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Abstract. We couple different flow models, i.e. a finite element solver for the Navier-
Stokes equations and a Lattice Boltzmann automaton, using the framework Peano as a
common base. The new coupling strategy between the meso- and macroscopic solver
is presented and validated in a 2D channel flow scenario. The results are in good
agreement with theory and results obtained in similar works by Latt et al. In addition,
the test scenarios show an improved stability of the coupled method compared to pure
Lattice Boltzmann simulations.
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1 Introduction

Many flow systems – especially in micro- and nano-fluidics – are strongly influenced by
physical processes that appear on different spatial and temporal scales. Flows through
nanopores influenced by Brownian motion or flows in porous media are typical exam-
ples. Solving these kinds of complex systems by means of computational fluid dynamics
(CFD) often requires highly adaptive concepts or different sorts of solvers depending on
the current scale to be simulated.

With respect to Navier-Stokes and Lattice Boltzmann related solver techniques, de-
tailed discussions and comparisons of their performance and qualitative behaviour can
amongst others be found in [8, 13] and should only be touched here. Considering flow
problems on mesoscopic scales, Lattice Boltzmann methods have been validated for a
wide range of scenarios such as particulate flows [10] or fluctuating hydrodynamics
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[7]. Furthermore, as discussed in our previous works [13], simulation tests by differ-
ent groups in the finite Knudsen number regime revealed strong deviations of macro-
scopic Navier-Stokes and Burnett descriptions from the physical phenomena (cf. [17,18])
whereas mesoscopic approaches like Direct Simulation Monte Carlo and Lattice Boltz-
mann methods still yielded feasible results [9, 21]. On the other hand, Navier-Stokes
systems might e.g. be superior in case of (laminar) convection dominated flows where
classical Lattice Boltzmann automata often require even finer grid resolutions and small
timesteps. Implicit solver strategies for the Navier-Stokes equations would allow for con-
siderably bigger timesteps in these cases.

With implementations of a Navier-Stokes and a Lattice Boltzmann solver integrated
within the Peano framework, we already deeply discussed and evaluated the single
codes in [13]; it is in this context that the idea emerged to spatially couple both approaches
and exploit the advantages of both schemes as also proposed by Latt et al. in [12]. There
are different scenarios, where this idea might become favorable. Amongst others, consi-
dering fluid-structure interaction problems in the laminar flow regime, the weakly com-
pressible Lattice Boltzmann method could be used to stabilize pressure induced pertur-
bations in the surrounding of the respective structure, whereas the Navier-Stokes equa-
tions are solved further away from the structure. Besides, in the case of simulations of
multiscale flow problems, like laminar flows near and through porous structures such
as membranes, a spatial coupling of Navier-Stokes and Lattice Boltzmann solvers might
allow to resolve the complex geometry of the porous medium and describe this part of
the flow system by means of Lattice Boltzmann and – on a coarser grid – to compute the
rest of the flow domain efficiently by (implicit) Navier-Stokes solver techniques.

There have already been several works on this field (see for example [1,12]). It is parti-
cularly the work presented in [12] where the coupling between a finite difference Navier-
Stokes solver and a Lattice Boltzmann automaton is established and validated. Though
parts of the respective algorithmic realisations carry over to our coupling approach, we
want to focus on a new method for the macro-to-mesoscale coupling which is based on
a minimisation procedure. We particularly point out the feasibility of coupling different
types of solvers within the Peano framework.

This paper is structured as follows: The theoretical foundation for the Lattice Boltz-
mann method and our Navier-Stokes solver is briefly reviewed in Section 2. Besides, the
Chapman-Enskog expansion connecting the meso- and macroscopic approach is carried
out in order to obtain the conservation laws that need to be fulfilled at the interface be-
tween the two solvers. In Section 3, we give a short introduction to the framework Peano
and discuss its basic properties at the example of our Lattice Boltzmann implementation.
In Section 4, we discuss the underlying grid topology and afterwards focus on the metho-
dology for coupling Navier-Stokes to Lattice Boltzmann and vice versa. A description of
the underlying implementations within the Peano framework is given in Section 5. Re-
sults for the coupling applied to pure channel flow are provided in Section 6. Finally, we
close the discussion and give a short conclusion and outlook on future work in Section 7.
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2 Macro- and mesoscopic simulation methods

2.1 Navier-Stokes equations

The common macroscopic description of flow problems is given by the Navier-Stokes
equations describing the conservation of mass and momentum for an incompressible
fluid:

∇·u=0, (2.1)

∂tu+(u·∇)u=−∇p+ν∆u, (2.2)

where u∈R
D denotes the flow velocity, p∈R is the pressure and ν defines the kinematic

viscosity. A finite element approach to solve this system of partial differential equations
is implemented in Peano [14]. It uses d-linear elements in space and supports different
timestepping schemes such as explicit/ implicit Euler or Crank-Nicholson. However, as
Lattice Boltzmann is a pure explicit scheme, only the explicit Euler timestepping is to be
used. The solving of the Navier-Stokes system is accomplished by a Chorin projection
leading to a Poisson equation for the pressure that needs to be solved in every timestep
dt, such that each timestep involves three steps:

• Compute the right hand side of the pressure Poisson equation from velocity values
at time t.

