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Abstract. Many problems involving the interaction of an elastic structure and a vis-
cous fluid can be solved by the immersed boundary (IB) method. In the IB approach
to such problems, the elastic forces generated by the immersed structure are applied to
the surrounding fluid, and the motion of the immersed structure is determined by the
local motion of the fluid. Recently, the IB method has been extended to treat more gen-
eral elasticity models that include both positional and rotational degrees of freedom.
For such models, force and torque must both be applied to the fluid. The positional
degrees of freedom of the immersed structure move according to the local linear veloc-
ity of the fluid, whereas the rotational degrees of freedom move according to the local
angular velocity. This paper introduces a spatially adaptive, formally second-order ac-
curate version of this generalized immersed boundary method. We use this adaptive
scheme to simulate the dynamics of an elastic ring immersed in fluid. To describe the
elasticity of the ring, we use an unconstrained version of Kirchhoff rod theory. We
demonstrate empirically that our numerical scheme yields essentially second-order
convergence rates when applied to such problems. We also study dynamical instabil-
ities of such fluid-structure systems, and we compare numerical results produced by
our method to classical analytic results from elastic rod theory.

AMS subject classifications: 65M06, 65M50, 74S20, 76D05
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1 Introduction

In the 1970’s, Peskin developed the immersed boundary (IB) method to study the fluid
dynamics of heart valves [1, 2]. Since then, the IB method has become widely used for
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simulating dynamic problems of fluid-structure interaction in which an elastic structure
is immersed in a viscous incompressible fluid [3]. The IB method uses Lagrangian vari-
ables to describe the motion of the elastic structure and Eulerian variables to describe
the motion of the fluid. In the conventional IB formulation of such problems, the elastic
structure applies forces to the fluid that generally act to alter the fluid motion, and the
structure moves according to the local velocity of the fluid.

More recently, a generalization of the IB method was introduced to study the dynam-
ics of elastic rods that are modeled using a version of Kirchhoff rod theory [4,5]. Kirchhoff
rod theory describes the force and torque generated by an elastic rod in terms of the po-
sition of its center line together with a Lagrangian field of orthonormal director vectors
that are attached to that center line. These director vectors are rotational degrees of free-
dom that account for the bending and twisting of the rod. Such representations are useful
for describing the motion of filamentous structures like DNA and cables [6–8]. To couple
such generalized elasticity models to the fluid within the IB framework, it was necessary
to extend the IB formulation to treat elastic structures that are represented in terms of
both positional and rotational degrees of freedom. The key features of this generalized
IB method are that it applies both the force and the torque generated by the elastic rod
to the fluid, and that the elastic rod moves according to both the local linear and angu-
lar velocities of the surrounding fluid. Specifically, the local linear velocity determines
the motion of the center line, and the local angular velocity determines the rotation of
the orthonormal triad of director vectors attached to the structure. So far, this general-
ized IB method has been used exclusively for problems involving the dynamics of elastic
rods immersed in fluid; however, this generalized IB framework is not restricted to such
structural models, and it may ultimately find use in coupling other elasticity models that
include both positional and rotational degrees of freedom, such as elastic shells, to a sur-
rounding fluid.

The original generalized IB method employed a uniform discretization of the equa-
tions of motion that was only first-order accurate [4, 5]. In this work, we introduce an
adaptive, formally second-order accurate version of the method. Our numerical scheme
is based on a discretization approach previously adopted in adaptive versions of the con-
ventional IB method [9–13]. We use a staggered-grid (i.e., maker-and-cell or MAC [14])
version of the IB method, in which the Eulerian fluid pressure is approximated at the
centers of the cells of a locally refined Cartesian grid, and in which the normal compo-
nents of the Eulerian fluid velocity field are approximated at the centers of the faces of
the Cartesian grid cells. Our adaptive three-dimensional discretization is therefore sim-
ilar, but not identical, to the two-dimensional adaptive version of the conventional IB
method described by Roma et al. [9], and to the adaptive three-dimensional IB method
described by Griffith [13]. As discussed by Griffith [15], staggered-grid IB methods ap-
pear to have clear advantages in terms of volume conservation and resolution of pressure
discontinuities when compared to collocated IB discretizations, such as those used in ear-
lier cell-centered adaptive IB methods [10–12].

We assess the convergence properties of our adaptive method via an empirical con-



B. E. Griffith and S. Lim / Commun. Comput. Phys., 12 (2012), pp. 433-461 435

vergence study that indicates that our scheme converges at a second-order rate. Although
we employ an adaptive Eulerian discretization that suffers from a localized reduction in
accuracy at interfaces in Cartesian grid resolution (i.e., at coarse-fine interfaces), our re-
sults suggest that this reduction in accuracy does not dominate the convergence prop-
erties of our scheme at grid spacings that are currently practical for three-dimensional
simulations. Although the conventional IB method has been empirically demonstrated
to converge at a second-order rate for sufficiently smooth problems in two spatial dimen-
sions [10,16,17], we are not aware of similar empirical convergence results in three spatial
dimensions for either the conventional or the generalized IB method.

The instability of open elastic rods and closed elastic rings plays an important role
in the modeling of supercoiling DNA and nonlinear cable dynamics [6–8, 18–20] and is a
topic that is well-suited for study by the generalized IB method. For instance, the twisted
but intrinsically straight elastic ring becomes unstable if the twist about the center line of
the ring is sufficiently large. Such rings show writhing dynamics and form coiled con-
figurations with multiple loops, including figure-of-eight and three- and four-leaf clover
shapes. For smaller twist values, however, the twisted but intrinsically straight elastic
ring remains stable. Thus, there exists a critical twist, below which the ring is stable, and
above which the ring is unstable. As described by Goriely [21], the study of the instabil-
ity of twisted rings dates at least to the work of Michell [22], who determined the critical
twist in terms of the ratio of torsional to flexural rigidity. Michell analyzed the linearized
dynamics of rings and determined the critical value of twist by constructing nontrivial
periodic solutions of the linearized static equations. A century later, Goriely derived the
same criterion for the critical twist through a perturbation analysis. Michell and Goriely
both found that the value of the critical twist depends both on the ratio of the twisting
modulus to the bending modulus, and also on the radius of the ring. As the twist of the
ring increases, the torsional strain energy of the ring increases, and in unstable cases, the
deformations of the ring convert this torsional energy into bending energy. The instabil-
ity of elastic rings with constant intrinsic curvature has also been studied [21, 23–27]. It
has been observed both experimentally and theoretically that the equilibrium configura-
tions of the intrinsically curved ring are different than those of the intrinsically straight
ring [23, 28, 29]. In particular, it is expected that there are no stable solutions without
self-contact in cases in which the ring is intrinsically curved [23, 27].

