
Commun. Comput. Phys.
doi: 10.4208/cicp.181210.090911a

Vol. 12, No. 3, pp. 732-766
September 2012

Inertial Frame Independent Forcing for Discrete

Velocity Boltzmann Equation: Implications for

Filtered Turbulence Simulation

Kannan N. Premnath1,∗ and Sanjoy Banerjee2

1 Department of Mechanical Engineering, University of Wyoming, Laramie,
WY 82071, USA.
2 Department of Chemical Engineering, City College of New York, City University of
New York, New York, NY 10031, USA.

Received 18 December 2010; Accepted (in revised version) 9 September 2011

Communicated by Sauro Succi

Available online 1 March 2012

Abstract. We present a systematic derivation of a model based on the central moment
lattice Boltzmann equation that rigorously maintains Galilean invariance of forces to
simulate inertial frame independent flow fields. In this regard, the central moments,
i.e. moments shifted by the local fluid velocity, of the discrete source terms of the lattice
Boltzmann equation are obtained by matching those of the continuous full Boltzmann
equation of various orders. This results in an exact hierarchical identity between the
central moments of the source terms of a given order and the components of the central
moments of the distribution functions and sources of lower orders. The corresponding
source terms in velocity space are then obtained from an exact inverse transformation
due to a suitable choice of orthogonal basis for moments. Furthermore, such a cen-
tral moment based kinetic model is further extended by incorporating reduced com-
pressibility effects to represent incompressible flow. Moreover, the description and
simulation of fluid turbulence for full or any subset of scales or their averaged be-
havior should remain independent of any inertial frame of reference. Thus, based on
the above formulation, a new approach in lattice Boltzmann framework to incorporate
turbulence models for simulation of Galilean invariant statistical averaged or filtered
turbulent fluid motion is discussed.
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1 Introduction

Minimal kinetic models for the Boltzmann equation, i.e. lattice Boltzmann equation for-
mulations, are evolving towards as alternative physically-inspired computational tech-
niques for various fluid mechanics and other problems. Originally developed as an im-
proved variant of the lattice gas automata [1] to eliminate statistical noise [2], the lattice
Boltzmann method (LBM) has undergone a series of major refinements, in terms of its
underlying physical models as well as numerical solution schemes for various applica-
tions over the last two decades [3–6]. In particular, its rigorous connection to the kinetic
theory [7–9] has resulted in a number of recent developments, including models that
are more physically consistent for multiphase [10, 11] and multicomponent flows [12],
models for non-equilibrium phenomena beyond the Navier-Stokes-Fourier representa-
tion [13] and an asymptotic analysis approach to establish consistency of the LBM from a
numerical point of view [14].

The stream-and-collide procedure of the LBM can be considered as a dramatically
simplified discrete representation of the continuous Boltzmann equation. Here, the stream-
ing step represents the advection of the distribution of particle populations along discrete
directions, which are designed from symmetry considerations, between successive colli-
sions. Much of the physical effects being modeled are represented in terms of the collision
step, which also significantly influences the numerical stability of the LBM. Most of the
major developments until recently were associated with the single-relaxation-time (SRT)
model [15, 16] based on the BGK approximation [17], and enjoys its popularity owing,
mainly, to its simplicity. However, it is prone to numerical instability. Moreover, it is
inadequate in its representation of certain physical aspects, such as independently ad-
justable transport properties of thermal transport and viscoelastic phenomena.

These limitations have been significantly addressed in the multiple-relaxation-time
(MRT) collision model [18]. This, in a sense, represents a simplified form of the relaxation
LBM proposed earlier [19, 20], with an important characteristic difference in that the col-
lision process is carried out in moment space [21] instead of in the usual velocity space.
By separating the relaxation time scales of different moments, obtained by using a linear
Fourier stability analysis, its numerical stability can be significantly improved [22, 23].
Furthermore, it has resulted in significant advantages over the SRT-LBM for computa-
tion of various classes of fluid flow problems, including multiphase systems [24–26], tur-
bulent flows [27, 28] and magnetohydrodynamics [29]. It may be noted that recently a
different form of MRT model based on the orthogonal Hermite polynomial projections
of the distribution functions, which is independent of any underlying lattice structure,
allowing representation of higher order non-equilibrium effects has been proposed [30].

The stabilization of the LBM using a single relaxation time has been addressed from a
different perspective by enforcing the H-theorem locally in the collision step [31–34]. By
using the attractors of the distribution function based on the minimization of a Lyapunov-
type functional, non-linear stability of the LBM is achieved in this Entropic LBM. This ap-
proach has recently been significantly extended to incorporate multiple relaxation times



734 K. N. Premnath and S. Banerjee / Commun. Comput. Phys., 12 (2012), pp. 732-766

with efficient implementation strategies [35, 36]. Furthermore, systematic procedures for
different types of higher-order LBM have been developed [37–39]. An important element
is the construction of higher-order lattices based on symmetry considerations which have
been analyzed using group theory [40, 41]. Further progress, from a numerical aspect, is
that based on the consistency analysis [14] and a notion of structural stability [42, 43]
(shown related to the Onsager-like relation in non-equilibrium thermodynamics [44]),
convergence of the LBM to the Navier-Stokes equations has rigorously been shown [45].

On the other hand, it is important to clearly understand in what sense the lattice Boltz-
mann equation (LBE), which is generally considered as a mesoscopic approach, inherits
or maintains the various physical invariance properties of the continuous full Boltzmann
equation (which it represents as a much simplified model) and the Navier-Stokes equa-
tions (which it represents numerically). Careful considerations of these aspects play an
important role in ensuring the general applicability of the approach for various, espe-
cially challenging, problems. In this regard, and to put the present work in perspective,
it should be noted that the continuum mechanics description as well as the microscopic
statistical (continuous Boltzmann) description of fluid motion generally satisfy a larger
invariance group, with inertial frame invariance being just an important special case.
The most general form among these is the so-called the principal of material frame indif-
ference, also known as the objectivity principle [46]. According to this, the constitutive
equations should have the same forms in all frames of reference, whether inertial or not.
While this is considered as an important axiom based on which the continuum mechanics
is formulated [46], its role from continuous kinetic theory point of view was the subject
of considerable analysis for sometime [47–52].

The following are the main outcomes of these studies: the continuous full Boltzmann
equation (i) is material frame indifferent in a strong approximate sense, when there is a large
scale separation between the collision times and the macroscopic flow times [49, 51, 52]
(thus providing a strong support to the axiomatic principle generally used in the contin-
uum description), (ii) satisfies both the inertial frame or Galilean invariance as well as
the extended Galilean invariance (i.e. invariance under arbitrary translational accelera-
tions of the reference frame) exactly [52]. Furthermore, it was shown that the standard
procedures (e.g. Chapman-Enskog expansion, Maxwellian iteration) lead to frame de-
pendent higher order contributions for the constitutive equations in non-inertial frames
in the continuum limit, while the continuous kinetic theory itself can be frame indepen-
dent [49]. Careful considerations of these principles could guide in the development of
more generally applicable models and numerical schemes for complex problems. For ex-
ample, material frame indifference (point (i)) is generally used as an important constraint
for the constitutive equations for complex fluids (e.g. beyond Newtonian constitutive
description such as polymeric fluids) and in the development of turbulence models in
continuum mechanics. As mentioned above, this property is satisfied in a strong ap-
proximate sense by the continuous Boltzmann equation, but not necessarily by the tools
that relate the microscopic and macroscopic descriptions(point iii). This aspects are per-
tinent in the construction of complex models from the continuous Boltzmann equation
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(e.g. [53, 54]). In this work, however, we limit our discussion to an association of the
properties mentioned in a part of the point (ii) for the LBE, i.e. for the exact invariance
group – the Galilean or inertial frame invariance.

In this regard, as a discrete approximation to the continuous full Boltzmann equation,
the development of the LBE consists of simplifications at different levels. Thus, its vari-
ous elements should be analyzed carefully to ascertain and quantify as to how well it sat-
isfies Galilean invariance. First, in contrast to continuous kinetic theory, due to the choice
of finite lattice velocity sets and associated symmetries, it introduces linear dependencies
of higher order moments with those of lower order moments that are supported by the
lattice set [40]. Such degeneracies can in turn lead to negative dependence of viscosity on
fluid velocity. It generally causes the Galilean invariance to be broken by the presence of
terms that are cubic in velocity for the standard lattice configurations (with symmetries of
square in 2D and cube in 3D) and also leads to numerical instability, especially at higher
Mach numbers. This issue can be alleviated by the use of extended lattice velocity sets,
which then relegates the degeneracies among moments to even higher orders. Second,
the collision step including the forcing terms of the LBE should be carefully constructed
in such a way that they recover correct physics which is inertial frame independent, i.e.
the Navier-Stokes equations. Here, the use of independent set of central moments for a
chosen lattice provides a natural approach to maintain Galilean invariance that can be
constructed by invoking elements directly from kinetic theory. This is the main goal of
the present work (see below). A rational means to more efficiently account for both the
above aspects is discussed in the last section of this paper. And, third, the streaming step
of the LBE is generally constructed as a discrete Lagrangian process. In the standard im-
plementation, this couples the particle velocity and configurations spaces, which in turn,
constrains the numerical accuracy of the LBE in the representation of the Navier-Stokes
equations. As a result, the Galilean invariance of the LBE is limited by its overall nu-
merical accuracy. However, it is known that such coupling between physical and lattice
symmetries is not necessary in the discretization of the streaming operator. In fact, it can
be discretized using classical schemes such as finite-difference or finite-element methods
that alleviate this issue [55–57]. Specifically, exploiting higher order discretization and
time integration schemes (e.g. [58]) for the streaming operator could further improve the
order of accuracy (and hence the Galilean invariance) of the LBE. Furthermore, the use of
implicit schemes could enhance the computational efficiency in this regard.