• Solve the Poisson equation to obtain pressure values p(t+dt).

• Update the velocity field using the old velocity values u(t) and the new pressure
values p(t+dt).

The boundary conditions for the system (Dirichlet or Neumann conditions) can be set
directly via the velocity values and the assembling method for the right hand side of the
Poisson equation; see [14] for more details.

2.2 Lattice Boltzmann method

A mesoscopic approach to computational fluid dynamics is derived from the Boltzmann
equation and is known as the Lattice Boltzmann method. Detailed descriptions of the
method can amongst others be found in [16, 20]; a short introduction to its principles is
provided in the following.

Space is discretised with cubic cells, and the velocity space is broken down to a min-
imal isotropic set of discrete velocities ci ∈R

D, i∈{1,··· ,Q}, allowing fluid molecules to
either move to a neighbouring cell or to rest in the current one. The update rule to deter-
mine the probability fi(x,t) to find fluid molecules at position x∈R

D at time t moving
with velocity ci reads

fi(x+cidt,t+dt)= fi(x,t)+∆i( f − f eq), (2.3)
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Figure 1: The Lattice Boltzmann algorithm for the D2Q9 model. In the collide step, the post-collision distri-
butions f ∗i (x,t)= fi(x,t)+∆i( f − f eq) are computed locally in each cell. In the streaming step, the distribution
functions are moved along their respective lattice velocities ci to their neighbours, i.e. fi(x+cidt,t+dt)= f ∗i (x,t).

where f eq denotes the discrete representation of the equilibrium distribution,

f
eq
i (ρ,u)=wiρ

(

1+
ci ·u
c2

s

+
(ci ·u)2

2c4
s

− u2

2c2
s

)

(2.4)

with lattice weights wi, the speed of sound cs =
1√
3

dx
dt on the lattice and fluid density

ρ(x,t)∈R and velocity u(x,t)∈R
D computed from:

ρ(x,t)=∑ fi,

uα(x,t)=
1

ρ(x,t)∑ ficiα
for all α∈{1,··· ,D}.

(2.5)

For the D2Q9 discretisation (two-dimensional lattice with nine velocities, see Fig. 1), the
weights wi are given by

wi=







1/36, ‖ci‖2 =
√

2 dx,
1/9, if ‖ci‖2 =dx,
4/9, ‖ci‖2 =0.

(2.6)

The operator ∆( f − f eq) is called collision operator and models intermolecular collision
processes between the particle distribution functions fi in each cell. For systems near
equilibrium, collisions are taken into account via a linear relaxation of the particle popu-
lations towards the local equilibrium. For this purpose, the single relaxation time scheme
which is also known as BGK model [4] can be applied:

∆i( f − f eq)=− 1

τ

(

fi− f
eq
i

)

, (2.7)

where τ is the relaxation time. For stability reasons, τ is restricted to the interval (0.5,2).
Boundary conditions for the system are applied by reconstructing the missing distri-

bution functions which would have entered the domain from outside. A typical exam-
ple is given in form of the half-way bounce back rule modeling no-slip boundaries (see
e.g. [16]).
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2.3 Chapman-Enskog theory

In order to connect the meso- and macroscales, the Chapman-Enskog expansion [6] can
be used to recover the Navier-Stokes equations from the Lattice Boltzmann equation in
the continuum limit, that is in case that the Knudsen number

ǫ :=
L

LH
(2.8)

vanishes. In Eq. (2.8), L and LH denote the length scales of the mesoscopic and the hydro-
dynamic (macroscopic) system. As the coupling of Navier-Stokes and Lattice Boltzmann
systems strongly depends on the relation between macro- and mesoscopic quantities, the
basic steps of the asymptotic analysis are carried out in the following.

The spatial coordinate xH of the macroscopic description in hydrodynamics can be
related linearly to its mesoscopic representation x which is used in the Lattice Boltzmann
scheme:

xH :=ǫx. (2.9)

In order to capture both convective and diffusive phenomena appearing on different tem-
poral scales, the hydrodynamic times tC and tD are introduced and can be related to the
Lattice Boltzmann time t as follows:

tC :=ǫt,

tD :=ǫ2t.
(2.10)

In a first step, the left hand side of Eq. (2.3) is expanded in a Taylor series around (x,t):

fi(x+cidt,t+dt)= fi(x,t)+∑
α

ciα
dt∂xα fi(x,t)+dt∂t fi(x,t)+

dt2

2 ∑
α,β

ciα
ciβ

∂xα ∂xβ
fi(x,t)

+dt2∑
α

∂xα ∂t fi(x,t)+
dt2

2
∂2

t fi(x,t)+O(dt3). (2.11)

In addition, the distribution functions fi are expanded in an asymptotic series near equi-
librium:

fi = f
eq
i +ǫ f

(1)
i +O(ǫ2) (2.12)

with the non-equilibrium part f
neq
i = ǫ f

(1)
i . As the density and momentum do not differ

between the equilibrium and non-equilibrium state (see Eq. (2.5)), the non-equilibrium
contributions vanish:

∑
i

f
neq
i =0, (2.13)

∑
i

f
neq
i ciα

=0 for all α∈{1,··· ,D}. (2.14)
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The right hand side of Eq. (2.3) is expanded analogously to Eq. (2.12):

fi+∆i( f − f eq)

= f
eq
i +∆

(0)
i ( f − f eq)+ǫ

(

f
(1)
i +∆

(1)
i ( f − f eq)

)

+ǫ2∆
(2)
i ( f − f eq)+O(ǫ3). (2.15)

Introducing the macroscopic scaling for space and time from Eqs. (2.9) and (2.10) in
Eq. (2.11), i.e.

fi(x,t)= f̃i(xH(x),tC(t),tD(t)),

∂t =ǫ∂tC
+ǫ2∂tD

,

∂xα =ǫ∂xHα
for all α∈{1,··· ,D}, (2.16)

one obtains:

fi(x+cidt,t+dt)= f̃
eq
i +ǫ

(

f̃
(1)
i +∑

α

ciα
dt∂xHα

f̃
eq
i +dt∂tC

f̃
eq
i

)

+ǫ2

(

∑
α

ciα
dt∂xHα

f̃
(1)
i +dt∂tD

f̃
eq
i +dt∂tC

f̃
(1)
i +

dt2

2
∂2

tC
f̃

eq
i

+
dt2

2 ∑
α,β

ciα ciβ
∂xHα

∂xHβ
f̃

eq
i +dt2∑

α

ciα ∂xHα
∂tC

f̃
eq
i

)

+O(ǫ3). (2.17)

From the asymptotic theory, it follows that all terms in Eq. (2.17) and (2.15) of same order
in ǫ have to be equal. For the terms of order ǫ0, ǫ1 and ǫ2, this implies:

∆
(0)
i =0, (2.18)
(

∂tC
+∑

α

ciα
∂xHα

)

f̃
eq
i =

1

dt
∆
(1)
i ( f − f eq), (2.19)

∂tD
f̃

eq
i +

1

2

(

∂tC
+∑

α

ciα
∂xHα

)

(

2 f̃
(1)
i +∆

(1)
i

)

=
1

dt
∆
(2)
i ( f − f eq). (2.20)

The moments of zeroth and first order of Eqs. (2.19) and (2.20) are determined from a
multiplication of the equations with the factors 1 and ciβ

, β= 1,··· ,D, respectively, and
integrating them over the velocity space, resembling a summation over i. The equations
evolving are

∂tC
ρ̃+∑

α

∂xHα
(ρ̃ũα)=0, (2.21)

∂tD
ρ̃=0 (2.22)
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for the moment of order zero and

∂tC
(ρ̃ũβ)+∑

α

∂xHα ∑
i

(

f̃
eq
i ciα

ciβ

)

=0, (2.23)

∂tD
(ρ̃ũβ)+

1

2 ∑
α

∂xHα ∑
i

(

2 f̃
(1)
i +∆

(1)
i

)

ciα
ciβ

=0 (2.24)

for the moment of order one. The macroscopic Navier-Stokes equations for mass and
momentum conservation are obtained from Eqs. (2.21), (2.22) and Eqs. (2.23), (2.24) by
rescaling the equations by factors ǫ, ǫ2, adding them up and resubstituting the original
variables x and t for space and time:

∂tρ+∑
α

∂xα(ρuα)=0, (2.25)

∂t(ρuβ)+∑
α

∂xα(ρuαuβ)=−∂xβ
p− 1

2 ∑
α

∂xα

(

∑
i

(2 f
neq
i +∆i( f neq))ciα

ciβ

)

. (2.26)

Note that for the latter equation, the equalities ∑i f
eq
i ciα

ciβ
= pδαβ+ρuαuβ for the Eulerian

stress and the equation of state
p= c2

s ρ (2.27)

for the pressure were used.
In order to make the non-equilibrium and collision contributions fit the viscous stress

tensor from the Navier-Stokes system, that is

−1

2 ∑
i

(2 f
neq
i +∆i( f neq))ciα

ciβ
=ν
(

∂xβ
uα+∂xα uβ

)

+O(u3), (2.28)

the kinematic viscosity ν and the relaxation time τ need to fulfill

ν=ρc2
s dt

(

τ− 1

2

)

. (2.29)

3 Peano in a nutshell

While details on technical and application-specific aspects of the PDE framework Peano
are available in [5, 14, 19], we shortly describe the basic ideas in this section.

The concept of Peano is to create adaptive Cartesian grids via a spacetree approach.
This is similar to adaptive mesh refinement (AMR) (cf. [2, 3]) but provides a full grid
hierarchy in the complete domain.

The grid is constructed starting from a hypercube root cell embedding the whole com-
putational domain. The root cell is then subdivided in a recursive manner by splitting up
each cell into three parts along each coordinate axis. Hence, adaptive grids for (compli-
cated) geometries can be constructed easily and efficiently.
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Figure 2: Example of a 2D discrete Peano curve on a corresponding adaptive Cartesian grid.