In this paper, we use the adaptive generalized IB method to perform a dynamic in-
stability analysis of elastic rings that are immersed in a viscous incompressible fluid. We
consider three cases: elastic rings that are intrinsically straight; elastic rings that are in-
trinsically curved; and elastic rings that possess only local regions of intrinsic curvature.
An elastic rod is said to be intrinsically straight or intrinsically curved if the stress-free
configuration of the rod is straight or curved, respectively. For intrinsically straight rings,
we find that the critical values of the twist density τ=τc obtained by our computer sim-
ulations agree well with values predicted by classical elastic rod theory. We also find that
the value of τc is insensitive to the effective thickness of the ring. For twist densities τ
below the critical value τc, the initial circular configuration of the ring is stable, but for
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τ > τc, the initial circular configuration of the ring is unstable. In an unstable case, the
ring adopts a supercoiling configuration. There are two types of supercoiling configu-
rations: plectonemic configurations and toroidal configurations. Plectonemic configura-
tions have a small number of terminal loops, and part of the ring tightly coils around
the other part of the ring. (Typical plectonemic configurations are shown in Fig. 7(a)
with τ= 1.6, and in Fig. 7(b) with τ= 1.2.) Toroidal configurations have multiple termi-
nal loops, and the ring coils around a central axis. (Typical toroidal configurations are
shown in Fig. 7(a) with τ=2, and in Fig. 7(b) with τ=1.6 and 2.) For intrinsically curved
rings, we do not find stable circular, plectonemic, or toroidal configurations. Instead, in
this case, the initially curved ring forms either a multicovered ring at lower twist densi-
ties, or a tangled structure at larger twist densities. Finally, for rings with only localized
regions of nonzero intrinsic curvature, we find the existence of noncircular stable config-
urations without self-contact at zero twist density. For larger twist densities, the locally
curved rings deform into either a plectonemic or a toroidal configuration. These find-
ings are all in good agreement with previous experimental, theoretical, and numerical
results [4–8, 18–23, 23–29].

2 The continuous equations of motion

We provide only a brief overview of the generalized IB method; see Peskin [3] for further
details on the standard IB method, and see Lim et al. [4] and Lim [5] for further details
on the present generalization of the IB method. We use an Eulerian description of the
fluid, with x=(x1,x2,x3)∈U denoting Cartesian physical coordinates and with U ⊂R

3

denoting the physical region occupied by the fluid. We assume for simplicity that the
fluid possesses a constant mass density ρ and dynamic viscosity µ, and that the region U
is periodic. To model the elasticity of the rod, we use a version of Kirchhoff rod theory.
This permits us to describe the three-dimensional elastic rod as a three-dimensional space
curve that is parametrized by a Lagrangian coordinate s∈Ω, with Ω⊂R denoting the
curvilinear coordinate space, with X(s,t)∈U denoting the physical position at time t of a
material point s attached to the space curve, and with

{

D1(s,t),D2(s,t),D3(s,t)
}

denoting
the configuration at time t of an orthonormal triad of director vectors attached to material
point s. The principal differences between the standard Kirchhoff rod model and the rod
model used herein are that, in the standard model, the rod is required to be inextensible
and one of the director vectors is constrained to align with ∂X

∂s , the tangent vector along
the center line of the rod. The present rod model instead includes forces that act to keep
the rod approximately inextensible and to keep D3 approximately aligned with ∂X

∂s . This
formulation can therefore be viewed as a penalty method for the standard Kirchhoff rod
model. Although the Lagrangian parameter s need not correspond to arc length along
the space curve, the forces generated by the model that act to keep the rod approximately
inextensible also act to deform the structure so that s corresponds approximately to arc
length along the center line of the rod.
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The continuous equations of motion of the generalized IB method are [4, 5]

ρ

(

∂u

∂t
(x,t)+u(x,t)·∇u(x,t)

)

=−∇p(x,t)+µ∇2u(x,t)+f(x,t)+
1

2
∇×n(x,t), (2.1a)

∇·u(x,t)=0, (2.1b)

f(x,t)=
∫

Ω
F(s,t)Φw(x−X(s,t))ds, (2.1c)

n(x,t)=
∫

Ω
N(s,t)Φw(x−X(s,t))ds, (2.1d)

U(s,t)=
∫

U
u(x,t)Φw(x−X(s,t))dx, (2.1e)

W(s,t)=
1

2

∫

U
(∇×u(x,t))Φw(x−X(s,t))dx, (2.1f)

∂X

∂t
(s,t)=U(s,t), (2.1g)

∂Di

∂t
(s,t)=W(s,t)×Di(s,t), for i=1,2,3, (2.1h)

in which u(x,t) is the Eulerian fluid velocity field; p(x,t) is the Eulerian fluid pressure;
f(x,t) and n(x,t) are the Eulerian elastic force and torque densities (i.e., densities with
respect to the physical coordinate system, so that, e.g., f(x,t)dx has units of force); F(s,t)
and N(s,t) are the Lagrangian elastic force and torque densities (i.e., densities with re-
spect to the material coordinate system, so that, e.g., F(s,t)ds has units of force); Φw(x)=
Φw(x1)Φw(x2)Φw(x3) is a smooth, compactly supported kernel function that mediates
coupling between Lagrangian and Eulerian variables; and U(s,t) and W(s,t) are the lin-
ear and angular velocities of the center line of the rod, respectively. Using the same ker-
nel function Φw in Eqs. (2.1c)-(2.1f) ensures that energy is conserved during Lagrangian-
Eulerian interaction in the continuous equations of motion [4].

The kernel function Φw is a smooth function with fixed, finite support. This implies
that, generally,

U(s,t) 6=u(X(s,t),t) and W(s,t) 6= 1

2
(∇×u)(X(s,t),t), (2.2)

i.e., that the linear and angular velocities of material point s of the rod are generally
different from the linear and angular velocities of the fluid at position X(s,t). Instead, the
linear and angular velocities of material point s are the local averages of the linear and
angular velocities of the fluid in the vicinity of X(s,t). Although many choices for Φw are
possible, we set Φw(r)=

1
w φ
(

r
w

)

, with

φ(r)=























1

8

(

3−2|r|+
√

1+4|r|−4r2

)

, 0≤|r|<1,

1

8

(

5−2|r|−
√

−7+12|r|−4r2

)

, 1≤|r|<2,

0, 2≤|r| .

(2.3)
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This function φ(r) is the four-point function described by Peskin [3]. It is constructed to
satisfy several discrete conditions that are motivated by spatial discretizations of the con-
tinuous equations of motion of the standard IB formulation. In the standard IB method,
φ(r) appears only in the discretized equations of motion. In this generalized IB method,
however, φ(r) appears in both the continuous equations and also in the discretization of
those equations. Moreover, w is a physical parameter of the continuous equations of mo-
tion. This is unlike the standard IB method, in which w is a numerical parameter that is
generally set to be proportional to the spatial meshwidth of the Eulerian grid used to dis-
cretize the incompressible Navier-Stokes equations. Nonetheless, for the particular form
of the function Φw(x) used in this work, it is necessary that w be an integer multiple of
the Eulerian meshwidth to ensure that total force and total torque are conserved during
Lagrangian-Eulerian interaction. Thus, a particular choice of the physical parameter w
constrains the Eulerian discretizations in which force and torque are conserved, and a
particular choice of the Eulerian discretization likewise constrains the choices of w.

Because the value of the physical parameter w is proportional to the size of the sup-
port of Φw, its value can be viewed as controlling the effective thickness of the rod.
Specifically, larger (smaller) values of w will yield rods with larger (smaller) effective
thicknesses. This notion of the effective thickness of the immersed rod is primarily qual-
itative, and a precise quantification of the relationship between the value of w and the
rod thickness has not yet been established. One approach that could yield such a quan-
tification is an extension of the analysis of Bringley and Peskin [30], who considered the
effective size of rigid spheres and slender bodies in the context of the standard IB method
in the Stokesian regime.

