticity solutions from the thin shear layer problem on 256×256 mesh.
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Figure 7: Divergence of the velocity field from the thin shear layer problem on 128×128 mesh.

where ρ determines the width of the shear layer and δ is the strength of the initial per-
turbation. To be consistent with [7], we set ρ= 1/30 and δ= 0.05 in our computations.
Fig. 5 shows the time history of the numerical solutions calculated in a doubly-periodic
unit square with 128×128 mesh. In time, each shear layer evolves into a periodic ar-
ray of large vortices with the shear layer between the rolls being thinned by the large
straining field there. Eventually, these thinned layers wrap around the large rolls. The
evolution of the top and bottom layers are mirror images of one another. Solutions in
Fig. 5 are computed on a rather coarse mesh resulting in small wiggles around the arms
of the vortices. However, these wiggles are completely eliminated by refining the mesh
(e.g, refer to Fig. 6 that represents the numerical results computed on a 256×256 mesh).
Fig. 6 also indicates the spatial convergence of our method. Fig. 7 shows the contours of
the divergence of the velocity field on a 128×128 mesh around t=1.0. We can see from
this figure that the divergence-free constraint is sufficiently satisfied even on a relatively
coarse mesh. We note that the flow structures (vorticity roll ups) in [7] seem to be bet-
ter resolved compared to ours. We attribute this to the dissipativeness of our numerical
scheme which is originating from the corner value evaluation (refer to Section 3.1). We
remark that it is not our goal to introduce a high resolution scheme in this paper. Rather,
our aim is to introduce a self-consistent implementation of an IMEX strategy that leads to
demonstrated second order time convergence together with effective flow calculations.

Finally, Fig. 8 shows our time convergence study for the X/Y-velocities and pressure.
We carried out our computations on a 256×256 mesh until the final time = 1.0 to produce
this figure. Notice that the flow is highly transient around this time (refer to Fig. 6). Fig. 8
shows the decrease in the L2-norm of the time errors of the numerical solutions. The time
errors are measured by the same way as in Section 4.2. It is clear from Fig. 8 that we
obtain second order time convergence for each flow variable.
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Figure 8: L2 norm of the time errors of the numerical solutions of the thin shear layer problem on 256×256
mesh at time=1.0.

4.4 Solver/preconditioner performance

In this section, we present the nonlinear solver performance analysis of our method. This
analysis will gives us important insights about our preconditioning procedure and solver
technology. For this analysis, we consider the thin shear layer problem.

First we consider the Table 4. Table 4 is created by calculations on a 64×64 mesh until
the final time = 0.5. Table 4 compares the solver performance when we use the velocity
preconditioner with or without viscosity effects ((3.30)-(3.31) versus (3.32)-(3.33)). The
pressure-Poisson problem is relaxed by an algebraic multi-grid method for both options.
The multi-grid solver uses only one V-cycle each time it is called. Table 4 compares the av-
erage number of GMRES steps per Newton iteration and the average number of Newton
iterations per time step for the two velocity preconditioner options. The Newton iteration
is terminated when (3.20) is satisfied for tolres=10−8. The GMRES iteration is terminated
when (3.23) is satisfied for γ= 10−3. Clearly, for low Reynolds numbers (viscous flow),
the velocity preconditioner with the viscosity effects produces more effective calculations
(about twice more effective) than the other option. This comparison is in terms of GM-
RES iterations not the CPU time. The reduced GMRES iterations come at the cost of a
more expansive preconditioner. We note that we used a fixed time step (∆t = 10−3) to
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Table 4: Comparing the velocity preconditioner with or without viscosity effects for different Reynolds numbers.

Reynolds Preconditioning with viscosity Preconditioning without viscosity
Number GMRES steps Newton steps GMRES steps Newton steps
Re=0.5 32 4 80 6
Re=1.0 28 3 57 4

Re=10.0 10 3 12 3
Re=100.0 4 3 5 3

Table 5: Comparing the velocity preconditioner with viscosity effects to the classic projection method for different
Reynolds numbers.

Reynolds Preconditioning with viscosity Classic projection method
Number GMRES steps Newton steps GMRES steps Newton steps
Re=0.5 32 4 24 4
Re=1.0 28 3 19 3

Re=10.0 10 3 7 3
Re=100.0 4 3 3 3

Table 6: Comparing multi-grid pressure solve versus Gauss-Seidel sweeps. Velocity preconditioner doesn’t use
viscosity effects.

Mesh Multi-grid pressure solve Gauss-Seidel pressure solve
Refinement GMRES steps Newton steps GMRES steps Newton steps

64×64 6 3 17 3
128×128 9 3 44 3
256×256 13 3 95 4

produce this table. For small Re=0.5, the viscous time steps scale like ∆t/(Re∆x2)≃10.
Considering the average number of nonlinear and linear iterations, we can state that we
comfortably step over the viscous time steps by bringing the viscosity effects in the ve-
locity preconditioning. However, when we increase the Reynolds number, the difference
for the performance of both options is almost negligible. This is because the fixed time
step we took falls within the range of viscous time scale (e.g, ∆t=10−3

<Re∆x2≃2×10−2

when Re=100).