To serialise the underlying spacetree of cells for a traversal of the grid, a certain order
is necessary. There are a variety of possibilities, but some of them have certain advantages
for our concept.

The so called space-filling curves (cf. [15]) offer, besides good dynamic load balanc-
ing properties in parallel computations, additional features concerning an efficient cache
usage in modern computer architectures as well as advantages constructing dynamically
changing grids.

These self-similar curves are recursively defined and fit perfectly to our construction
of the spacetree. Therefore, the Peano curve as one representant of space-filling curves,
is used to iterate over the corresponding grid (and actually gave the name to our PDE
framework). In Fig. 2, we exemplarily show a discrete iterative of the two-dimensional
Peano curve yielding an adaptive Cartesian grid with three refinement levels. Using
the Peano curve for the grid traversal implies a very high data locality. Combining this
feature with a stack concept for the storage of the grid vertices (cf. [19]) allows for a very
cache-efficient traversal mechanism.

In order to allow different types of solvers to use this functionality, the grid generation
and data handling is hidden from the specific application. Each solver only requires to
provide the structure of its degrees of freedom (i.e. defining the number of degrees of
freedom and specify whether they are stored within a grid vertex or a grid cell) and
the respective solver routines; the Peano grid traversal of all data is then carried out
automatically.

With the traversal bound to the discrete representation of the Peano curve, the cell
and vertex data are accessed in a specific order. In order to plug in solver specific functio-
nalities such as local timestepping, spatial stencil evaluations etc., these solver routines
need to be implemented by the use of adapters. Each adapter consists of several callback
methods involving the access to cells and vertices. Traversing the grid, these methods are
automatically triggered by the traversal mechanism of the framework. Examples for the
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Figure 3: Storage scheme and streaming of the particle distribution functions. Fig. (a) shows the logic rep-
resentation of the distributions (with respect to their associated lattice velocities), the Figs. (b)-(d) describe
the algorithmic realisation of the streaming step. The distributions are initially stored on the vertices as shown
in Fig. (b). In the enterElement(Cell, Vertex[2D ])-callback, the distributions are – after finishing the colli-
sion step – swapped within the frame of a single grid cell (Figs. (b)-(c)). The dark grey colour of the cell
in Fig. (c) indicates that the enterElement-callback has returned. After visiting all adjacent cells of a ver-
tex, the distributions stored on this vertex are again swapped locally so that the distribution functions for the
next timestep are located at their new initial positions (Fig. (d)). The latter step is implemented within the
touchVertexLastTime(Vertex)-callback.

callback functions include:

• touchVertexFirstTime(Vertex): This callback is triggered the very first time that a
vertex is read from an input stack. As a consequence, this vertex has not been
involved in any solver operations before.

• enterElement(Cell, Vertex[2D]): This callback is triggered by the traversal mecha-
nism each time when a grid cell is visited; as the cells are traversed along the Peano
curve, this function is called exactly once for each grid cell during a single traversal.

• touchVertexLastTime(Vertex): This callback is triggered right before the vertex is
written to an output stack. The vertex will not be involved in any other solver
operations afterwards.

As an example, the storage and processing scheme for the particle distribution functions
of the Lattice Boltzmann automaton within the framework [13] is reviewed in Fig. 3.
Though evaluated within the center of a grid cell, the particle distribution functions fi

are stored on the grid vertices in a staggered manner (see Figs. 3 (a) and (b)). We al-
ready described the A-B pattern streaming approach in [13] involving two complete rep-
resentations of the distribution functions and copy operations in the streaming step. As
we briefly mentioned the A-A pattern [11] as a memory-efficient alternative before [13],
we now consider its implementation within Peano using the adapter concept mentioned
above. The scheme is depicted in Figs. 3 (b)-(d). After doing the local collision in the
enterElement(Cell, Vertex[2D])-callback, the distribution functions of opposite lattice ve-
locities are swapped within the frame of a single cell (cell-wise swapping). When 2D cells
have finished the streaming, the vertex lying in the center between these cells already
contains the new distributions for the next timestep. However, the distributions have to
be swapped again as they are still located on a part of the vertex memory that is logi-
cally related to their former cell. This vertex-wise swapping is implemented within the
touchVertexLastTime(Vertex)-callback.
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4 Lattice Boltzmann–Navier-Stokes coupling

Having reviewed the Lattice Boltzmann and the Navier-Stokes approach as well as the
basic principles of the Peano, we now discuss our coupling approach of the two methods
within the framework.

The coupling of Lattice Boltzmann and Navier-Stokes systems requires the mapping
of the respective unknowns

fi,ρ
LB,uLB↔ pNS,uNS.

As the reconstruction of one set of these variables necessitates interpolation depending on
the structural pattern of the underlying grids, the setup and positioning of the degrees of
freedom for both fluid solvers is pointed out in Section 4.1. Subsequently, in Sections 4.2
and 4.3, the mappings fi,ρ

LB,uLB → pNS,uNS and pNS,uNS → fi,ρ
LB,uLB are described in

detail.