We now provide an overview of the rod model used in the present work. Let Frod(s,t)
and Nrod(s,t) denote the force and moment transmitted across a section of the elastic rod
at material point s at time t. The Lagrangian force and torque densities, F(s,t) and N(s,t),
that are transmitted to the fluid are determined from Frod and Nrod by the equations of
linear and angular momentum balance, i.e.,

F=
∂Frod

∂s
, (2.4a)

N=
∂Nrod

∂s
+

∂Nrod

∂s
×Frod, (2.4b)

so that

f(x,t)=
∫

Ω

∂Frod

∂s
(s,t)Φw(x−X(s,t))ds, (2.5a)

n(x,t)=
∫

Ω

(

∂Nrod

∂s
(s,t)+

∂Nrod

∂s
(s,t)×Frod(s,t)

)

Φw(x−X(s,t))ds. (2.5b)

Frod and Nrod are determined by the constitutive equations of the special Cosserat theory
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of rods [31]. Specifically,

Frod=F1D1+F2D2+F3D3, (2.6a)

Nrod=N1D1+N2D2+N3D3, (2.6b)

N1 = a1

(

∂D2

∂s
·D3−κ1

)

, (2.6c)

N2 = a2

(

∂D3

∂s
·D1−κ2

)

, (2.6d)

N3 = a3

(

∂D1

∂s
·D2−τ

)

, (2.6e)

F1=b1D1 · ∂X

∂s
, (2.6f)

F2=b2D2 · ∂X

∂s
, (2.6g)

F3=b3

(

D3 · ∂X

∂s
−1

)

. (2.6h)

Here, a1 and a2 are the bending moduli of the rod about director vectors D1 and D2,
respectively, and a3 is the twisting modulus of the rod about D3. (Recall that D3 is ap-
proximately aligned with ∂X

∂s .) In this work, we take a1 = a2 = a, which corresponds to
the case in which the rod has a circular cross section with axially symmetric material
properties. The intrinsic curvature of the rod is

κ=
√

κ2
1+κ2

2, (2.7)

and the intrinsic twist of the rod is τ. The parameters b1 and b2 are shear moduli, and the
parameter b3 is a stretching modulus. In the limit bi →∞, i=1,2,3, this model reduces to
the standard Kirchhoff rod model, in which the rod is inextensible, s corresponds to arc
length along the center line of the rod, and D3= ∂X

∂s is the unit tangent vector aligned with
the center line of the rod. For finite values of bi, i=1,2,3, Eqs. (2.6f)-(2.6h) act to keep the
rod approximately inextensible, to ensure that s is approximately the arc length along the
space curve, and to align D3 approximately with ∂X

∂s . For simplicity, we take b1 = b2 = b,
and we also generally set b3=b.

As has been done previously with the generalized IB method [4], we consider the
case in which the elastic rod is a closed ring, and we choose the initial configuration of
the ring to be a perturbation of an equilibrium solution of Eqs. (2.4a)-(2.4b) and (2.6a)-
(2.6h) in the absence of external loading conditions. This configuration is formulated in
terms of cylindrical coordinates (r,θ,z) with unit vectors

r(θ)=(cos(θ),sin(θ),0), (2.8a)

θ(θ)=(−sin(θ),cos(θ),0), (2.8b)

z=(0,0,1). (2.8c)
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The initial configuration of the ring is given for 0≤ s≤2πr0 by

X(s)= r0 cos(β)r(s/r0), (2.9a)

D1(s)=cos(qs/r0+ǫsin(s/r0))E(s)+sin(qs/r0+ǫsin(s/r0))r(s/r0), (2.9b)

D2(s)=−sin(qs/r0+ǫsin(s/r0))E(s)+cos(qs/r0+ǫsin(s/r0))r(s/r0), (2.9c)

D3(s)=cos(β)θ(s/r0)+sin(β)z, (2.9d)

in which r0 is the radius of the unstressed ring,

E(s)=−sin(β)θ(s/r0)+cos(β)z (2.10)

is a reference vector that is orthogonal to D3 within the plane spanned by θ and z, and

sin(β)=− a3q

br2
0+a3−a

. (2.11)

The parameter q is the number of turns along the rod, and ǫ is a perturbation parameter.
Note that if q is integer valued, then the orthonormal director vectors are continuous at
s=0, which is the periodic image of s=2πr0.

This formulation provides us with two ways of assigning the intrinsic twist of the
ring: by setting the value of the parameter q along with τ=0, or by setting the values of
the strain vector (κ1,κ2,τ) along with q=0. The relation between q and τ is given by

τ=
2πq

c
=

q

r0
, (2.12)

in which c=2πr0 is the circumference of the unstressed ring. In this work, r0 is chosen so
that τ=0.4q.

3 Spatial discretization

Our numerical scheme employs a generalization of an adaptive discretization approach
used previously with the conventional IB method [9–13]. Specifically, the Eulerian equa-
tions are approximated on a three-dimensional block-structured hierarchical Cartesian
grid, and the Lagrangian equations are approximated on a moving curvilinear mesh that
is aligned with the immersed structure. In this approach, the Lagrangian mesh is not
constrained to conform to the configuration of the hierarchical Cartesian grid. Instead,
the Eulerian discretization is adaptively updated to conform to the dynamic configura-
tion of the immersed structure. This is done in a manner that ensures that the immersed
structure remains embedded within the finest level of the locally refined Cartesian grid.
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3.1 Lagrangian discretization

We discretize the Lagrangian equations on a one-dimensional node-centered mesh that
is aligned with the center line of the rod. The Lagrangian mesh spacing is taken to be
uniform and is denoted by ∆s. We use the index l to label the curvilinear mesh nodes,
with, e.g., Xl and Fl indicating the position and Lagrangian force density associated with
node l of the Lagrangian mesh. The nodal values Fl and Nl are computed using the
nodal values Xl along with values of Frod and Nrod that are computed at intermediate
positions sl+1/2. A standard second-order accurate approximation to ∂

∂s is used to com-

pute the discrete approximations to F, N, Frod, and Nrod. A slight complication is that
the discretization requires approximations to the triad of orthonormal director vectors at
intermediate positions sl+1/2. These values must be determined in a manner that ensures
that the intermediate values

{

D1
l+1/2,D2

l+1/2,D3
l+1/2

}

form an orthonormal triad. Com-
plete details of this Lagrangian spatial discretization are presented by Lim et al. [4]. We
consider only closed rings in the present work, and therefore we simply impose periodic
boundary conditions on the curvilinear mesh.