Focusing on the second aspect mentioned above, a different type of collision opera-
tor and forcing can be devised that can maintain Galilean invariance for a chosen lattice
velocity set and a discretization scheme for the streaming step. Specifically, central mo-
ments are relaxed in a moving frame of reference during collision step [59], originally
proposed to improve numerical stability, but emphasized here for its better physical co-
herence. The use of central moments, which are obtained by shifting the particle velocity
with the local fluid velocity [60], rigorously enforces Galilean invariance. In particular,
while other previous approaches are generally Galilean invariant for up to second-order
moments, the central moment based approach provides a higher order frame invariance
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as permitted by the discrete lattice velocity set. This approach was examined based on
the concept of generalized local equilibrium [61]. In addition, to further improve phys-
ical coherence, the attractors for the higher order central moments were constructed as
products of the lower order central moments, leading to the factorized central moment
method [62]. Recently, a new approach to incorporate source terms using central mo-
ments in the LBM that are Galilean invariant by construction, which are important for
computation of various physical problems, was developed [63]. The consistency of this
technique to the Navier-Stokes equations was shown by means of the Chapman-Enskog
analysis [64] and its numerical accuracy was established. Furthermore, the method was
also extended in three-dimensions for various lattice velocity sets and validated for a
class of canonical problems [65]. As clarified in [63, 65], numerical stability of the central
moment approach can be enhanced, when it is executed in a multiple relaxation time
formulation, similar to the standard or raw moment based approaches. Interestingly, it
has been shown recently that when some classical schemes for flow simulation are made
to satisfy Galilean invariance more rigorously, they led to more robust implementations
(e.g. [66, 67]).

Turbulence remains as among the most challenging classes of flows for which con-
siderable effort has been focused on the development of theory and applications using
the LBM. Since its roots can be traced to kinetic theory, the LBM has been analyzed
for the development of turbulence models from a fundamental point of view [68–70].
It has been employed for computation of Reynolds-averaged description of turbulent
flows [71, 72]. Furthermore, it has found applications for large eddy simulation (LES)
using LBM formulations with SRT [73], and MRT [74] with multiblock approach for ef-
ficient implementation [27]. Recently, dynamic subgrid scale (SGS) models for LES were
incorporated into the LBM framework that resulted in reduced empiricism for descrip-
tion at such scales [28]. Moreover, an improved inertial-range consistent SGS model was
also proposed [75]. A theoretical formulation for a SGS model based on an approximate
deconvolution method [78] that does not rely on the common eddy-viscosity concept for
application with the LBM was also devised recently [76]. Lastly, the closure modeling
issues of kinetic and continuum turbulence effects were reconciled in a unified statisti-
cal/filtered description using a modified kinetic equation [77]. Effectively, this allows the
use of macroscopic turbulence models involving divergence of the Reynolds stress in the
forcing term of the kinetic equation.

An important physical consideration for any description of turbulent flow is that it
should be invariant for all inertial frames of reference. In other words, for general appli-
cability, representation of turbulence for all or any subset of its scales should be Galilean
invariant. Thus, in particular, all SGS models, and associated numerical schemes for
turbulence computation, should be frame invariant. An insightful analysis of various
turbulence models was carried out from this viewpoint in [79]. A method to achieve
Galilean invariance by means of certain redefinition of turbulent stresses was discussed
in [80]. A recent review on this subject is reported in [81]. Furthermore, it should be noted
that concepts based on central moments have played an important role in the develop-
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ment of theoretical foundation of turbulence physics – such as for statistical turbulence
theory [82] and turbulence modeling [83].

Thus, in this paper, we develop a lattice Boltzmann equation based on central mo-
ments for Galilean invariant representation of turbulent flows. Specifically, it allows
frame-independent incorporation of general models for turbulent Reynolds stresses in
a statistical/filter averaged formulation using LBM for turbulence simulation. Further-
more, in a general setting, it maintains the forces and stresses to be independent of any
inertial frame of reference and could also improve numerical stability in computations.
In [63], we developed a forcing scheme based on a particular ansatz involving the local
Maxwell distribution. Here, we develop a general forcing based on central moments by
a direct examination of the continuous full Boltzmann equation itself, which unlike [63]
could also self-consistently account for non-equilibrium effects in higher order terms.
In this regard, the central moments of the resulting source terms of the continuous and
discrete counterparts are matched successively at different orders leading to a cascaded
structure. In essence, this approach can be considered as a Galilean invariant minimal
discrete model for the full Boltzmann equation including forcing terms. The attractors
for higher order central moments in the collision step of this computational model is
based on the factorization in terms of those at lower orders by including such general
forcing terms. In addition, we further develop this approach with reduced compressibil-
ity effects for improved representation of turbulent flow physics in the incompressible
limit. The forcing formulation developed here for incorporating turbulence models in a
statistical/filtered formulation can be extended to other problems, such as, for example,
Galilean invariant representation of forces or stresses in complex fluids.

The paper is organized as follows. Section 2 briefly discusses the choice of the mo-
ment basis employed in this paper and Section 3 the continuous Boltzmann equation. In
Sections 4 and 5, continuous forms of the central moments for the distribution functions
and its local equilibrium, and sources due to force fields, respectively, are introduced. The
LBE based on central moments with the general forcing terms is presented in Section 6.
Various discrete central moments are presented in Section 7 that also specifies a matching
principle to maintain Galilean invariance and the relationships among such moments are
provided in Section 8. Section 9 describes various discrete raw moments and the deriva-
tion of the source terms in terms of the discrete particle velocity space. In Section 10,we
present the construction of the collision operator of the central moment based LBM. The
computational procedure of this approach is provided in Section 11. The derivation is
extended by considering reduced compressibility effects in Section 12. Furthermore, Sec-
tion 13 discusses the use of attractors of the higher order central moments based on the
concept of their factorization in terms of those at lower orders. A natural consequence of
this overall approach is that turbulence models can be represented for Galilean invariant
filtered turbulence simulation using the LBM, which is described in Section 14. Finally,
the summary and conclusions of this work are discussed in Section 15.



738 K. N. Premnath and S. Banerjee / Commun. Comput. Phys., 12 (2012), pp. 732-766

 

e1

e2

e3

e4

e5
e6

e7
e8

x

y

e0
e1

e2

e3

e4

e5
e6

e7
e8

x

y

e0

Figure 1: Two-dimensional, nine-velocity (D2Q9) Lattice.

2 Selection of moment basis

An important element in the development of the central moment based LBM is the spec-
ification of a suitable basis for moments. In this work, to elucidate our approach, the
two-dimensional, nine velocity (D2Q9) lattice model (see Fig. 1) is considered, for which
the moment basis used in [63] is adopted. It should, however, be noted that the procedure
described henceforth is of general nature, and can be extended for other lattice models
and in three dimensions. The particle velocity for this lattice model −→e α is given by

−→eα =





(0,0), α=0,
(±1,0),(0,±1), α=1,··· ,4,
(±1,±1), α=5,··· ,8.

(2.1)

For convenience, we employ Dirac’s bra-ket notion to represent the basis vectors, and
Greek and Latin subscripts for particle velocity directions and Cartesian coordinate di-
rections, respectively. Noting that moments in the LBM are discrete integral properties
of the distribution function fα, i.e. ∑

8
α=0em

αxen
αy fα, where m and n are integers, we begin

with the following nine non-orthogonal independent basis vectors obtained by combin-
ing monomials em

αxen
αy in an ascending order. That is,

|ρ〉≡ ||−→e α|
0〉=(1,1,1,1,1,1,1,1,1)T , (2.2a)

|eαx〉=(0,1,0,−1,0,1,−1,−1,1)T , (2.2b)

|eαy〉=(0,0,1,0,−1,1,1,−1,−1)T , (2.2c)

|e2
αx+e2

αy〉=(0,1,1,1,1,2,2,2,2)T , (2.2d)

|e2
αx−e2

αy〉=(0,1,−1,1,−1,0,0,0,0)T , (2.2e)

|eαxeαy〉=(0,0,0,0,0,1,−1,1,−1)T , (2.2f)

|e2
αxeαy〉=(0,0,0,0,0,1,1,−1,−1)T , (2.2g)
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|eαxe2
αy〉=(0,0,0,0,0,1,−1,−1,1)T , (2.2h)

|e2
αxe2

αy〉=(0,0,0,0,0,1,1,1,1)T , (2.2i)

where the superscript ‘T’ represents the transpose operator.