4.1 Grid topology

In order to explain our coupling strategy, we restrict ourselves to a regular two-dimen-
sional Cartesian grid. With the main feature of the Peano framework lying in adaptive
Cartesian grids based on space-trees in arbitrary dimensions [5], note that our method
can also be applied in an identical fashion to the adaptive counterparts of the described
solvers for both 2D and 3D simulations.

The finite element implementation of the Navier-Stokes equation stores its velocity
values uNS and the pressure pNS in a staggered manner on the grid [14] (see Fig. 4 on
the left). The velocity vectors are computed on the grid vertices whereas the pressure is
stored in the center of every grid cell. The degrees of freedom of the Lattice Boltzmann
automaton, that is the particle distribution functions fi, are also evaluated in the cell
center (see Fig. 4 on the right).

As a part of the fluid domain shall be computed by Lattice Boltzmann and another
part by Navier-Stokes, both solvers require valid boundary data for their simulations at
the interface between the respective subdomains. Our solution to this issue is depicted
in Fig. 5. For the Lattice Boltzmann method, the distribution functions that would have
been streamed from the Navier-Stokes domain into the Lattice Boltzmann domain need
to be constructed in a suitable manner. We solve this by surrounding the Lattice Boltz-
mann subdomain by an additional layer of cells; although being completely evaluated by

Figure 4: Storage pattern for both solvers. Left: Navier-Stokes solver. Right: Lattice Boltzmann solver.
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Figure 5: Overlap grid for coupled simulations. The velocities uNS need to be computed from the neighbouring
Lattice Boltzmann cells, the particle distribution functions fi have to be constructed from the velocity and
pressure values of the corresponding Navier-Stokes cells.

the Navier-Stokes solver, these cells are used as an overlap region in which the Navier-
Stokes input is used to set up boundary values for the Lattice Boltzmann domain; the
respective boundary condition is to be pointed out in Section 4.3. On the other hand,
consider the vertices between the regular Lattice Boltzmann cells and this new overlap
region: The velocities stored on these vertices shall be computed by Navier-Stokes. For
this purpose, an additional artificial boundary layer of vertices is needed to evaluate the
weak derivatives at these vertices. This is established by marking the first layer of regu-
lar Lattice Boltzmann cells as overlap region for the Navier-Stokes solver and the vertices
between the created Navier-Stokes overlap and the rest of the Lattice Boltzmann domain
as respective boundary vertices for the Navier-Stokes subdomain.

Having introduced our grid setup, we discuss the numerics of the coupling of the
degrees of freedom in the following section.

4.2 Lattice Boltzmann–to–Navier-Stokes coupling

As described above, boundary conditions for the Navier-Stokes solver need to be speci-
fied at vertices between the pure Lattice Boltzmann domain and the Navier-Stokes over-
lap utilising the degrees of freedom of the Lattice Boltzmann solver. As the pressure pNS

drops out of the continuity equation as described in Section 2.1, it is only the fluid veloc-
ities uNS on the artificial boundary nodes at the Navier-Stokes overlap domain that need
to be constructed from the particle distribution functions. This is achieved by taking the
Lattice Boltzmann velocities uLB computed according to Eq. (2.5) from all neighbouring
fluid cells nb of a respective boundary vertex and applying a d-linear interpolation to ob-
tain an approximate solution on this vertex (see Fig. 5). We further need to scale our ve-
locities since standard Lattice Boltzmann implementations refer to a dimensionless grid



76 P. Neumann et al. / Commun. Comput. Phys., 12 (2012), pp. 65-84

with unit meshsize and unit timesteps:

uNS=
1

2D ∑
cells nb

(

uLB
nb ·

dx

dt

)

. (4.1)

4.3 Navier-Stokes–to–Lattice Boltzmann coupling

While scaled interpolation is sufficient to provide boundary data for the Navier-Stokes
domain, this is not the case when moving from the Navier-Stokes to the Lattice Boltz-
mann system. The reason for this is that the information provided on the coarser macro-
scale only represents a subset of the information which is present on the mesoscale. In
general, the number of particle distribution functions Q (e.g. Q=9 for the D2Q9 model)
exceeds the number of unknowns D+1 of the Navier-Stokes system. However, the equi-
librium states f

eq
i (ρ,u) of the system can be uniquely described by the macroscopic quan-

tities u and ρ. Hence, we first split the distribution functions in an equilibrium and non-
equilibrium part,

fi = f
eq
i (ρLB,uLB)+ f

neq
i , i=1,··· ,Q. (4.2)

The quantities ρLB and uLB can be determined by direct injection and d-linear interpola-
tion (see Fig. 5) from the Navier-Stokes variables pNS and uNS, including a pressure-to-
density conversion according to Eq. (2.27) and a respective rescaling as mentioned in the
previous section. One further problem is caused by the macroscopic pressure pNS which
is only known up to a certain constant; the constant itself may vary between different
simulation setups and even between different timesteps. In order to uniquely determine
a valid density expression from the pressure, we follow the method from [12] where the
constant is chosen to be the average pressure over the interface in every timestep. In our
case this implies computing the mean pressure p̄NS over all cells in the Lattice Boltzmann
overlap region and setting

ρLB =ρLB
0 ·
(

pNS− p̄NS

c2
s

+1

)

(4.3)

with the dimensionless reference density ρLB
0 =1.