3.2 Eulerian discretization

We discretize the Eulerian equations on a hierarchical Cartesian grid that is composed of
a collection of nested grid levels. The levels of the grid hierarchy are labeled ℓ=0,··· ,ℓmax,
with ℓ = 0 indicating the coarsest level in the hierarchy and with ℓ = ℓmax indicating
the finest level. Each grid level is composed of one or more rectangular Cartesian grid
patches, and all grid patches of a particular grid level ℓ of the hierarchy share the same
Cartesian grid spacings, which are denoted ∆xℓ1, ∆xℓ2, and ∆xℓ3. For simplicity, we take
∆xℓ1=∆xℓ2=∆xℓ3=hℓ, and we denote by Nℓ the number of Cartesian grid cells in each coor-
dinate direction that would be required to construct a uniform-grid discretization of level
ℓ. With L denoting the length of the computational domain U, we have that hℓ= L/Nℓ.
The grid spacings on adjacent levels ℓ and ℓ−1 of the grid hierarchy are not arbitrary;
instead, they are related by an integer refinement ratio n, so that hℓ= hℓ−1/n. Moreover,
the faces of the level ℓ grid patches are required to coincide with the faces of the level
ℓ−1 grid cells. The grid levels are constructed to satisfy a proper nesting condition [32],
which requires that the physical region covered by the union of the level ℓ grid patches
be strictly contained within the region covered by the union of the level ℓ−1 grid patches.
Because it is difficult to visualize such locally refined grids in three spatial dimensions, a
representative two-dimensional locally refined Cartesian grid is shown in Fig. 1.

To approximate the incompressible Navier-Stokes equations, we employ an adaptive
version of a staggered-grid discretization (i.e., a marker-and-cell or MAC scheme [14]);
see Fig. 2. Briefly, the pressure is approximated at the centers of the Cartesian grid cells,
and the normal components of the velocity are approximated at the centers of the faces
of the Cartesian grid cells. At coarse-fine interfaces in the Cartesian grid, u is described
in terms of the fine-grid values that are defined along such interfaces, not in terms of the
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Level 0

Level 1

Level 2

Figure 1: Two-dimensional block-structured hierarchical Cartesian grid consisting of three nested levels, with
refinement ratio n=4 between levels, and with a Lagrangian structure embedded in the finest level of the grid
hierarchy. To simplify our scheme, we construct the Cartesian grid hierarchy so that the support of Φw(x−Xl)
is contained within the finest level of the hierarchy for each Lagrangian mesh node l. This has the effect of
ensuring that the immersed structure remains embedded in the finest level of the grid hierarchy throughout the
computation.

Figure 2: Two-dimensional adaptive staggered-grid (MAC) Eulerian discretization. The fluid pressure p is
approximated at the centers of the Cartesian grid cells, and the normal components of the fluid velocity u
are approximated at the centers of the faces of the Cartesian grid cells. At coarse-fine interfaces in the grid
hierarchy, u is described in terms of the fine-grid values that are defined along that interface.

underlying coarse-grid values. We use indices (i, j,k) to label the centers of the Carte-
sian grid cells and indices (i− 1

2 , j,k), (i, j− 1
2 ,k), and (i, j,k− 1

2) to label the centers of the
x1, x2, and x3 faces of the Cartesian grid cells, and we use the notation pi,j,k, (u1)i− 1

2 ,j,k,

(u2)i,j− 1
2 ,k, and (u3)i,j,k− 1

2
to denote the values of p and u associated with those locations,

respectively.

To construct composite-grid approximations to the Eulerian spatial differential oper-
ators of the continuous equations, it is convenient to augment each Cartesian grid patch
with a buffer of ghost cells, so that we may use standard uniform-grid finite-difference
discretizations of these operators within each patch. Whenever possible, ghost-cell val-
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(a)

(b)

(c)

Figure 3: Two-dimensional coarse-fine interface interpolation scheme for (a) cell-centered quantities, (b) face-
centered quantities that are normal to the coarse-fine interface, and (c) face-centered quantities that are tan-
gential to the coarse-fine interface. Ghost cells associated with the fine grid patch are indicated by dashed
lines. In each case, we first interpolate values in the direction tangential to the coarse-fine interface using either
quadratic or cubic interpolation, and then interpolate values in the direction normal to the coarse-fine interface
using quadratic interpolation. Values that are interpolated in the initial coarse-grid interpolation are indicated
by squares, and values that are interpolated in the final fine-grid interpolation are indicated by circles.

ues associated with a particular level ℓ grid patch are obtained by copying interior values
from a neighboring level ℓ grid patch. This is not possible at interfaces in grid resolution,
however. Values in ghost cells in the vicinity of such coarse-fine interfaces are obtained by
specialized interpolation procedures that use both coarse-grid and fine-grid values. Two-
dimensional versions of these coarse-fine interface interpolation procedures are summa-
rized in Fig. 3. These procedures are extensions of the cell-centered coarse-fine interface
interpolation approach of Minion [33], Martin and Colella [34], and Martin et al. [35].
Briefly, we first compute an intermediate value by interpolating coarse-grid values in the
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directions tangential to the coarse-fine interface using tensor-product interpolation rules
based on third- or fourth-order one-dimensional interpolation rules. We then compute
the necessary ghost-cell values using quadratic interpolation in the direction normal to
the coarse-fine interface. Any coarse-grid value within the interpolation stencil that is
covered by fine-grid values is defined in terms of those fine-grid values by tricubic inter-
polation. These interpolation schemes yield at least third-order accurate interpolants at
the ghost cells adjacent to interfaces in grid resolution, so that gradients and curls may
be approximated with at least second-order accuracy, and so that the viscous terms may
be approximated there with at least local first-order accuracy. See Griffith [13] for fur-
ther details on this coarse-fine interface interpolation scheme. We emphasize that, away
from coarse-fine interfaces, our composite-grid finite-difference discretization is second-
order accurate, so that our discretization of the incompressible Navier-Stokes equations
is globally second-order accurate.

With the ghost-cell values determined in this manner, we define composite-grid ap-
proximations to ∇·, ∇, ∇×, and ∇2, as follows. To define ∇h ·u≈∇·u, we first ensure
mass conservation at coarse-fine interfaces by recursively defining the coarse-grid values
of u to be the averages of any overlying fine-grid values. We then compute at each cell
center on level ℓ

(∇h ·u)i,j,k=
(u1)i+ 1

2 ,j,k−(u1)i− 1
2 ,j,k

hℓ
+
(u2)i,j+ 1

2 ,k−(u2)i,j− 1
2 ,k

hℓ
+
(u3)i,j,k+ 1

2
−(u3)i,j,k− 1

2

hℓ
. (3.1)

Notice that, unlike the remaining finite-difference approximations, no ghost cell values
are required to evaluate ∇h ·u within the patch interior. To define ∇h p≈∇p, we compute
at each cell face on level ℓ

(∇h p)i− 1
2 ,j,k=

pi,j,k−pi−1,j,k

hℓ
, (3.2a)

(∇h p)i,j− 1
2 ,k=

pi,j,k−pi,j−1,k

hℓ
, (3.2b)

(∇h p)i,j,k− 1
2
=

pi,j,k−pi,j,k−1

hℓ
. (3.2c)

To define ∇h×u≈∇×u, we compute at each x1 cell face on level ℓ

(∇h×u)i− 1
2 ,j,k=

1

8hℓ

(

(u3)i−1,j+1,k− 1
2
−(u3)i−1,j−1,k− 1

2
+(u3)i,j+1,k− 1

2
−(u3)i,j−1,k− 1

2

+(u3)i−1,j+1,k+ 1
2
−(u3)i−1,j−1,k+ 1

2
+(u3)i,j+1,k+ 1

2
−(u3)i,j−1,k+ 1

2

)