For an efficient implementation, the above non-orthogonal basis set is transformed
into an equivalent orthogonal set through the Gram-Schmidt procedure in the increas-
ing order of the monomials of the products of the Cartesian components of the particle
velocities [63]:

|K0〉= |ρ〉 , |K1〉= |eαx〉, |K2〉= |eαy〉, (2.3a)

|K3〉=3|e2
αx+e2

αy〉−4|ρ〉 , |K4〉= |e2
αx−e2

αy〉, |K5〉= |eαxeαy〉, (2.3b)

|K6〉=−3|e2
αxeαy〉+2|eαy〉, |K7〉=−3|eαxe2

αy〉+2|eαx〉, (2.3c)

|K8〉=9|e2
αxe2

αy〉−6|e2
αx+e2

αy〉+4|ρ〉 . (2.3d)

This can be written explicitly in terms of a matrix given by

K=




1 0 0 −4 0 0 0 0 4
1 1 0 −1 1 0 0 2 −2
1 0 1 −1 −1 0 2 0 −2
1 −1 0 −1 1 0 0 −2 −2
1 0 −1 −1 −1 0 −2 0 −2
1 1 1 2 0 1 −1 −1 1
1 −1 1 2 0 −1 −1 1 1
1 −1 −1 2 0 1 1 1 1
1 1 −1 2 0 −1 1 −1 1




, (2.4)

where we have used

K=[|K0〉,|K1〉,|K2〉,|K3〉,|K4〉,|K5〉,|K6〉,|K7〉,|K8〉]. (2.5)

3 Continuous Boltzmann equation

We consider the two-dimensional (2D) continuous Boltzmann equation, for which we
aim to develop a Galilean invariant discrete model using the above basis vectors. It rep-
resents the evolution of the continuous density distribution function f = f (x,y,ξx ,ξy) in

continuous phase space (x,y,ξx ,ξy) subjected to a local force field
−→
F = (Fx,Fy), whose

origin could be internal or external to the system. By definition, the averaged effects of f ,
weighted by various powers of the continuous particle velocity (ξx,ξy), i.e. its moments,
are considered to characterize the various physical processes inherent in the motion of
athermal fluids. In particular, the evolution of the slow hydrodynamical processes are
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described by the local macroscopic fluid density ρ and fluid velocity −→u = (ux,uy). The
continuous Boltzmann equation may be written as [64, 84]

∂ f

∂t
+
−→
ξ ·

−→
∇−→x f +

−→
F

ρ
·
−→
∇−→

ξ
f =Ω( f , f ), (3.1)

where

ρ=
∫ ∞

−∞

∫ ∞

−∞
f dξxdξy, (3.2a)

ρ−→u =
∫ ∞

−∞

∫ ∞

−∞
f
−→
ξ dξxdξy. (3.2b)

Here, Ω( f , f ) is the collision term, which represents the cumulative effect of binary col-
lision of particles. The force fields modify the distribution function exactly by the term

−
−→
F
ρ ·

−→
∇−→

ξ
f , which is obtained by moving the last term on the left hand side of Eq. (3.1)

to its right to serve as a source term. It was shown by Grad (1949) [21] that solution of
Eq. (3.1) can be approximated by the evolution equations for a hierarchical set of mo-
ments. Here, we seek to obtain a dramatically discretized version of this continuous
Boltzmann equation by means of a hierarchy of central moments, focusing, in particular,
on the forcing term, to obtain Galilean invariant representation of the dynamics of fluid
motion.

4 Continuous central moments: distribution function and its

local attractor

We now consider the integral properties of the distribution function f given in terms of
its central moments, i.e. those shifted by the macroscopic fluid velocity. In particular, we
define continuous central moment of f of order (m+n) as

Π̂xmyn =
∫ ∞

−∞

∫ ∞

−∞
f (ξx−ux)

m(ξy−uy)
ndξxdξy. (4.1)

Here, and in the rest of this paper, the use of “hat” over a symbol represents quantities
in the space of moments. The distribution function for an athermal fluid has a local
equilibrium state in the continuous particle velocity space (ξx,ξy), which is given by the
Maxwellian as [84]

fM≡ fM(ρ,−→u ,ξx,ξy)=
ρ

2πc2
s

exp


−

(−→
ξ −−→u

)2

2c2
s


, (4.2)
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where c2
s = 1/3. Analogously, we can define the corresponding central moment of the

Maxwell distribution of order (m+n) as

Π̂M
xmyn =

∫ ∞

−∞

∫ ∞

−∞
fM(ξx−ux)

m(ξy−uy)
ndξxdξy. (4.3)

By virtue of the fact that fM being an even function, Π̂M
xmyn 6=0 when m and n are even and

Π̂M
xmyn=0 when m or n odd. Here and henceforth, the subscripts xmyn mean xxx···m-times

and yyy···n-times. Evaluation of the central moments of the Maxwellian, to different or-
ders of increasing powers, yields

Π̂M
0 =ρ, Π̂M

x =0, Π̂M
y =0, (4.4a)

Π̂M
xx = c2

s ρ, Π̂M
yy = c2

s ρ, Π̂M
xy =0, (4.4b)

Π̂M
xxy=0, Π̂M

xyy=0, Π̂M
xxyy= c4

s ρ. (4.4c)

5 Continuous central moments: forcing

In the presence of a force field
−→
F , in view of Eq. (3.1) and as discussed in Section 3, the

distribution function will be exactly modified by the source term

δ f F =−

−→
F

ρ
·
−→
∇−→

ξ
f . (5.1)

Now we define a corresponding continuous central moment of order (m+n) due to change
in the distribution function as a result of a force field as

Γ̂F
xmyn =

∫ ∞

−∞

∫ ∞

−∞
δ f F(ξx−ux)

m(ξy−uy)
ndξxdξy. (5.2)

Substituting Eq. (5.1) in Eq. (5.2) and integrating by parts by making use of the asymptotic
limit assumptions

lim
ξx→±∞

(ξx−ux)
m f (x,y,ξx ,ξy)=0 and lim

ξy→±∞
(ξy−uy)

n f (x,y,ξx ,ξy)=0, (5.3)

for m,n≥0, we get

Γ̂F
xmyn =m

Fx

ρ

∫ ∞

−∞

∫ ∞

−∞
f (ξx−ux)

m−1(ξy−uy)
ndξxdξy

+n
Fy

ρ

∫ ∞

−∞

∫ ∞

−∞
f (ξx−ux)

m(ξy−uy)
n−1dξxdξy. (5.4)

From the definition given in Eq. (4.1), Eq. (5.4) reduces to an exact identity between con-
tinuous central moment of the source term of a given order to the components of the
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continuous central moment of the distribution function of an order lower acted upon by
a force field:

Γ̂F
xmyn =m

Fx

ρ
Π̂xm−1yn+n

Fy

ρ
Π̂xmyn−1 , (5.5)

and for the special case of the zeroth central moment of the source as Γ̂F
0 = 0. This is a

key result based on which the rest of the derivation follows. Thus, we can enumerate the
exact values of the central moments of sources in an increasing order as

Γ̂F
0 =0, Γ̂F

x =
Fx

ρ
Π̂0, Γ̂F

y =
Fy

ρ
Π̂0, (5.6a)

Γ̂F
xx=2

Fx

ρ
Π̂x, Γ̂F

yy=2
Fy

ρ
Π̂y, (5.6b)

Γ̂F
xy=

Fx

ρ
Π̂y+

Fy

ρ
Π̂x, Γ̂F

xxy=2
Fx

ρ
Π̂xy+

Fy

ρ
Π̂xx, (5.6c)

Γ̂F
xyy=

Fx

ρ
Π̂yy+2

Fy

ρ
Π̂xy, Γ̂F

xxyy=2
Fx

ρ
Π̂xyy+2

Fy

ρ
Π̂xxy. (5.6d)

Note that if we set Π̂xmyn=Π̂M
xmyn in Eq. (5.6), i.e. ignore non-equilibrium effects, we arrive

at the derivation given in [63] as a special case.

6 Cascaded central moment lattice-Boltzmann method with

forcing terms

Defining a discrete distribution function supported by the discrete particle velocity set
−→e α as f = | fα〉 = ( f0, f1, f2,··· , f8)T, and a cascaded collision operator as Ω

c = |Ωc
α〉 =

(Ωc
0,Ωc

1,Ωc
2,··· ,Ωc

8)
T as well as a source term as S = |Sα〉= (S0,S1,S2,··· ,S8)T based on

central moments, we obtain the lattice Boltzmann equation (LBE) as a discrete version of
Eq. (3.1) by temporally integrating along particle characteristics as follows [63]:

fα(
−→x +−→e α,t+1)= fα(

−→x ,t)+Ωc
α(−→x ,t)

+
∫ t+1

t
Sα(−→x +−→e αθ,t+θ)dθ. (6.1)

Here, the collision operator is written as

Ωc
α≡Ωc

α(f,ĝ)=(K·ĝ)α, (6.2)

where ĝ= |ĝα〉=(ĝ0, ĝ1, ĝ2,··· , ĝ8)T. The hydrodynamic fields are obtained from the dis-
tribution function as

ρ=
8

∑
α=0

fα= 〈 fα|ρ〉, (6.3a)

ρui=
8

∑
α=0

fαeαi = 〈 fα|eαi〉,i∈ x,y. (6.3b)
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For improved accuracy in recovering Navier-Stokes solution, using a semi-implicit rep-
resentation for the source term, i.e. the last term in the above equation (Eq. (6.1)) as

∫ t+1

t
Sα(−→x +−→e αθ,t+θ)dθ=

1

2

[
Sα(−→x ,t)+Sα(−→x +−→e α,t+1)

]
, (6.4)

so that Eq. (6.1) is made effectively explicit by using the transformation f α = fα−
1
2 Sα to

reduce it to [63]

f α(
−→x +−→e α,t+1)= f α(

−→x ,t)+Ωc
α(−→x ,t)

+Sα(−→x ,t). (6.5)

It may be noted that, as in [59], we first represent collision as a cascaded process in which
the effect of collision on lower order central moments successively influence those at
higher orders in a cascaded manner. That is, in general, ĝα ≡ ĝα(f, ĝβ),β= 0,1,2,··· ,α−1.
Furthermore, the form of the source term is derived to rigorously enforce Galilean invari-
ance. The explicit expressions for Sα and ĝ will be determined later in Sections 9 and 10,
respectively. Since the main focus of this work is on improving the collision (including
forcing) step with features independent of inertial frames, we have only considered the
standard discretization for the streaming operator. However, as discussed in the Intro-
duction, other types of discretization schemes could be considered to improve the order
of accuracy.