Still, the non-equilibrium parts in Eq. (4.2) need to be determined. Latt et al. [12]
introduce further approximations to the terms f

neq
i in the Chapman-Enskog expansion

and derive an explicit relation between the non-equilibrium parts and the velocity gra-
dients. These approximations comprise a neglection of spatial and temporal derivatives
of the non-equilibrium parts and a restriction to a first-order velocity approximation of
the equilibrium functions f

eq
i . However, especially in case of non-stationary flows or in

the first timesteps of a Lattice Boltzmann simulation, where the system initially needs to
reach a stable state, spatial and temporal variations in the non-equilibrium parts neces-
sarily need to occur. Besides, a second-order accurate solution with respect to the flow
velocity u might be preferable.
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Therefore, we follow a different approach for the construction of the non-equilibrium
distributions f

neq
i . As mass, momentum (see Eq. (2.13) and (2.14)) and viscous stresses

have to be conserved at the interface between the two solver regions, we get the following
constraints for the non-equilibrium parts:

∑
i

f
neq
i =0,

∑
i

f
neq
i ciα

=0, for all α∈{1,··· ,D},

∑
i

f
neq
i ciα

ciβ
=− 2ν

2− 1
τ

(

∂xβ
uα+∂xα uβ

)

, for all {α,β∈{1,··· ,D} : α≤β}, (4.4)

where the latter equation results from the insertion of the BGK collision operator into
Eq. (2.28). Note that this particular choice of the collision operator is only made for sim-
plicity. Other collision operators might as well be used at this point; however, beside
changes in the Chapman-Enskog expansion, the properties of the linear system of side
constraints might change affecting the following reconstruction procedure of the non-
equilibrium parts.

Having 1+D+D(D+1)/2 = (D+1)(D+2)/2 independent conditions for the non-
equilibrium parts (for 2D: 6 conditions), we still have an under-determined system for
f

neq
i . As deviations from the equilibrium state are typically very small in a fluid at contin-

uum scale, we choose to minimise the non-equilibrium parts in a certain sense to obtain
a fully determined system of non-equilibrium deviations f

neq
i . Therefore, let

g( f neq)=
Q

∑
i=1

Q

∑
j=i

gij f
neq
i f

neq
j +

Q

∑
i=1

gi f
neq
i +g0 (4.5)

be a second order polynomial function in f neq. Then, we use those variables f
neq
i which

minimise g such that the side constraints from Eq. (4.4) are fulfilled. Thus, for a given
function g( f neq), we solve

min
f neq∈RQ

g( f neq) such that

∑
i

f
neq
i =0,

∑
i

f
neq
i ciα

=0, for all α∈{1,··· ,D},

∑
i

f
neq
i ciα

ciβ
=− 2ν

2− 1
τ

(

∂xβ
uα+∂xα uβ

)

, for all {α,β∈{1,··· ,D} : α≤β}. (4.6)

Possible choices for g( f neq) are the squared L2-norm

g( f neq) :=‖ f neq‖2
2=∑

i

f
neq2

i , (4.7)
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an expression representing an approximation for the order of the local Knudsen number
(we will refer to this as the “squared Knudsen-norm”)

g( f neq) :=∑
i

(

f
neq
i

f
eq
i (ρLB,uLB)

)2

, (4.8)

or an “approximate squared Knudsen-norm” approximating the equilibrium distribution
in the const-density low-velocity limit f

eq
i ≈ f

eq
i (ρLB

0 ,~0)=wi:

g( f neq) :=∑
i

(

f
neq
i

wi

)2

. (4.9)

The restriction to functions lying in the space of second order polynomials is chosen
for the sake of simplicity; for second order polynomials, the minimisation problem de-
scribed above leads to a linear system of equations for the corresponding Lagrange mul-
tipliers and can uniquely be solved if this system is non-degenerated, i.e. its matrix
E∈R

(D+1)(D+2)/2×(D+1)(D+2)/2 has full rank. For positive coefficients gii>0 of the minimi-
sation polynomial, the matrix E becomes symmetric positive definite and the uniqueness
of the solution is proven. For the proof of this statement, see the appendix. The cost
functions defined by Eqs. (4.7) and (4.9) have the advantage that the matrix E is known
a priori and can easily be inverted. As a consequence, the solving of the small linear
systems in all Lattice Boltzmann overlap cells can be omitted and changed into a cheap
matrix-vector multiplication.

4.4 Algorithm

Having described the coupling method, the overall algorithm for coupled Lattice Boltz-
mann–Navier-Stokes simulations shall be reviewed:

// choose and set minimisation function g(f^neq)

setMinimisationFunction();

// flag cells and vertices belonging to LB or NS domain

// or belonging to LB or NS overlap domain

setupDomainFlagging();

t=0;

while (t+dt < t_end)

// construct f_i=f_i^eq + f_i^neq in LB overlap region

constructPdfsInLatticeBoltzmannOverlap();

// solve one LB timestep in LB region

solveLatticeBoltzmannDomain();
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// compute velocities on vertices of artificial NS boundary

constructVelocitiesInNavierStokesOverlap();

// solve one NS timestep

solveNavierStokesDomain();

t=t+dt

end

5 Implementation

As the Peano framework provides both implementations of the finite element Navier-
Stokes solver and the Lattice Boltzmann method, a coupling according to the descriptions
in Section 4 could easily be established. In this section, we present some details of the
resulting code structure.