+
1

8hℓ

(

(u2)i−1,j− 1
2 ,k+1−(u2)i−1,j− 1

2 ,k−1+(u2)i,j− 1
2 ,k+1−(u2)i,j− 1

2 ,k−1

+(u2)i−1,j+ 1
2 ,k+1−(u2)i−1,j+ 1

2 ,k−1+(u2)i,j+ 1
2 ,k+1−(u2)i,j+ 1

2 ,k−1

)

. (3.3)
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Similar formulae are used to compute the remaining components of ∇h×u on the x2 and
x3 cell faces. To define ∇2

hu≈∇2u, we compute at each x1 face on level ℓ

(∇2
hu1)i− 1

2 ,j,k=
(u1)i+ 1

2 ,j,k−2(u1)i− 1
2 ,j,k+(u1)i− 3

2 ,j,k

(hℓ)
2

+
(u1)i− 1

2 ,j+1,k−2(u1)i− 1
2 ,j,k+(u1)i− 1

2 ,j−1,k

(hℓ)
2

+
(u1)i− 1

2 ,j,k+1−2(u1)i− 1
2 ,j,k+(u1)i− 1

2 ,j,k−1

(hℓ)
2

. (3.4)

Similar formulae are used to compute the remaining components of ∇2
hu on the x2 and

x3 cell faces. For further details, see Griffith [13].

3.3 Lagrangian-Eulerian interaction

We construct the locally refined Cartesian grid so that the support of Φw(x−Xl) is strictly
contained within the finest level of grid for each Lagrangian node l; see Section 5 be-
low. This constraint on the configuration of the locally refined grid greatly simplifies our
adaptive discretization because it allows us to use approximations to Eqs. (2.1c)-(2.1f), the
equations of Lagrangian-Eulerian interaction, that involve only Eulerian values defined
on the finest level of the grid.

With f=( f1, f2, f3) and F=(F1,F2,F3), we approximate Eq. (2.1c) componentwise by

( f1)i− 1
2 ,j,k=∑

l

(F1)l Φw(xi− 1
2 ,j,k−Xl)∆s, (3.5a)

( f2)i,j− 1
2 ,k=∑

l

(F2)l Φw(xi,j− 1
2 ,k−Xl)∆s, (3.5b)

( f3)i,j,k− 1
2
=∑

l

(F3)l Φw(xi,j,k− 1
2
−Xl)∆s, (3.5c)

on level ℓmax. In regions that are not covered by the finest level of the grid hierarchy, f is
defined to equal zero. Analogous formulae are used to approximate Eq. (2.1d).

With u=(u1,u2,u3) and U=(U1,U2,U3), we approximate Eq. (2.1e) componentwise
by

(U1)l =∑
i,j,k

(u1)i− 1
2 ,j,k Φw(xi− 1

2 ,j,k−Xl)
(

hℓmax

)3
, (3.6a)

(U2)l =∑
i,j,k

(u2)i,j− 1
2 ,k Φw(xi,j− 1

2 ,k−Xl)
(

hℓmax

)3
, (3.6b)

(U3)l =∑
i,j,k

(u3)i,j,k− 1
2

Φw(xi,j,k− 1
2
−Xl)

(

hℓmax

)3
, (3.6c)
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in which we again consider only Cartesian grid cells on the finest level of the hierarchical
grid. Analogous formulae are used to approximate Eq. (2.1f).

Eqs. (3.5a)-(3.5c) and (3.6a)-(3.6c) implicitly define discrete operators that we denote
by S [X] and S

∗[X], respectively. With this notation, f=S [X]F, n=S [X]N, U=S
∗[X]u,

and W= 1
2S

∗[X] (∇h×u).

4 Temporal discretization

Unlike earlier versions of the generalized IB method [4, 5], we employ herein a second-
order accurate timestepping scheme to advance u, p, X, and Di, i= 1,2,3, over the time
interval [tn,tn+1]= [n∆t,(n+1)∆t]. The approach that we take is similar to semi-implicit
timestepping schemes used previously with the conventional IB method [10–12, 16].

We first compute initial approximations Xn+1,∗ and (Di)n+1,∗ to the values of X and
Di, i=1,2,3, at time tn+1 via

Un =S
∗ [Xn]un, (4.1a)

Wn=
1

2
S

∗ [Xn] (∇h×un), (4.1b)

Xn+1,∗
l −Xn

l

∆t
=Un

l , (4.1c)

(Di
l)

n+1,∗=R

(

Wn
l

|Wn
l |

,|Wn
l |∆t

)

(Di
l)

n, (4.1d)

in which the matrix R(e,θ) is a rotation by an angle θ about the axis aligned with the unit
vector e. The rotation matrix R(e,θ) is defined by

R(e,θ)=(cosθ)I+(1−cosθ)eeT+(sinθ)(e×), (4.2)

in which (e×) is the unique antisymmetric matrix such that (e×)v=e×v for all v. Using
the values defined at time tn along with the predicted values defined at time tn+1, we
compute approximations to the current and predicted values of F and N at times tn and
tn+1. These quantities are spread to the Cartesian grid via

fn =S [Xn]Fn, (4.3a)

nn =S [Xn]Nn, (4.3b)

fn+1,∗=S

[

Xn+1,∗
]

Fn+1,∗, (4.3c)

nn+1,∗=S

[

Xn+1,∗
]

Nn+1,∗. (4.3d)

For convenience, we define timestep-centered approximations to f and n via

fn+ 1
2 =

1

2

(

fn+fn+1,∗
)

, (4.4a)

nn+ 1
2 =

1

2

(

nn+nn+1,∗
)

. (4.4b)
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These timestep-centered values are the discrete Eulerian force and torque densities that
are applied to the fluid.

Next, we use a Runge-Kutta/Crank-Nicolson scheme to solve the incompressible
Navier-Stokes equations. We first solve

ρ

(

un+1,∗−un

∆t
+An

)

=−∇h pn+ 1
2 ,∗+

µ

2
∇2

h

(

un+un+1,∗
)

+fn+ 1
2 +

1

2
∇h×nn+ 1

2 , (4.5a)

∇h ·un+1,∗=0, (4.5b)

in which un+1,∗ is a discretely divergence-free intermediate approximation to u at time
tn+1, pn+1/2,∗ is an intermediate approximation to p at time tn+1, and An ≈ [un ·∇un] is
computed by a staggered-grid version [36] of the xsPPM7 variant [37] of the piecewise
parabolic method (PPM) [38]. We then obtain a final approximation to u at time tn+1 and
to p at time tn+1/2 by solving

ρ

(

un+1−un

∆t
+

1

2

(

An+An+1,∗
)

)

=−∇h pn+ 1
2 +

µ

2
∇2

h

(

un+un+1
)

+fn+ 1
2 +

1

2
∇h×nn+ 1

2 , (4.6a)

∇h ·un+1=0, (4.6b)

in which An+1,∗≈
[

un+1,∗ ·∇un+1,∗]. Notice that solving Eqs. (4.5a)-(4.5b) and Eqs. (4.6a)-

(4.6b) for (un+1,∗,pn+1/2,∗) and for (un+1,pn+1/2), respectively, requires only a solver for
an implicit discretization of the time-dependent incompressible Stokes equations. In our
computations, we solve these systems of equations via the FGMRES algorithm [39], and
we use the projection method as a preconditioner [36]. We use the most recently com-
puted approximations to u and p as initial guesses for this iterative solver.