7 Various discrete central moments and Galilean invariance

matching principle

For determining the structure of the cascaded collision operator ĝ and the source terms
Sα, we first need to define the following discrete central moments of the distribution func-
tion, Maxwellian, and source term, respectively:

κ̂xmyn =∑
α

fα(eαx−ux)
m(eαy−uy)

n= 〈(eαx−ux)
m(eαy−uy)

n| fα〉, (7.1a)

κ̂Mxmyn =∑
α

fMα (eαx−ux)
m(eαy−uy)

n= 〈(eαx−ux)
m(eαy−uy)

n| fMα 〉, (7.1b)

σ̂xmyn =∑
α

Sα(eαx−ux)
m(eαy−uy)

n = 〈(eαx−ux)
m(eαy−uy)

n|Sα〉, (7.1c)

where the exact expression for the discrete fMα is not yet known, but can be determined
as a result of the derivation discussed later. To maintain physical consistency at the dis-
crete level, we now equate the discrete central moments of the distribution function, the
Maxwellian and the source terms, defined above, with their corresponding continuous
central moments, whose forms are known exactly. That is, according to this matching
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principle

κ̂xmyn = Π̂xmyn , (7.2a)

κ̂Mxmyn = Π̂M
xmyn , (7.2b)

σ̂xmyn = Γ̂F
xmyn . (7.2c)

In particular, the discrete central moments of various orders for both the Maxwellian and
the source terms, respectively, become

κ̂M0 =ρ, κ̂Mx =0, κ̂My =0, (7.3a)

κ̂Mxx = c2
s ρ, κ̂Myy = c2

s ρ, κ̂Mxy =0, (7.3b)

κ̂Mxxy=0, κ̂Mxyy =0, κ̂Mxxyy= c4
s ρ, (7.3c)

and

σ̂0 =0, σ̂x =
Fx

ρ
κ̂0, σ̂y=

Fy

ρ
κ̂0, σ̂xx =2

Fx

ρ
κ̂x, (7.4a)

σ̂yy =2
Fy

ρ
κ̂y, σ̂xy=

Fx

ρ
κ̂y+

Fy

ρ
κ̂x, σ̂xxy=2

Fx

ρ
κ̂xy+

Fy

ρ
κ̂xx, (7.4b)

σ̂xyy =
Fx

ρ
κ̂yy+2

Fy

ρ
κ̂xy, σ̂xxyy=2

Fx

ρ
κ̂xyy+2

Fy

ρ
κ̂xxy. (7.4c)

We also define a discrete central moment in terms of the transformed distribution function
to facilitate subsequent developments as

κ̂xmyn =∑
α

f α(eαx−ux)
m(eαy−uy)

n = 〈(eαx−ux)
m(eαy−uy)

n| f α〉 . (7.5)

Owing to the transformation discussed in Section 6, it follows that

κ̂xmyn = κ̂xmyn−
1

2
σ̂xmyn . (7.6)

8 Relation between various discrete central moments

Eq. (7.4) is given in terms of the discrete moments of the original distribution function
fα. However, the cascaded central moment LBM with forcing term provides evolution in
terms of transformed distribution function f α (Eq. (6.5)). Thus, it is important to write all

the expressions in terms of the central moments of f α, or, equivalently, κ̂xmyn . Thus, by
recursive application of Eq. (7.6) using Eq. (7.4) to successively higher orders, we get the



K. N. Premnath and S. Banerjee / Commun. Comput. Phys., 12 (2012), pp. 732-766 745

following exact relations up to the third-order central moments as

κ̂0= κ̂0, κ̂x = κ̂x+
1

2

Fx

ρ
κ̂0, κ̂y = κ̂y+

1

2

Fy

ρ
κ̂0, (8.1a)

κ̂xx = κ̂xx+
Fx

ρ
κ̂x+

1

2

F2
x

ρ2
κ̂0, κ̂yy = κ̂yy+

Fx

ρ
κ̂y+

1

2

F2
y

ρ2
κ̂0, (8.1b)

κ̂xy= κ̂xy+
1

2

Fx

ρ
κ̂y+

1

2

Fy

ρ
κ̂x+

1

2

FxFy

ρ2
κ̂0, (8.1c)

κ̂xxy= κ̂xxy+
Fx

ρ
κ̂xy+

1

2

Fy

ρ
κ̂xx+

FxFy

ρ2
κ̂x+

1

2

F2
x

ρ2
κ̂y+

3

4

F2
x Fy

ρ3
κ̂0, (8.1d)

κ̂xyy= κ̂xyy+
Fy

ρ
κ̂xy+

1

2

Fx

ρ
κ̂yy+

FxFy

ρ2
κ̂y+

1

2

F2
y

ρ2
κ̂x+

3

4

FxF2
y

ρ3
κ̂0. (8.1e)

That is, the central moment of the distribution function of a given order can be written
as a function of the central moment of the transformed distribution function of the same
order and successively lower orders as well. This can be further simplified by consider-
ing the three of the lowest order central moments, i.e., conservative moments, which by
definition are κ̂0 = ρ, κ̂x = κ̂y =0. This, in turn, leads to κ̂0 = ρ, κ̂x =−1/2Fx, κ̂y =−1/2Fy.
As a result, we have the following relations for the non-conserved central moments up to
third-order:

κ̂xx = κ̂xx, κ̂yy = κ̂yy, κ̂xy = κ̂xy, (8.2a)

κ̂xxy= κ̂xxy+
Fx

ρ
κ̂xy+

1

2

Fy

ρ
κ̂xx, (8.2b)

κ̂xyy= κ̂xyy+
Fy

ρ
κ̂xy+

1

2

Fx

ρ
κ̂yy. (8.2c)

Thus, we can finally write the central moments of the source term in Eq. (7.4) in terms of
the central moments of the transformed distribution function as

σ̂0=0, σ̂x =Fx, σ̂y =Fy, (8.3a)

σ̂xx =0, σ̂yy=0, σ̂xy =0, (8.3b)

σ̂xxy=2
Fx

ρ
κ̂xy+

Fy

ρ
κ̂xx, σ̂xyy =

Fx

ρ
κ̂yy+2

Fy

ρ
κ̂xy, (8.3c)

σ̂xxyy=2
Fx

ρ
κ̂xyy+2

Fy

ρ
κ̂xxy+

F2
y

ρ2
κ̂xx+

F2
x

ρ2
κ̂yy+4

FxFy

ρ2
κ̂xy. (8.3d)

Thus, higher order non-equilibrium effects in κ̂xmyn and non-linear effect in F
p
x F

q
y are ev-

ident for the central moments of the source terms that are third- and higher orders. Let
us now explicitly write the central moments of the transformed discrete Maxwellian by
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means of Eq. (7.6) using Eqs. (7.3) and (8.3) to yield

κ̂
M
0 =ρ, κ̂

M
x =−

1

2
Fx, κ̂

M
y =−

1

2
Fy, (8.4a)

κ̂
M
xx = c2

s ρ, κ̂
M
yy = c2

s ρ, κ̂
M
xy =0, (8.4b)

κ̂
M
xxy=−

Fx

ρ
κ̂xy−

Fy

2ρ
κ̂xx, κ̂

M
xyy=−

Fx

2ρ
κ̂yy−

Fy

ρ
κ̂xy, (8.4c)

κ̂
M
xxyy= c4

s ρ−
Fx

ρ
κ̂xyy−

Fy

ρ
κ̂xxy−

F2
y

2ρ2
κ̂xx−

F2
x

2ρ2
κ̂yy−2

FxFy

ρ2
κ̂xy. (8.4d)

The main idea in the determination of the collision operator for the cascaded version of
the central moment method is to relax the central moments of the transformed distribu-
tion function to its corresponding local attractor, successively at various orders as given
in Eq. (8.4) (see Section 10). Before proceeding further to do this, we first need certain
quantities in the rest or lattice frame of reference, i.e. the raw moments, in which the
computations are actually performed. These are obtained in the next section.

9 Various discrete raw moments and source terms in particle

velocity space

The raw moments, i.e. those in the rest frame of reference, can be related to the central
moments by means of the binomial theorem [85, 86]. For any state variable ϕ supported
by the discrete particle velocity set, the transformation relation between the two reference
frames is thus given by [63]

〈(eαx−ux)
m(eαy−uy)

n|ϕ〉

= 〈em
αxen

αy|ϕ〉+

〈
em

αx

[
n

∑
j=1

Cn
j e

n−j
αy (−1)ju

j
y

]∣∣∣ϕ
〉
+

〈
en

αy

[
m

∑
i=1

Cm
i em−i

αx (−1)iui
x

]∣∣∣ϕ
〉

+

〈[
m

∑
i=1

Cm
i em−i

αx (−1)iui
x

][
n

∑
j=1

Cn
j e

n−j
αy (−1)ju

j
y

]∣∣∣ϕ
〉

, (9.1)

where C
p
q = p!/(q!(p−q)!). We now define the following notations for depicting various

discrete raw moments, based on which an operational LBE will be devised later:

κ̂
′

xmyn =∑
α

fαem
αxen

αy= 〈em
αxen

αy| fα〉, (9.2a)

κ̂
′

xmyn =∑
α

f αem
αxen

αy= 〈em
αxen

αy| f α〉, (9.2b)

σ̂
′

xmyn =∑
α

Sαem
αxen

αy= 〈em
αxen

αy|Sα〉. (9.2c)
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Note that the superscript “prime” (′) is used to distinguish the raw moments from the
central moments that are designated without the primes. Here, analogous to Eq. (7.6),
the relation