First, in order to provide both particle distribution functions and macroscopic quan-
tities on the grid, the data structures for the vertices and cells were prepared such that
they hold both Navier-Stokes and Lattice Boltzmann degrees of freedom at the same
time. By this, a dynamic change of the Lattice Boltzmann–Navier-Stokes domain parti-
tioning becomes possible which might turn out as an advantage in case of (dynamically)
adaptive simulation setups where one is interested in understanding flow phenomena
on different scales in different regions of the simulation domain. In order to combine
both solvers without introducing invasive dependencies between them, a new compo-
nent “solver-coupling” was included in the Peano framework. This component extends
existing adapters and allows for modifications of their callbacks during a grid traversal.
As an example, instead of executing the Lattice Boltzmann algorithm on the whole grid,
a simple extension was plugged in via the solver-coupling component delegating calls to
the Lattice Boltzmann solver only for the case that cells in the Lattice Boltzmann region
are visited; otherwise, the callbacks to the solver are suppressed. The original callbacks
of the solver adapter do not need to be touched for this procedure; it is only the “coupling
rule” (in this case: only touch Lattice Boltzmann cells) that needs to be implemented.

More complex rules for the original adapters can be plugged in the same way. Refer-
ring to the algorithm in Sect. 4.4, the step constructPdfsInLatticeBoltzmannOverlap()

can for example be executed during the solving of the Lattice Boltzmann domain, that is
during the step solveLatticeBoltzmannDomain(). In the same fashion, the construction
of the velocities at the artificial Navier-Stokes boundary can be integrated into one of
the grid traversals that are carried out by the Navier-Stokes solver. Compared to the
stand-alone Navier-Stokes solver, the coupled algorithm only requires one additional
grid traversal in the setup phase for the domain flagging and one additional traversal
per timestep for solving the Lattice Boltzmann domain. As the number of grid traver-
sals is one of the most important factors with respect to performance within Peano, our
solver-coupling approach thus only yields a minimal increase in grid traversals.
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Beside the extension and modification of existing adapters, the steering of the coupled
simulation needs to be established requiring knowledge of both solver algorithms. This
issue is solved by using the concept of multiple inheritance. With each, the Navier-Stokes
and the Lattice Boltzmann solver, containing a simulation class for steering and executing
the algorithmic steps of the respective solver, we let the coupled simulation class inherit
from both steering classes. Having all the single algorithmic steps available in our new
class, we can reorder and adapt them according to our algorithm from Section 4.4.

6 Results

The coupling algorithm was tested in a two-dimensional channel flow. In all setups, the
flow field was initialised with zero-velocity and constant pressure. For the coupling in
the Lattice Boltzmann overlap region, the “squared Knudsen-norm” was applied as a
cost function; as the other cost functions showed similar behaviour through all tests, we
stick to this minimisation function from now on.

In a first run, a grid of 40×40 cells was set up with a Lattice Boltzmann region of
16×16 cells placed in the middle of the domain; the rest of the channel was left to the
Navier-Stokes solver. The simulation was carried out at a Reynolds number Re= 1 us-
ing a timestep dt= 0.01 and a relaxation time τ = 0.56. The parabolic profiles obtained
from a pure Navier-Stokes and the coupled simulation in the middle of the channel
are presented in Fig. 6. Both profiles are in perfect agreement pointing out the influ-
ence of incompressibility of the Navier-Stokes solver on the Lattice Boltzmann domain
and the reduction of the equilibrium deviations in the Navier-Stokes–to–Lattice Boltz-

Figure 6: Parabolic profile measured in the
middle of a 40×40 channel. The continuous
line corresponds to the Navier-Stokes solution
whereas the black squares represent the hybrid Lat-
tice Boltzmann–Navier-Stokes solution. Another
parabolic curve was obtained from a pure Lattice
Boltzmann simulation, which is close to identical to
both the Navier-Stokes and the Lattice Boltzmann–
Navier-Stokes profile and therefore has been left out
in this figure.

Figure 7: Parabolic profile measured in the mid-
dle of a 20×20 channel. The continuous line
corresponds to the Navier-Stokes solution whereas
the black squares represent the hybrid Lattice
Boltzmann–Navier-Stokes solution.
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Figure 8: Error ‖u(t+dt)−u(t)‖2 measured over time for the channel scenario. The continuous line represents
the pure Lattice Boltzmann solution, the dash-dotted line describes the error decay for the Navier-Stokes solver.
The dashed curve corresponds to the coupled Lattice Boltzmann–Navier-Stokes solution.

mann coupling. Fig. 8 shows the convergence to the steady state for the same chan-
nel cut in a Navier-Stokes, a Lattice Boltzmann and a coupled simulation run using
‖u(t+dt)−u(t)‖2 as error guess. In case of the pure Lattice Boltzmann setup, the non-
equilibrium bounce back schemes developed in [22] were applied at the in- and outlet
boundary and the half-way bounce back rule was used at the no-slip walls of the chan-
nel. Especially in the first simulation steps, the order of the error reduction of the coupled
system is superior to the one of the Lattice Boltzmann simulation. However, the final er-
ror obtained after ∼3000 timesteps is approximately of the same order for the coupled
and the Lattice Boltzmann simulation; for further explanations on the stalling of the er-
ror curves for the two methods, see [12].