Finally, having determined un+1 and pn+1/2, we obtain final approximations to X and
Di, i=1,2,3, at time tn+1 by computing

Un+1,∗=S
∗
[

Xn+1,∗
]

un+1, (4.7a)

Wn+1,∗=
1

2
S

∗
[

Xn+1,∗
](

∇h×un+1
)

, (4.7b)

and by evaluating

Xn+1
l −Xn

l

∆t
=Un+ 1

2 , (4.8a)

(Di
l)

n+1=R





W
n+ 1

2

l
∣

∣W
n+ 1

2

l

∣

∣

,
∣

∣W
n+ 1

2

l

∣

∣∆t



(Di
l)

n, (4.8b)

in which Un+1/2= 1
2

(

Un+Un+1,∗) and Wn+1/2= 1
2

(

Wn+Wn+1,∗).
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5 Adaptive mesh refinement

The locally refined grid is constructed, either at the initial time or at some subsequent
time, via a simple recursive procedure. First, level 0 of the grid hierarchy is defined
to be a uniform-grid discretization of the physical domain U composed of one or more
nonoverlapping Cartesian grid patches. Next, having generated levels 0,··· ,ℓ, we con-
struct level ℓ+1 by (1) tagging cells on level ℓ for refinement, (2) covering the tagged level
ℓ grid cells by rectangular boxes generated by the Berger-Rigoutsos point-clustering algo-
rithm [40], and (3) refining the generated boxes by the integer refinement ratio n to form
the level ℓ+1 grid patches. This process terminates once levels ℓ= 0,··· ,ℓmax have each
been constructed. In our scheme, cells are tagged for refinement whenever they contain
one or more Lagrangian mesh nodes. A tag buffer ensures that cells within the support
of Φw(x−Xl) for each Lagrangian mesh node l are also tagged for refinement. These tag-
ging criteria ensure that the immersed structure is embedded within the finest level of
the Cartesian grid hierarchy and, moreover, that the support of Φw(x−Xl) is contained
within the finest level of the grid for each Lagrangian node l. This latter property al-
lows us to use the simple discretization of the Lagrangian-Eulerian interaction equations
described in Section 3.3.

The locally refined grid is regenerated at a fixed interval that is determined by the
composite-grid CFL condition,

∆t≤C min
0≤ℓ≤ℓmax

hℓ

‖u(xi,j,k)‖∞

, (5.1)

in which C is the CFL number. With the present scheme, a necessary condition for sta-
bility is C ≤ 1

2 . We regenerate the Cartesian grid hierarchy every ⌊1/C⌋ ≥ 2 timesteps.
Doing so ensures that the immersed structure cannot escape from the finest level of the
grid hierarchy.

When we regenerate the Cartesian grid hierarchy, we must transfer the values of u
and p from the old locally refined grid to the new one. In newly refined regions of U,
we use a recursive version of the divergence- and curl-preserving interpolation scheme
of Tóth and Roe [41] to define u, and we use trilinear interpolation to define p. In newly
coarsened regions of U, we define u and p to be the averages of the overlying fine-grid
values of the old grid hierarchy. This procedure ensures that u remains discretely diver-
gence free. In particular, it is not necessary to project the interpolated velocity field to
enforce the discrete incompressibility condition.

6 Implementation

This adaptive version of the generalized IB method is implemented in the IBAMR soft-
ware framework [42], an open-source library for developing fluid-structure interaction
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(a) t=10 s (b) t=15 s (c) t=20 s

(d) t=25 s (e) t=30 s (f) t=35 s

Figure 4: Time course for a three-level adaptive simulation with Nℓmax=256 and refinement ratio n=4 between
levels. The immersed elastic ring is shown in silver. For clarity, only the grid patches that comprise the finest
level of the grid hierarchy are shown. Notice that high spatial resolution is deployed only in the vicinity of the
immersed elastic ring.

models that use the IB method. The IBAMR framework uses SAMRAI [43–45] to man-
age the locally refined Cartesian grid, and it uses PETSc [46–48] to manage the immersed
Lagrangian mesh and to provide iterative solvers such as FGMRES. IBAMR provides
custom implementations of multilevel multigrid preconditioners that are based on the
FAC algorithm [49–51]. Uniform-grid geometric multigrid solvers from the hypre li-
brary [52, 53] are used by IBAMR as coarse-grid solvers in its cell- and face-centered
implementations of the FAC algorithm. In this work, these multilevel preconditioners
are used as subdomain solvers in the projection method-based preconditioner for the
time-dependent incompressible Stokes equations [36].

7 Empirical convergence study

We first perform an empirical convergence study to demonstrate the convergence prop-
erties of our adaptive discretization. These simulations were performed on the cardiac

cluster at New York University, which is comprised of 80 Sun Microsystems, Inc., Sun
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Table 1: Numerical and physical parameters for the simulations of Section 7.

parameter symbol value

length of computational domain U L 10 cm

number of grid levels ℓmax+1 2

refinement ratio between levels n 4

effective number of cells on level ℓmax Nℓmax 64, 128, 256, 512

effective fine-grid spacing hℓmax 1.5625, 0.78125, 0.390625, 0.1953125 mm

radius of unstressed ring r0 2.5 cm

timestep size ∆t 0.02, 0.01, 0.005, 0.0025 s

fluid density ρ 1.0 g/cm3

fluid viscosity µ 0.01 g/(cm·s)
bending modulus a= a1 = a2 0.3 g·cm3/s2

twist modulus a3 0.3 g·cm3/s2

shear modulus b=b1 =b2 54 g·cm/s2

stretch modulus b3 36 g·cm/s2

Blade X8440 server modules interconnected by an InfiniBand network. Each compute
server is equipped with four 2.3 GHz quad-core AMD Barcelona 8356 processors with
2 GB memory per core. Simulations were run in parallel using as many as six quad-
processor quad-core nodes, for a total of 96 cores per job.