κ̂
′

xmyn = κ̂
′

xmyn−
1

2
σ̂

′

xmyn (9.3)

holds. Let us first find expressions for κ̂
′

xmyn = 〈 f α|e
m
αxen

αy〉 to proceed further. As in [63],
for convenience, we define the following operator acting on the transformed distribution
function f α in this regard:

a( f α1
+ f α3

+ f α3
+···)+b( f β1

+ f β2
+ f β3

+···)+···=

(
a

A

∑
α

+b
B

∑
α

···

)
⊗ f α, (9.4)

where A = {α1,α2,α3,···}, B = {β1,β2,β3,···},··· . For conserved basis vectors, we write
them in terms of the hydrodynamic variables and force fields as

κ̂
′

0= 〈 f α|ρ〉=
8

∑
α=0

f α=ρ, (9.5a)

κ̂
′

x = 〈 f α|eαx〉=
8

∑
α=0

f αeαx =ρux−
1

2
Fx, (9.5b)

κ̂
′

y= 〈 f α|eαy〉=
8

∑
α=0

f αeαy=ρuy−
1

2
Fy, (9.5c)

and, for the non-conserved basis vectors, using Eq. (9.4) in terms of subsets of particle
velocity directions as

κ̂
′

xx= 〈 f α|e
2
αx〉=

8

∑
α=0

f αe2
αx =

(
A3

∑
α

)
⊗ f α, (9.6a)

κ̂
′

yy= 〈 f α|e
2
αy〉=

8

∑
α=0

f αe2
αy=

(
A4

∑
α

)
⊗ f α, (9.6b)

κ̂
′

xy= 〈 f α|eαxeαy〉=
8

∑
α=0

f αeαxeαy=

(
A5

∑
α

−
B5

∑
α

)
⊗ f α, (9.6c)

κ̂
′

xxy= 〈 f α|e
2
αxeαy〉=

8

∑
α=0

f αe2
αxeαy=

(
A6

∑
α

−
B6

∑
α

)
⊗ f α, (9.6d)

κ̂
′

xyy= 〈 f α|eαxe2
αy〉=

8

∑
α=0

f αeαxe2
αy=

(
A7

∑
α

−
B7

∑
α

)
⊗ f α, (9.6e)

κ̂
′

xxyy= 〈 f α|e
2
αxe2

αy〉=
8

∑
α=0

f αe2
αxe2

αy=

(
A8

∑
α

)
⊗ f α, (9.6f)
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where

A3={1,3,5,6,7,8} , A4={2,4,5,6,7,8} , (9.7a)

A5={5,7} , B5={6,8}, (9.7b)

A6={5,6} , B6={7,8}, (9.7c)

A7={5,8} , B7={6,7}, (9.7d)

A8={5,6,7,8} . (9.7e)

Now, we transform the central moments of the source terms (Eq. (7.4)) to the cor-
responding raw moments by considering Eq. (7.1c) and using the frame transformation
relation (Eq. (9.1)). This yields

σ̂
′

0= 〈Sα|ρ〉=0, (9.8a)

σ̂
′

x = 〈Sα|eαx〉=Fx, (9.8b)

σ̂
′

y = 〈Sα|eαy〉=Fy, (9.8c)

σ̂
′

xx = 〈Sα|e
2
αx〉=2Fxux, (9.8d)

σ̂
′

yy = 〈Sα|e
2
αy〉=2Fxuy, (9.8e)

σ̂
′

xy = 〈Sα|eαxeαy〉=Fxuy+Fyux, (9.8f)

σ̂
′

xxy= 〈Sα|e
2
αxeαy〉=2Fx

(
κ̂xy

ρ
+uxuy

)
+Fy

(
κ̂xx

ρ
+u2

x

)
, (9.8g)

σ̂
′

xyy= 〈Sα|eαxe2
αy〉=Fx

(
κ̂yy

ρ
+u2

y

)
+2Fy

(
κ̂xy

ρ
+uxuy

)
, (9.8h)

σ̂
′

xxyy= 〈Sα|e
2
αxe2

αy〉=2Fxux

(
κ̂yy

ρ
+u2

y

)
+2Fyuy

(
κ̂xx

ρ
+u2

x

)
+

2Fx

ρ
κ̂xyy+

2Fy

ρ
κ̂xxy

+
F2

x

ρ2
κ̂yy+

F2
y

ρ2
κ̂xx+4

[
Fxuy

ρ
+

Fyux

ρ
+

FxFy

ρ2

]
κ̂xy. (9.8i)

Clearly, the raw moments of source terms for third-order or higher contain non-equilibrium
and non-linear contributions. Eqs. (9.8g)-(9.8i) require explicit expressions for central mo-
ments of transformed distributions such as κ̂xx, κ̂yy, κ̂xy, κ̂xxy and κ̂xyy, in terms of raw
moments to facilitate computation. They can be readily obtained in terms of raw mo-
ments from their respective definitions and by using the binomial theorem (Eq. (9.1)) and
subsequent simplification as

κ̂xx = κ̂
′

xx+Fxux−ρu2
x, (9.9a)

κ̂yy= κ̂
′

yy+Fyuy−ρu2
y, (9.9b)

κ̂xy= κ̂
′

xy+
1

2
(Fxuy+Fyux)−ρuxuy, (9.9c)
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for second-order and

κ̂xyy= κ̂
′

xyy−2uyκ̂
′

xy−uxκ̂
′

yy−
1

2
Fxu2

y−Fyuxuy+2ρuxu2
y, (9.10a)

κ̂xxy= κ̂
′

xxy−2uxκ̂
′

xy−uyκ̂
′

xx−
1

2
Fyu2

x−Fxuxuy+2ρu2
xuy, (9.10b)

for third-order moments. Based on the above, we now obtain the source terms projected
to the orthogonal moment basis vectors, i.e. 〈Kβ|Sα〉, β= 0,1,2,··· ,8, which would then
provide corresponding explicit expressions in terms of the particle velocity space. Thus,
from Eqs. (2.5) and (9.8a)-(9.8i), the following projected source moments are derived:

m̂s
0= 〈K0|Sα〉=0, (9.11a)

m̂s
1= 〈K1|Sα〉=Fx, (9.11b)

m̂s
2= 〈K2|Sα〉=Fy, (9.11c)

m̂s
3= 〈K3|Sα〉=6(Fxux+Fyuy), (9.11d)

m̂s
4= 〈K4|Sα〉=2(Fxux−Fyuy), (9.11e)

m̂s
5= 〈K5|Sα〉=(Fxuy+Fyux), (9.11f)

m̂s
6= 〈K6|Sα〉=−6Fx

(
κ̂xy

ρ
+uxuy

)
−3Fy

(
κ̂xx

ρ
+u2

x−
2

3

)
, (9.11g)

m̂s
7= 〈K7|Sα〉=−3Fx

(
κ̂yy

ρ
+u2

y−
2

3

)
−6Fy

(
κ̂xy

ρ
+uxuy

)
, (9.11h)

m̂s
8= 〈K8|Sα〉=18Fxux

(
κ̂yy

ρ
+u2

y−
2

3

)
+18Fyuy

(
κ̂xx

ρ
+u2

x−
2

3

)
+18

Fx

ρ
κ̂xyy+18

Fy

ρ
κ̂xxy

+9
F2

x

ρ2
κ̂yy+9

F2
y

ρ2
κ̂xx+36

[
Fxuy

ρ
+

Fyux

ρ
+

FxFy

ρ2

]
κ̂xy. (9.11i)

In Eqs. (9.11g)-(9.11i), κ̂xx, κ̂yy, κ̂xy, κ̂xyy and κ̂xxy can be obtained from Eqs. (9.9a)-(9.10b),
respectively. This can be written in matrix form as

KTS=(K·S)α =(〈K0|Sα〉,〈K1|Sα〉,〈K2|Sα〉,··· ,〈K8|Sα〉)

=(m̂s
0,m̂s

1,m̂s
2,··· ,m̂s

8)
T ≡|m̂s

α〉. (9.12)

Now, by exploiting the orthogonal property of K [63], i.e. K−1 =KT ·D−1, where the
diagonal matrix is

D=diag(〈K0|K0〉,〈K1|K1〉,〈K2|K2〉,··· ,〈K8|K8〉)=diag(9,6,6,36,4,4,12,12,36), (9.13)
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we exactly invert Eq. (9.12) to finally obtain source terms in velocity space Sα as

S0=
1

9
[−m̂s

3+m̂s
8], (9.14a)

S1=
1

36
[6m̂s

1−m̂s
3+9m̂s

4+6m̂s
7−2m̂s

8], (9.14b)

S2=
1

36
[6m̂s

2−m̂s
3−9m̂s

4+6m̂s
6−2m̂s

8], (9.14c)

S3=
1

36
[−6m̂s

1−m̂s
3+9m̂s

4−6m̂s
7−2m̂s

8], (9.14d)

S4=
1

36
[−6m̂s

2−m̂s
3−9m̂s

4−6m̂s
6−2m̂s

8], (9.14e)

S5=
1

36
[6m̂s

1+6m̂s
2+2m̂s

3+9m̂s
5−3m̂s

6−3m̂s
7+m̂s

8], (9.14f)

S6=
1

36
[−6m̂s

1+6m̂s
2+2m̂s

3−9m̂s
5−3m̂s

6+3m̂s
7+m̂s

8], (9.14g)

S7=
1

36
[−6m̂s

1−6m̂s
2+2m̂s

3+9m̂s
5+3m̂s

6+3m̂s
7+m̂s

8], (9.14h)

S8=
1

36
[6m̂s

1−6m̂s
2+2m̂s

3−9m̂s
5+3m̂s

6−3m̂s
7+m̂s

8]. (9.14i)

This is the explicit set of expressions for the source terms in velocity space Sα given in

terms of
−→
F , −→u and κ̂xmyn , with 2≤ (m+n)≤3 and 0≤m,n≤2.