An important feature of the coupled version is the smoothing property resulting in
a flattened error curve whereas the Lattice Boltzmann simulation shows the typical de-
caying oscillations. In order to further investigate the influence of the Navier-Stokes
solver on the Lattice Boltzmann domain, a second coupled simulation was performed on
a 20×20 grid at unit Reynolds number applying the Lattice Boltzmann method in a 8×8
box in the channel center. The simulation could still approximate the parabolic profile
(see Fig. 7) whereas a pure Lattice Boltzmann simulation on the same grid became unsta-
ble resulting in negative distribution functions due to the small relaxation time τ= 0.51
and the very simple initial and boundary conditions.

7 Conclusion

We presented a new two-way coupling method between a finite element Navier-Stokes
solver and a Lattice Boltzmann automaton. The coupling was carried out within the
Peano framework; hereby, a new component for solver-coupling within the framework
turned out to be of essential help, especially with respect to keeping the level of interfer-
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Figure 9: Application of the hybrid Navier-Stokes–Lattice Boltzmann scheme to a two-dimensional directed
flow through a simplified porous medium represented by randomly placed spheres. The two vertical dark-grey
lines represent the boundaries between the two outer Navier-Stokes domains and the Lattice Boltzmann domain
which contains the porous medium.

ence of both solver implementations minimal and reducing the work load for the soft-
ware developer during coupling. The hybrid Lattice Boltzmann–Navier-Stokes method
was tested in a 2D channel flow and showed qualitatively and quantitatively the correct
behaviour. Although the convergence for the Lattice Boltzmann method could not be
improved by the coupling method, a stabilisation of the BGK relaxation time scheme and
a smoothing of the error in the velocity profile could be observed. Further tests will be
carried out to completely investigate the potential and capabilities of the introduced cou-
pling and its quality in more complicated simulation setups. This particularly comprises
time-dependent setups and setups in non-trivial geometries (such as porous media, see
Fig. 9), three-dimensional scenarios and adaptive flow simulations. For adaptive simu-
lations, as mentioned in Section 1, the Navier-Stokes solver might be used on the coarse
grid cells whereas the Lattice Boltzmann automaton is applied to the fine cells incorpo-
rating additional physics that are only relevant on the small scale levels such as Brownian
fluctuations. The mentioned scenarios and setups are subject to current work.

Appendix: On the solution of the minimisation problem

Theorem A.1. Consider the minimisation problem from Eq. (4.6),

min
f neq∈RQ

g( f neq) such that A· f neq=b

with matrix A∈R
K×Q, rank(A)=K, and vector b∈R

K defining the side constraints for mass,
momentum and viscous stress conservation and K=(D+1)(D+2)/2<Q. If all coefficients gii

of g( f neq) are bigger than zero, then Eq. (4.6) has a unique minimum. In particular, the matrix
E :=ADA⊤ with D :=diag(1/(2gii))∈R

Q×Q is symmetric positive definite.

Proof. We define the Lagrange function

h( f neq) := g( f neq)+λ·(b−A f neq) (A.1)
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with Lagrange multipliers λ∈R
K. Differentiating h( f neq) with respect to f

neq
i yields:

∂ f
neq
i

h( f neq)=2gii f
neq
i +

(

gi+
i−1

∑
j=1

gji+
Q

∑
j=i+1

gij

)

−∑
k

λk Aki, i∈{1,··· ,Q}. (A.2)

Requiring a vanishing gradient for the Lagrange function leads to:

1

2gii
∑

k

λk Aki = f
neq
i +

1

2gii

(

gi+
i−1

∑
j=1

gji+
Q

∑
j=i+1

gij

)

, i∈{1,··· ,Q}. (A.3)

Multiplying the equation system from Eq. (A.3) with the matrix A results in E·λ=r with
E defined as above and the right hand side r∈R

K given by

rk :=bk+
Q

∑
i=1

Aki

2gii

(

gi+
i−1

∑
j=1

gji+
Q

∑
j=i+1

gij

)

, k∈{1,··· ,K}. (A.4)

The symmetry of E=ADA⊤ is trivial. For the positive definiteness, consider

x⊤Ex=
K

∑
k=1

xk

Q

∑
i=1

Aki
1

2gii

K

∑
j=1

Ajixj =
Q

∑
i=1

(

K

∑
k=1

Akixk

)2

(A.5)

for any non-zero vector x∈R
K. As rank(A)=K, there is at least one term (∑K

k=1 Akixk)
2>0;

thus, it is
x⊤Ex>0 ∀x∈R

K\{~0}. (A.6)

This completes the proof.
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