Using the physical and numerical parameters shown in Table 1, we consider a twisted
elastic ring with q = 5, ǫ = 0.01, and κ = τ = 0. We consider N = Nℓmax = 64, 128, 256,
and 512, and we set w= 1.5625 mm, so that the kernel function Φw(x) is supported on
at least a 4×4×4 box of Cartesian grid cells in each case that we consider. The elastic
ring is rediscretized for each value of Nℓmax so that ∆s≈ 1

2 hℓmax . For the purposes of this
convergence study, we also apply a small additional Eulerian background force to the
fluid,

fb(x,t)=(0,0,10sin(2πx1/L)sin(2πx2/L)exp(−10t)t). (7.1)

This additional background force ensures that the final orientation of the ring is consis-
tent for all grid spacings. The dynamics of the ring are shown in Fig. 5. We estimate the

(a) t=5 s (b) t=10 s (c) t=15 s (d) t=20 s (e) t=30 s

Figure 5: Time course of ring configurations from the convergence study of Section 7. The ring has essentially
reached its final equilibrium configuration by time t=30 s.
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Figure 6: Empirical L∞ convergence rates as functions of time for N = Nℓmax = 64 and 128. The empirical
convergence rate is defined by log2
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∥
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∥
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convergence rate of the method for N=Nℓmax in a standard way by computing

log2

(
∥

∥XN−X2N
∥

∥

∞
∥

∥X2N−X4N
∥

∥

∞

)

, (7.2)

in which here, XN denotes the solution obtained on a locally refined Cartesian grid with
N = Nℓmax . Results for N = Nℓmax = 64 and 128 are summarized in Fig. 6. These data
suggest that the position of the ring is converging at an essentially second-order rate for
the present problem, although these data also suggest that the scheme may not have yet
reached its asymptotic rate of convergence. Despite the fact that we use a locally-refined
Eulerian discretization that suffers from a localized reduction in accuracy at coarse-fine
interfaces, these convergence results also suggest that this reduction in accuracy is un-
likely to dominate the error in the method at grid spacings that are currently practical for
three-dimensional simulations.

8 Dynamic stability analysis

With the physical and numerical parameters shown in Table 2, we use the adaptive gen-
eralized IB method to study the stability of various conformations of the elastic ring.
Most of these simulations were performed on the cardiac cluster at New York Univer-
sity that was described previously in Section 7. Simulations that were run in parallel
used two quad-processor quad-core nodes, for a total of 24 cores. Except where other-
wise noted, throughout this section, w=2hℓmax , so that the width of the support of Φw is
8hℓmax = 6.25 mm. In most cases, the peak CFL number in a particular simulation is less
than approximately 0.3, although in some cases the peak CFL number may be as high as
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Table 2: Numerical and physical parameters for the simulations of Section 8.

parameter symbol value

length of computational domain U L 10 cm

number of grid levels ℓmax+1 3

refinement ratio between levels n 4

effective number of cells on level ℓmax Nℓmax 128

effective fine-grid spacing hℓmax 0.78125 mm

radius of unstressed ring r0 2.5 cm

timestep size ∆t 0.01 s

fluid density ρ 1.0 g/cm3

fluid viscosity µ 0.01 g/(cm·s)
bending modulus a= a1 = a2 0.3 g·cm3/s2

twist modulus a3 0.1–0.6 g·cm3/s2

shear modulus b=b1 =b2 54 g·cm/s2

stretch modulus b3 54 g·cm/s2

approximately 0.45. In general, higher twist densities result in larger flow velocities and
larger peak CFL numbers. We remark, however, that the rod and the surrounding fluid
are nearly quiescent for the significant portion of the simulation that occurs prior to the
onset of the instability.

We first verified that corresponding values of the twist density τ (with q set to zero)
and the twist number q (with τ set to zero) yield the same equilibrium configurations for
τ=0.4,0.8,··· ,2. Note that these values of τ correspond to q=1,2,··· ,5. These stable equi-
libria are shown as a function of τ in Fig. 7. The corresponding configurations obtained
by varying q are the same as those of Fig. 7 and therefore are not shown. For simplicity,
for the remainder of this work, we set q=0 and use τ to control the intrinsic twist of the
ring.

Fig. 7 shows representative stable equilibrium configurations for various intrinsic
twist densities and for two different choices of the ratio of twisting modulus to bend-
ing modulus, a3/a. In these simulations, the ring is intrinsically straight, i.e., κ= 0. For
small values of the twist density, the twisted ring remains stable, but for sufficiently large
twist values, the ring becomes unstable, undergoes a writhing instability, and eventu-
ally reaches a stable coiled configuration. In this process, the torsional energy related to
the twist of the elastic ring is converted into bending energy by the change in the shape
of the ring. We remark that the limiting configurations shown in Fig. 7 are the same as
those achieved in previous simulations using a uniform-grid version of the generalized
IB method [4].

According to Michell [22] and Goriely et al. [21, 54], the critical value of twist that
separates stable and unstable configurations of an intrinsically straight ring is given by

τc=
√

3
a

a3r0
. (8.1)
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(a) a3=
2
3 a (b) a3=

3
3 a

τ=0.4 τ=0.4

τ=0.8 τ=0.8

τ=1.2 τ=1.2

τ=1.6 τ=1.6

τ=2 τ=2

Figure 7: A collection of representative stable equilibria in which a3/a, the ratio of twisting to bending modulus,
is 2/3 or 3/3 for various values of the intrinsic twist density τ. Recall that the total number of twists in the
ring is 2.5τ. The bending modulus is set to a=0.3. The ring here is intrinsically straight, i.e., κ=0.

Defining the total twist angle in the ring by

Tw=2πr0τ, (8.2)

the critical total twist angle is

Tc
w=2π

√
3

a

a3
. (8.3)
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Figure 8: Comparison of the critical value of the twist density obtained from computational experiments with
theoretical values from elastic rod theory depending on the ratio of twisting to bending modulus. The number
of full turns is indicated for each value of the twist density.

Thus, the twisted ring becomes unstable for Tw > Tc
w, independent of the radius of the

ring. In other words, for a fixed ratio of torsional to flexural rigidity, the number of turns
in the ring will determine the instability threshold of the elastic ring. With a3/a= 2/3,
the critical twist density τc is

τc=
√

3
0.3

0.2×2.5
≈1.0392. (8.4)

Thus, the critical twist number qc is given by

qc =
cτc

2π
≈2.5981, (8.5)

in which c=2πr0 is the circumference of the unstressed ring. Eq. (8.5) implies that if there
are more than two full turns along the ring, then the twisted ring becomes unstable, as
can be seen in Fig. 7. Our simulations confirm that the critical twist density decreases
as the ratio of twisting to bending modulus increases. Fig. 8 compares the theoretical
values of the critical twist with values obtained from our simulations. For a fixed bending
modulus, the critical value of torsion is inversely proportional to the twisting modulus.
Simulation data shown in Fig. 8 fit well with the theoretical values. We remark that
if the twist density is a sufficient amount larger than the instability threshold, and if
the twist modulus is at least somewhat larger than the bending modulus, then the final
configuration becomes very sensitive to perturbations.

We also investigate whether changing the effective thickness of the rod has any ef-
fect on the equilibrium configuration of the intrinsically straight elastic ring. We do so by
choosing different values for the parameter w that controls the breadth of the kernel func-
tion Φw(x). Specifically, we choose w=hℓmax , 2hℓmax , and 4hℓmax , so that Φw(x) is supported
on a 4×4×4, 8×8×8, or 16×16×16 box of Cartesian grid cells on level ℓmax. We find that,
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(a) w=hℓmax (b) w=2hℓmax (c) w=4hℓmax

(d) w=hℓmax (e) w=2hℓmax (f) w=4hℓmax

Figure 9: Equilibrium configuration as a function of effective rod thickness w. The top row corresponds to
τ=1.6, and the bottom row corresponds to τ=2.8. In these simulations, κ=0, a=0.3, and a3 =0.2.

at lower twist densities, variations in the effective thickness of the rod do not appear to
affect the equilibrium configuration of the elastic ring. Moreover, at least for the effective
thicknesses considered herein, the value of the critical twist density τc is insensitive to
the value of w, and the results for w=hℓmax and w=4hℓmax are the same as those shown in
Fig. 8 for w= 2hℓmax . At higher twist densities, however, the dynamics and equilibria of
the unstable ring vary with w. Representative results are shown in Fig. 9.