Again, using the orthogonal property of K, we can obtain the raw moments of the
collision kernel

∑
α

(K·ĝ)αem
αxen

αy =∑
β

〈Kβ|e
m
αxen

αy〉 ĝβ, (9.15)

which is of central importance in the subsequent derivation. Note that for collision in-
variants, ĝ0= ĝ1= ĝ2 =0. We get

∑
α

(K·ĝ)α=∑
β

〈Kβ|ρ〉 ĝβ =0, (9.16a)

∑
α

(K·ĝ)αeαx=∑
β

〈Kβ|eαx〉 ĝβ =0, (9.16b)

∑
α

(K·ĝ)αeαy=∑
β

〈Kβ|eαy〉 ĝβ =0, (9.16c)

∑
α

(K·ĝ)αe2
αx=∑

β

〈Kβ|e
2
αx〉 ĝβ =6ĝ3+2ĝ4, (9.16d)

∑
α

(K·ĝ)αe2
αy=∑

β

〈Kβ|e
2
αy〉 ĝβ =6ĝ3−2ĝ4, (9.16e)
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∑
α

(K·ĝ)αeαxeαy=∑
β

〈Kβ|eαxeαy〉 ĝβ =4ĝ5, (9.16f)

∑
α

(K·ĝ)αe2
αxeαy=∑

β

〈Kβ|e
2
αxeαy〉 ĝβ =−4ĝ6, (9.16g)

∑
α

(K·ĝ)αeαxe2
αy=∑

β

〈Kβ|eαxe2
αy〉 ĝβ =−4ĝ7, (9.16h)

∑
α

(K·ĝ)αe2
αxe2

αy=∑
β

〈Kβ|e
2
αxe2

αy〉 ĝβ =8ĝ3+4ĝ8. (9.16i)

Finally, the LBE in Eq. (6.5) can be rewritten in terms of collision and streaming steps,
respectively, as

f̃ α(
−→x ,t)= f α(

−→x ,t)+Ωc
α(−→x ,t)

+Sα(−→x ,t), (9.17a)

f α(
−→x +−→e α,t+1)= f̃ α(

−→x ,t), (9.17b)

where the symbol “tilde” (∼) in the first equation refers to the post-collision state. In
terms of the transformed distribution, the hydrodynamic fields can be computed by
means of the following:

ρ=
8

∑
α=0

f α= 〈 f α|ρ〉, (9.18a)

ρui =
8

∑
α=0

f αeαi+
1

2
Fi = 〈 f α|eαi〉+

1

2
Fi, i∈ x,y. (9.18b)

10 Structure of the collision operator: cascaded central moments

Let us now arrive at the expressions for the cascaded formulation of the collision op-
erator using central moments in the presence of forcing terms based on the results ob-
tained in the last few sections. The basic procedure can be stated as follows. Beginning
from the lowest order central moments that are non-collisional invariants (i.e. κ̂xx and
higher), they are successively set equal to their local attractors based on the transformed
Maxwellians (Eq. (8.4)). This step provides tentative expressions for ĝα based on the
equilibrium assumption. We then modify them to allow for relaxation during collision
by multiplying them with corresponding relaxation parameters [59]. In this step, given
the cascaded nature of the collision (i.e. ĝα ≡ ĝα(f, ĝβ),β = 0,1,2,··· ,α−1, or the depen-
dence of higher order terms on those that are lower orders), care needs to be exercised to
multiply the relaxation parameters only with those terms that are not yet in post-collision
states (i.e. terms not involving ĝβ,β= 0,1,2,··· ,α−1 for ĝα). Various details involved in
this procedure are given in [63]. For brevity, here we summarize the final results which
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are as follows:

ĝ3=
ω3

12

{
2

3
ρ+ρ(u2

x+u2
y)−(κ̂

′

xx+κ̂
′

yy)−
1

2
(σ̂

′

xx+σ̂
′

yy)

}
, (10.1a)

ĝ4=
ω4

4

{
ρ(u2

x−u2
y)−(κ̂

′

xx−κ̂
′

yy)−
1

2
(σ̂

′

xx−σ̂
′

yy)

}
, (10.1b)

ĝ5=
ω5

4

{
ρuxuy−κ̂

′

xy−
1

2
σ̂

′

xy

}
, (10.1c)

ĝ6=
ω6

4

{
2ρu2

xuy+κ̂
′

xxy−2uxκ̂
′

xy−uyκ̂
′

xx−
1

2
σ̂xxy

}
−

1

2
uy(3ĝ3+ ĝ4)−2ux ĝ5, (10.1d)

ĝ7=
ω7

4

{
2ρuxu2

y+κ̂
′

xyy−2uyκ̂
′

xy−uxκ̂
′

yy−
1

2
σ̂xyy

}
−

1

2
ux(3ĝ3− ĝ4)−2uy ĝ5, (10.1e)

ĝ8=
ω8

4

{
1

9
ρ+3ρu2

xu2
y−
[
κ̂
′

xxyy−2uxκ̂
′

xyy−2uyκ̂
′

xxy+u2
xκ̂

′

yy+u2
yκ̂

′

xx+4uxuyκ̂
′

xy

]
−

1

2
σ̂

′

xxyy

}

−2ĝ3−
1

2
u2

y(3ĝ3+ ĝ4)−
1

2
u2

x(3ĝ3− ĝ4)−4uxuy ĝ5−2uy ĝ6−2ux ĝ7. (10.1f)

In the above, the raw moments of various orders, i.e. κ̂
′

xmyn for different m and n are
required, which may be obtained from Eqs. (9.5a)-(9.6f). Similarly, the raw moments of
sources of various orders, i.e. σ̂

′

xmyn needed in the above are given in Eqs. (9.8a)-(9.8i)
(see Section 9). Here, ωβ, where β= 3,4,5,··· ,8, are the relaxation parameters, satisfying
0<ωβ < 2. When a multiscale Chapman-Enskog expansion [64] is applied to this cen-
tral moment LBM based on central moments, it recovers the Navier-Stokes equation with
the relaxation parameters ω3 =ωχ and ω4 =ω5 =ων controlling bulk and shear viscosi-
ties, respectively (e.g., ν= c2

s

(
1

ων −
1
2

)
) [63]. The rest of the parameters can be adjusted to

improve numerical stability.

11 Cascaded central moment lattice Boltzmann equation

The collision step with the addition of forcing terms (see Eq. (6.2) and Eq. (9.17a)) in the
stream-and-collide procedure of the LBM, obtained by matching those of the continuous
Boltzmann equation as discussed in the previous sections, is expanded element-wise and
can be summarized as follows:

f̃ 0= f 0+[ĝ0−4(ĝ3− ĝ8)]+S0, (11.1a)

f̃ 1= f 1+[ĝ0+ ĝ1− ĝ3+ ĝ4+2(ĝ7− ĝ8)]+S1, (11.1b)

f̃ 2= f 2+[ĝ0+ ĝ2− ĝ3− ĝ4+2(ĝ6− ĝ8)]+S2, (11.1c)

f̃ 3= f 3+[ĝ0− ĝ1− ĝ3+ ĝ4−2(ĝ7+ ĝ8)]+S3, (11.1d)

f̃ 4= f 4+[ĝ0− ĝ2− ĝ3− ĝ4−2(ĝ6+ ĝ8)]+S4, (11.1e)
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f̃ 5= f 5+[ĝ0+ ĝ1+ ĝ2+2ĝ3+ ĝ5− ĝ6− ĝ7+ ĝ8]+S5, (11.1f)

f̃ 6= f 6+[ĝ0− ĝ1+ ĝ2+2ĝ3− ĝ5− ĝ6+ ĝ7+ ĝ8]+S6, (11.1g)

f̃ 7= f 7+[ĝ0− ĝ1− ĝ2+2ĝ3+ ĝ5+ ĝ6+ ĝ7+ ĝ8]+S7, (11.1h)

f̃ 8= f 8+[ĝ0+ ĝ1− ĝ2+2ĝ3− ĝ5+ ĝ6− ĝ7+ ĝ8]+S8. (11.1i)

The collision kernel ĝβ needed here can be computed from the expressions given in the
previous section (see Section 10). The source terms in the velocity space can be obtained
from Eqs. (9.14a)-(9.14i) (see Section 9). The remaining streaming step is carried out as

usual by using the post collision values f̃ α obtained from above. Once the local distri-
bution function is known, macroscopic fluid density and velocity fields satisfying the
Galilean invariant Navier-Stokes equations in the presence of force fields can be obtained
from Eqs. (9.18a) and (9.18b), respectively.

12 Cascaded collision operator with reduced compressibility

effects

While a main goal of this work is the introduction of a self-consistent approach based on
the continuous Boltzmann equation to incorporate non-equilibrium effects into the cen-
tral moment approach for general applicability, it is also useful to consider its limiting
cases. For example, the incompressible limit of fluid flow corresponds to considering
very small deviations from the local equilibrium, a special case with various applica-
tions. In particular, this would allow simple representation of incompressible turbulence
considered later in this work.