In Table 5, we compare the solver performance when using the preconditioning pro-
cedure with viscosity effects ((3.32)-(3.33) together with (3.29)) versus the classical second
order fractional step projection method. Again we run the code until the final time =0.5
on a 64×64 mesh with a fixed time step ∆t=10−3. The Newton and GMRES tolerances are
same as above. The pressure Poisson problem is solved by an algebraic multi-grid with
one V-cycle for both options. On the other hand, (3.34) is solved by ten forward-backward
conventional Gauss-Seidel sweeps. Comparing the average number of Newton and GM-
RES iterations from this table, we can conclude that there is not much advantage of one
method to other especially with the increasing Reynolds numbers.

Next, Table 6 compares the solver performance for two different ways, multi-grid and
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Gauss-Seidel sweeps, to solve the pressure-Poisson problem (e.g, solving (3.29)). We run
the code until the final time =0.5 for three different mesh options. The Reynolds number
is set to be 10000, thus we don’t use viscosity effects for the velocity preconditioning (we
use (3.30) and (3.31)). The first pressure-Poisson solver uses an algebraic multi-grid with
one V-cycle and the second option uses ten forward-backward conventional Gauss-Seidel
sweeps. Table 6 compares the average number of GMRES steps per Newton iteration and
the average number of Newton iterations per time step for the two options. The Newton
and GMRES tolerances are same as in the second paragraph of this section. Table 6 indi-
cates that the multi-grid option as a pressure-Poisson solver is more effective (especially
for finer grids) than the conventional Gauss-Seidel sweeps. We note that we also com-
pared multi-grid one V-cycle versus two and three V-cycles for the finer mesh (256×256),
and we have not observed significant difference in terms of the average number of GM-
RES iterations.

5 Conclusion

We have presented a second order self-consistent IMEX method for solving the incom-
pressible Navier-Stokes equations. The key for successful implementation of the self-
consistent IMEX strategy is to carry out the explicit integrations as part of the non-linear
function evaluation within the implicit block. This way, the improved time accuracy
of the non-linear iterations (implicit block) is readily felt by the explicit block and vice
versa. This continuous interaction between the two algorithm blocks implicitly balances
the nonlinear coupling terms so that it does not require extra efforts (outer iterations)
to converge nonlinearities. This will be important especially when we solve multi-phase
flow problems. We have solved several test problems to check/verify the numerical accu-
racy and the performance of the new preconditioner. For each test, we have established
second order time convergence and obtained reasonable nonlinear solver performance
with the new preconditioner. Thus far, we have applied this IMEX methodology to the
single phase incompressible flow equations, radiation hydrodynamical systems ranging
from low energy density to high energy density limits [22, 24], and multi-physics prob-
lems [25]. Currently, we are applying this methodology to multi-phase flow systems in
a way that the fluid interfaces are explicitly tracked as part of the non-linear function
evaluation within the implicit flow solver [26].
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Appendix

A.1 Second order interpolations

In this section, we describe how to calculate the left/right values of the velocity compo-
nents needed by the Riemann solver in Section 3.1. The procedure is based on a Taylor
series expansion in that we keep the first order terms, i.e,

uL
i,j=ui−1/2,j+

∆x

2
ux,i−1/2,j , (A.1)

uR
i,j=ui+1/2,j−

∆x

2
ux,i+1/2,j , (A.2)

ux,i−1/2,j=minmod(a,b)=





a, if |a|< |b| and ab>0,

b, if |b|< |a| and ab>0,

0, if ab≤0,

(A.3)

where

a=
ui+1/2,j−ui−1/2,j

∆x
, (A.4)

b=
ui−1/2,j−ui−3/2,j

∆x
, (A.5)

The terms related to the other velocity component, vL
i,j and vR

i,j, can be computed similarly.

For more information regarding different slope options etc. we refer to [33, 48].

A.2 Third order WENO interpolations

In this section, we present the third order WENO-type interpolation to built uL
i,j. The

procedure to construct uR
i,j is the mirror image of uL

i,j. The main idea is to construct a

third order polynomial by the weighted average of two second order polynomials. In
particular,

uL
i,j=w1u

(1)
i,j +w2u

(2)
i,j , (A.6)

where

u
(1)
i,j =

3

2
ui−1/2,j−

1

2
ui−3/2,j , (A.7)

u
(2)
i,j =

1

2
ui+1/2,j+

1

2
ui−1/2,j , (A.8)

and the nonlinear weights, w’s, are defined by

w1=
w̃1

w̃1+w̃2
, w̃1=

γ1

(ǫ+β1)2
, (A.9a)

w2=
w̃2

w̃1+w̃2
, w̃2=

γ2

(ǫ+β2)2
, (A.9b)
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where the constants, γ1 = 1/4 and γ2 = 3/4, are referred to as the linear weights, ǫ is a
small positive number used to avoid the denominator becoming zero and is typically set
to be ǫ=10−6, and finally β’s are the smoothness indicators given by

β1=u2
i−3/2,j−2ui−3/2,jui−1/2,j+u2

i−1/2,j , (A.10)

β2=u2
i−1/2,j−2ui−1/2,jui+1/2,j+u2

i+1/2,j . (A.11)

Details regarding the intermediate steps and the construction of higher order interpola-
tions can be found in [41].
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