We next consider an elastic ring that is intrinsically curved, with the curvature uni-
formly distributed along the rod. Fig. 10 shows the limiting configurations in which

(a) τ=0 (b) τ=0.6 (c) τ=0.8

(d) τ=1.6 (e) τ=2 (f) τ=2.4

Figure 10: Equilibrium configurations of the intrinsically curved ring as a function of the twist density τ. In
these simulations, κ=κ1 =1.2, κ2 =0, a=0.3, and a3 =0.2. See Fig. 11 for the time evolution of case (a), for
which the equilibrium configuration is a 3-covered ring.
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(a) t=0 s (b) t=55 s (c) t=70 s

(d) t=75 s (e) t=100 s (f) t=340 s

Figure 11: Dynamical motion of an intrinsically curved ring at various times. In this simulation, κ= κ1 = 1.2,
κ2 =0, τ=0, a=0.3, and a3 =0.2. Notice that the ring shown in this figure is not twisted.

the intrinsic curvature is set to κ = 1.2 for various values of the twist density, and with
the bending and twisting moduli respectively set to a= 0.3 and a3 = 0.2. It is clear that
the equilibrium configurations are quite different from those of the intrinsically straight
ring; compare to Fig. 7(a). In general, for a sufficiently small value of τ with constant
nonzero intrinsic curvature, the stable equilibrium configuration of the ring is that of an
m-covered ring satisfying the relation

m=
cκ

2π
, (8.6)

in which c is the circumference of the unstressed ring. For instance, with κ = 1.2, an
initially 1-covered ring deforms into a 3-covered ring, as shown in Fig. 10(a). See also
Fig. 11 for the transient shapes of the 3-covered ring at different times. For larger τ > 0
with nonzero κ, the ring becomes intrinsically helical and buckles as τ increases. This
phenomenon is similar to that of intrinsically curved open rods: for sufficiently small
values of τ, the open rod takes the form of a stable helix; however, as τ increases, the
helical radius tends to zero, and the rod buckles [5, 54, 55]. Fig. 10(b) and (d) show cases
in which local helical regions develop along the ring. As τ increases, the helical radius
decreases and ultimately yields a degenerate helical configuration in which the ring is
locally straight.

The equilibrium configurations of rings that have only localized regions of nonzero
intrinsic curvature are also quite different from those of intrinsically straight rings, and
from those that possess uniformly distributed nonzero intrinsic curvature. Fig. 12 illus-
trates five cases of rings with different numbers of locally curved regions. The intrinsic
curvature of each locally curved section is set to κ=1.2, and the remainder of the rod is
straight, i.e., κ = 0. The intrinsic twist is uniformly distributed along the rod as τ = 1.6.
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Figure 12: Equilibrium configurations of rings that contain only localized sections of nonzero intrinsic curvature.
The curved sections of each rod are shown in red. In the curved sections, κ=1.2, whereas κ=0 in the remainder
of the ring. In these simulations, τ=1.6, a=0.3, and a3=0.2.

Figure 13: Equilibrium configurations of rings without self-contact. Each ring contains only localized sections
of nonzero intrinsic curvature. The curved sections of each rod are shown in red. In the curved sections, κ=1.2,
whereas κ=0 in the remainder of the ring. In these simulations, τ=0, a=0.3, and a3 =0.2.

Here, the bending and twisting moduli are set to a=0.3 and a3=0.2, respectively. For com-
parison, see Fig. 7(a) with τ=1.6 and Fig. 10(d). Our simulations show that intrinsically
curved sections of the ring localize to the ends of loops placed under high bending en-
ergy. Such loop localization has been experimentally observed in plasmid DNA [23, 28].
We expect that a sufficiently long ring with locally curved sections would evolve into a
branched form, with each branch taking the plectonemic form. We remark that, for the in-
trinsically straight ring, it is known that the circle is the only stable configuration without
self-contact [54,56], and it is expected that there are no stable configurations without self-
contact of an intrinsically curved ring with uniform intrinsic curvature [23]. However,
a ring with only localized regions of nonzero intrinsic curvature has stable noncircular
configurations without self-contact, as can be clearly seen in Fig. 13.

9 Conclusions and future directions

In this paper, we have presented an adaptive, formally second-order accurate generalized
IB method that describes the dynamics of an elastic rod immersed in fluid. The method
uses a version of Kirchhoff rod theory that describes the elasticity of the rod in terms of
the position of its center line together with a Lagrangian field of director vectors attached
to that center line. We have empirically demonstrated that this method yields essentially
second-order convergence rates, and we have analyzed the instability of an elastic ring
immersed in fluid.
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It is well known that the intrinsic curvature and twist of an elastic ring play important
roles in determining its equilibrium configuration, as also demonstrated by our simula-
tions. In this work, we considered three cases: (1) rings that are intrinsically straight; (2)
rings that are intrinsically curved; and (3) rings that have only local regions of nonzero in-
trinsic curvature. In cases in which the ring is intrinsically straight but twisted, we found
that the ring remains stable for low twist values but that it becomes unstable for larger
twist values, and we determined the critical twist values that separate stable configura-
tions from unstable ones. These empirically determined critical twist values correspond
closely to theoretical values obtained from either a linearized static analysis or a pertur-
bation analysis of an elastic ring. In cases in which the ring is intrinsically curved with
uniform nonzero curvature and nonzero twist, we found that the ring tends to take the
form of a closed helical rod. As the intrinsic twist increases, the ring deforms into a fold-
ing structure with multiple self-contacts. For intrinsically curved rings with no intrinsic
twist, the ring deforms to a multicovered ring of a smaller radius. In cases in which the
ring has only localized regions of nonzero intrinsic curvature, we observed noncircular
stable solutions without self-contact. In these cases, the shape of the stable solution de-
pends on both the position and also the number of such locally curved sections. These
equilibrium shapes are likely also to depend on material and geometrical properties, but
we have not investigated this possibility in this work. We remark that cases involving
spatial inhomogeneities in intrinsic curvature or twist are especially relevant to many
potential applications of this simulation methodology.

We expect that the adaptive version of the generalized IB method will find numerous
applications, especially in biological fluid dynamics, for problems in which thin, filamen-
tous structures interact with a viscous fluid. One example is the supercoiling dynamics of
ranges of DNA sequences that are fully or partially curved, for which the intrinsic curva-
ture of the DNA would determine its configuration at equilibrium. Another interesting
potential application of this method is to simulate the fluid mechanics of swimming bac-
teria with helical flagella. Simulating flagellar motion requires the use of high spatial
resolution, so as to resolve the flow in the neighborhood of the flagellum. Because the
aspect ratio of the flagellum is approximately 250, with the length of the flagellum being
approximately 5 µm and the thickness of being only approximately 20 nm [57], it may be
crucial to deploy an adaptive discretization approach to obtain resolved numerical sim-
ulations. The present adaptive method therefore promises to enable us to investigate the
detailed dynamics of bacteria with unprecedented fidelity.
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