Being a kinetic approach, the lattice Boltzmann method is inherently compressible in
nature. On the other hand, when it is desired to reproduce the “incompressible” Navier-
Stokes equations as mentioned above, it is important to reduce such compressibility ef-
fects. An approach in this regard was introduced earlier in [87]. Here, we will extend it
further in the context of the central moment LBM in the presence of forcing. It may be
noted that the fundamental expressions for the continuous central moments for the lo-
cal equilibrium as well as the forcing given in Sections 4 and 5, respectively, from which
their discrete counterparts are derived, remains unchanged for this case. However, the
key element to incorporate a systematic reduction of compressibility effects lies in the
following careful definition of the raw moments of the hydrodynamic fields:

ρ=
8

∑
α=0

fα =
8

∑
α=0

f α, (12.1a)

ρ0
−→u =

8

∑
α=0

fα
−→e α=

8

∑
α=0

f α
−→e α+

1

2

−→
F , (12.1b)
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where ρ = ρ0+δρ. Here ρ0 and δρ are the constant reference value and fluctuations of
density, respectively. That is, in the above, contributions of density fluctuations are elim-
inated from first-order moments representing the components of momentum. Thus, we
get

〈 f̃ α|ρ〉=ρ, (12.2a)

〈 f̃ α|eαx〉=ρ0ux+
1

2
Fx, (12.2b)

〈 f̃ α|eαy〉=ρ0uy+
1

2
Fy. (12.2c)

Using the procedure discussed in the previous sections and with the above specialized re-
definition of the conserved moments, we obtain, after some simplification, the cascaded
collision operator with reduced compressibility effects. They are reported here in the
following:

ĝ3=
ω3

12

{
2

3
ρ+(ρ0−δρ)(u2

x+u2
y)−(κ̂

′

xx+κ̂
′

yy)−
1

2
(σ̂

′

xx+σ̂
′

yy)

}
, (12.3a)

ĝ4=
ω4

4

{
(ρ0−δρ)(u2

x−u2
y)−(κ̂

′

xx−κ̂
′

yy)−
1

2
(σ̂

′

xx−σ̂
′

yy)

}
, (12.3b)

ĝ5=
ω5

4

{
(ρ0−δρ)uxuy−κ̂

′

xy−
1

2
σ̂

′

xy

}
, (12.3c)

ĝ6=
ω6

4

{
(2ρ0−δρ)u2

xuy+κ̂
′

xxy−2uxκ̂
′

xy−uyκ̂
′

xx−
1

2
σ̂xxy

}

−
1

2
uy(3ĝ3+ ĝ4)−2ux ĝ5, (12.3d)

ĝ7=
ω7

4

{
(2ρ0−δρ)uxu2

y+κ̂
′

xyy−2uyκ̂
′

xy−uxκ̂
′

yy−
1

2
σ̂xyy

}

−
1

2
ux(3ĝ3− ĝ4)−2uy ĝ5, (12.3e)

ĝ8=
ω8

4

{
1

9
ρ+(3ρ0−δρ)u2

xu2
y−
[
κ̂
′

xxyy−2uxκ̂
′

xyy−2uyκ̂
′

xxy+u2
xκ̂

′

yy+u2
yκ̂

′

xx

+4uxuyκ̂
′

xy

]
−

1

2
σ̂

′

xxyy

}
−2ĝ3−

1

2
u2

y(3ĝ3+ ĝ4)−
1

2
u2

x(3ĝ3− ĝ4)

−4uxuy ĝ5−2uy ĝ6−2ux ĝ7. (12.3f)

The above collision operator that selectively introduces density fluctuations where nec-
essary can reduce compressibility effects for a inertial frame invariant flow field while
retaining its linear acoustics. It can thus allow for a better comparison with “incompress-
ible” macroscopic fluid dynamic equations, particularly for turbulent flows as discussed
later.
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13 Factorized central moment model for collision

In this section, we will derive an alternative form of the central moment LBE with forcing
terms based on a different choice of the local attractor in the collision step for improved
physical coherence. Continuous kinetic theory, as originally initiated by Maxwell [88],
features two important properties for the local equilibrium or the Maxwell distribution
– Galilean invariance and factorization in Cartesian components of the particle velocity.
As discussed recently [39,62], it could prove useful to inherent these properties at the dis-
crete particle velocity level. The use of central moments maintains Galilean invariance
by construction. Factorization property of the distribution function implies that particle
velocities are random variables. An extension of the factorization idea beyond equilib-
rium as a model for describing the relaxation process during collision was proposed to
construct local attractors [62]. Specifically, the basic postulate behind this model is that
the Cartesian products of the post-collision values of the orthogonal central moments of
lower orders that are not in equilibrium forms as the basis for the attractors of the higher
order moments. Here, we further extend this to include source terms so that the model
can incorporate force fields. Thus, the attractors for central moments of different orders
are given as

κ̂at
x = ˜̂κx =0, (13.1a)

κ̂at
y = ˜̂κy=0, (13.1b)

κ̂at
xy= ˜̂κx

˜̂κy=0, (13.1c)

κ̂at
xxy= ˜̂κxx

˜̂κy=0, (13.1d)

κ̂at
xyy= ˜̂κx

˜̂κyy=0, (13.1e)

κ̂at
xxyy= ˜̂κxx

˜̂κyy, (13.1f)

while the second-order longitudinal central moments are obtained from Maxwellian as
given in an earlier section (see Section 7), i.e. κ̂at

xx=κ̂at
yy=ρc2

s . In essence, the distinguishing
feature of the factorized central moment lies in the use of modified attractors for third
and higher order moments. Now, using the following central moment identity of the
post-collision state

˜̂κxmyn = κ̂xmyn+∑
β

〈Kα|(eαx−ux)
m(eαy−uy)

n〉 ĝβ, (13.2)

for m=2,n=0 and m=0,n=2, we get

˜̂κxx = κ̂xx+(6ĝ3+2ĝ4), (13.3a)

˜̂κyy= κ̂yy+(6ĝ3−2ĝ4). (13.3b)
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Note that it also follows that κ̂xx = κ̂xx and κ̂yy = κ̂yy. We can then rewrite everything in
terms of transformed raw moments, i.e.

κ̂xx = κ̂
′

xx−ρu2
x+Fxux and κ̂yy= κ̂

′

yy−ρu2
y+Fyuy. (13.4)

These yield

˜̂κxx = κ̂
′

xx−ρu2
x+Fxux+(6ĝ3+2ĝ4), (13.5a)

˜̂κyy= κ̂
′

yy−ρu2
y+Fyuy+(6ĝ3−2ĝ4). (13.5b)

In effect, the attractor for the fourth-order moment, i.e. Eq. (13.1f) reduces to

κ̂at
xxyy=

[
κ̂
′

xx−ρu2
x+Fxux+(6ĝ3+2ĝ4)

]
×
[
κ̂
′

yy−ρu2
y+Fyuy+(6ĝ3−2ĝ4)

]
. (13.6)

Now, to obtain an operational step in terms of the transformed variables, we use the
relation

κ̂
at
xmyn = κ̂at

xmyn −
1

2
σ̂xmyn (13.7)

to finally get the following expression for the fourth-order central moment

κ̂
at
xxyy=

[
κ̂
′

xx−ρu2
x+Fxux+(6ĝ3+2ĝ4)

][
κ̂
′

yy−ρu2
y+Fyuy+(6ĝ3−2ĝ4)

]

−
Fx

ρ
κ̂xyy−

Fy

ρ
κ̂xxy−

F2
y

2ρ2
κ̂xx−

F2
x

2ρ2
κ̂yy−2

FxFy

ρ2
κ̂xy. (13.8)

By replacing κ̂
M
xmyn with κ̂

at
xmyn as given above, we can derive the collision kernel with

factorized central moments as attractors. It follows that the expressions in Section 10 for
ĝβ, β=3,4,5,6,7 are the same as before with the exception for ĝ8. The expression for ĝ8 in

Eq. (10.1f) is modified such that term 1
9 ρ(=κ̂

M
xxyy) in this equation is now replaced by κ̂

at
xxyy

given in Eq. (13.8). In a similar vein, the above expression can be modified for reduced
compressibility effects (see Section 12) as

κ̂at
xxyy=

[
κ̂
′

xx−(ρ0−δρ)u2
x+Fxux+(6ĝ3+2ĝ4)

]

×
[
κ̂
′

yy−(ρ0−δρ)u2
y+Fyuy+(6ĝ3−2ĝ4)

]

−
Fx

ρ
κ̂xyy−

Fy

ρ
κ̂xxy−

F2
y

2ρ2
κ̂xx−

F2
x

2ρ2
κ̂yy−2

FxFy

ρ2
κ̂xy (13.9)

to modify ĝ8 in Eq. (12.3f).
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14 Galilean invariant filtered turbulence representation using

lattice kinetic framework

Based on the various elements derived in the previous sections, we are now in a posi-
tion to construct an approach for simulation of Galilean invariant turbulent flow field by
incorporating appropriate turbulence models in the LBM. The starting point in the statis-
tical continuum description of turbulence is the Reynolds decomposition of the velocity
field of the fluid into ‘resolved’ and ‘unresolved’ parts. The resolved part is obtained
by applying either some averaging in space or time (in the Reynolds Averaged Navier-
Stokes (RANS) context) or by applying a filter (in the LES). Application of this decompo-
sition to the Navier-Stokes (NS) equation leads to additional unknown terms involving
products of the unresolved fields, which are Reynolds stresses (in RANS) or the subgrid
stresses (in LES). This closure problem then becomes the main focus of turbulence mod-
eling. Due to the scale invariance property of the NS equations [83], the averaged and the
filtered equations, as well as the additional stress-like closure terms have similar forms.
Thus, a unified statistical approach may be adopted for turbulence modeling. It is inter-
esting to note that ideas based on kinetic theory provided the original inspiration for the
Reynolds decomposition [89] as well as early works on developing turbulence models.

The underlying motivation here is to develop a unified statistical averaged descrip-
tion (for RANS) or formal spatial filtered representation (for LES) of inertial frame invari-
ant turbulence in a kinetic approach based on the LBM derived in earlier sections. This
would also allow reconciliation of continuum and non-continuum effects on turbulence
as discussed recently [77]. The following notation for Reynolds decomposition is adopted
here. For any scalar φ, vector −→v and tensor Tij, we have

φ=φ+φ
′
, with φ

′
=0,

−→v =−→v +−→v
′
, with −→v

′
=0,

Tij =Tij+T
′

ij, with T
′

ij =0,

where (·) is an operator representing either some form of statistical average or filter to
obtain the resolved part and the symbols with primes denote the unresolved parts of the
field. As discussed in [77], application of the above decomposition directly to the con-
tinuous Boltzmann equation (Eq. (3.1)) leads to certain difficulties. In particular, using
f = f + f

′
for the distribution function in Eq. (3.1), which leads to a statistically aver-

aged kinetic equation, does not provide a clear interpretation of turbulence physics. The
local collision term needs to model all essential physics, including the non-linear and
non-local momentum transfer effects of turbulence. Moreover, the use of the averaged
attractor based on the Maxwellian fM within the collision term Ω( f , f ) leads to modeling
difficulties since

exp

[
−
(
−→
ξ −−→u )2

2c2
s

]
6=exp

[
−
(
−→
ξ −−→u )2

2c2
s

]
.
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Thus, an alternative approach is needed to coherently represent continuum/kinetic ef-
fects on turbulence.

To circumvent these issues, a transformation for the velocities was recently suggested
[77], which is adopted here to provide Galilean invariant turbulence representation. The
key element is to clearly separate the advective turbulence effects due to unresolved ve-
locity field −→u

′
from the dissipative collision that represent microscopic effects. This is

accomplished by an inspection of the local Maxwellian given in terms of the microscopic

particle velocity
−→
ξ and the macroscopic fluid velocity −→u . That is, it consists of the term

involving the peculiar velocity
−→
ξ −−→u

as its argument which should be made independent of the unresolved part of the macro-
scopic fluid velocity −→u

′
, when the averaging operator is applied. That is,

−→
ξ −(−→u +−→u

′
)=(

−→
ξ −−→u

′
)−−→u

should be transformed appropriately, which can be accomplished by defining a new vari-
able −→η as

−→η =
−→
ξ −−→u

′
. (14.1)

Now, the Maxwellian in the transformed peculiar velocity −→η −−→u commutes with the
operator for averaging or filtering. That is,

exp

[
−
(−→η −−→u )2

2c2
s

]
=exp

[
−
(−→η −−→u )2

2c2
s

]
.

This facilitates the separation of various aspects of turbulence physics modeling. Based
on this a new distribution function h(−→x ,−→η ,t) and its local Maxwellian are defined by

h(−→x ,−→η ,t)= f (−→x ,
−→
ξ ,t), (14.2)

and

hM(−→η ,−→u )=
ρ

2πc2
s

exp

[
−
(−→η −−→u )2

2c2
s

]
, (14.3)

respectively. The continuous Boltzmann equation, i.e. Eq. (3.1) (without the forcing term
for simplicity) is then transformed into a modified kinetic equation in terms of η and h as

follows. From Eq. (14.2),
−→
∇ ηh=

−→
∇ ξ f . When η=constant, we have

(
−→
∇ x

−→
ξ )η =

−→
∇ x

−→u
′

and (∂t
−→
ξ )η =∂t

−→u
′
.

Hence, the derivatives in new variables are

−→
∇ xh=

−→
∇ x f +(

−→
∇ x

−→
ξ )η ·

−→
∇ ξ f =

−→
∇ x f +(

−→
∇ x

−→u
′
)η ·

−→
∇ ηh,

∂th=∂t f +(∂t
−→
ξ )η ·

−→
∇ ξ f =∂t f +(∂t

−→u
′
)η ·

−→
∇ ηh.
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The continuous Boltzmann equation is thus modified to [77]

∂th+
−→η ·

−→
∇ xh+−→u

′
·
−→
∇ xh−−→a

′
·
−→
∇ ηh=Ω(h,h), (14.4)

where
−→a

′
=∂t

−→u
′
+η ·

−→
∇ x

−→u
′
+−→u

′
·
−→
∇ x

−→u
′
.

Considering incompressible flows, where the unresolved velocity field satisfies
−→
∇·−→u

′
=0,

we get
−→u

′
·
−→
∇ xh=

−→
∇ x(h

−→u
′
) and −→a

′
·
−→
∇ xh=

−→
∇ x(h

−→a
′
).

As a result, Eq. (14.4) is further simplified to

∂th+
−→η ·

−→
∇ xh+

−→
∇ x(h

−→u
′
)−

−→
∇ x(h

−→a
′
)=Ω(h,h). (14.5)

Now, applying the statistical averaging or filtering operator on Eq. (14.5) and using
Ω(h,h)=Ω(h,h), we get the new kinetic equation

∂th+
−→η ·

−→
∇ xh+

−→
∇ x(h

−→u
′
)−

−→
∇ x(h

−→a
′
)=Ω(h,h). (14.6)

The averaged density and momentum can then be obtained by taking moments of h.
That is, ρ =

∫
hd−→η , ρ−→u =

∫
h−→η d−→η . Now, h(η) using Eq. (14.6) is better suited to rep-

resent turbulence physics for the following reasons. The term involving h−→u
′

represents
transport in physical space, i.e. redistributes h to smoothen any gradients. h−→a

′
repre-

sents transport in velocity phase space, and acts as a source/sink for energy cascade [77].
In particular, both these quantities can be directly related to continuum based closure
models. On the other hand, the role of collision operator is then to simply represent aver-
aged effect of irreversible molecular collisions. The averaged kinetic equation, Eq. (14.6),
can be further simplified by considering the following simple microscopic closure [77]

h−→u
′
≈h−→u

′
=0, (14.7)

h−→a
′
≈h−→a

′
=h

−→
∇ x ·(

−→u
′−→u

′
). (14.8)

That is, h is uncorrelated with both u
′

i and a
′

i, which reproduces the averaged momentum

equations with additional Reynolds stress terms u
′

iu
′

j that can be closed by means of any

conventional macroscopic turbulence models. Thus, Eq. (14.6) can now be rewritten as

∂th+
−→η ·

−→
∇ xh=Ω(h,h)+

−→
∇ x ·(

−→u
′−→u

′
)·
−→
∇ ηh, (14.9)

which represents the evolution of the statistical averaged/filtered turbulence field by
means of the Reynolds stresses that appear as a forcing term in a kinetic framework.

Let us now develop a Galilean invariant lattice kinetic equation, i.e. which provides
inertial frame invariant representation with respect to the resolved velocity field obtained
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by statistical averaging/filtering. For brevity and to avoid the use of additional new
notations, let us rewrite Eq. (14.9) by replacing h by f (and η and ξ) to make use of the
developments of the previous sections. That is,

∂t f +
−→
ξ ·

−→
∇ x f =Ω( f , f )+

−→
∇ x ·(

−→u
′−→u

′
)·
−→
∇ ξ f (14.10)

from which the resolved hydrodynamic fields can be defined as follows:

ρ=
∫

f d
−→
ξ , ρ−→u =

∫
f
−→
ξ d

−→
ξ . (14.11)

Now, we define operator averaged continuous central moments as

Π̂xmyn =
∫ ∞

−∞

∫ ∞

−∞
f (ξx−ux)

m(ξy−uy)
ndξxdξy (14.12)

and similarly for the continuous central moments of the Maxwellian Π̂
M
xmyn based on re-

placing hM and −→η by fM and
−→
ξ , respectively. The Cartesian components of the unre-

solved turbulent Reynolds stresses may be written as

a
′

x =−∂x(u
′

xu
′

x)−∂y(u
′

xu
′

y), (14.13)

a
′

y =−∂x(u
′

xu
′

y)−∂y(u
′

yu
′

y), (14.14)

where −→a
′
=(a

′

x,a
′

y), from which we analogously define a source/sink continuous central

moment as

Γ̂a
xmyn =

∫ ∞

−∞

∫ ∞

−∞
δ f a

′

(ξx−ux)
m(ξy−uy)

ndξxdξy. (14.15)

Here,

δ f a
′

=−−→a
′
·
−→
∇ ξ f .

It readily follows from Eq. (5.5) that Γ̂
a
xmyn also satisfies the following exact identity

Γ̂
a
xmyn =ma

′

xΠ̂xm−1yn+na
′

yΠ̂xmyn−1.

That is, the statistical averaged/filtered central moment of sources/sinks due to unre-
solved fields of a given order is dependent on the product of the Cartesian components
of the gradients of turbulent stresses with the lower order central moments of the av-
eraged/filtered distribution function. The corresponding discrete central moment LBM
can be devised by considering the following averaged representation of discrete vectors
supported by the particle velocity set:

f= | fα〉=( f
0
, f

1
, f

2
,··· , f

8
)T, ĝ= |ĝ

α
〉=(ĝ

0
, ĝ

1
, ĝ

2
,··· , ĝ

8
)T,

S= |Sα〉=(S0,S1,S2,··· ,S8)
T, Ω

c≡Ω
c(f,ĝ)=(K·ĝ)=(Ωc

0,Ωc
1,Ωc

2,··· ,Ωc
8)

T,
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and invoking Galilean invariance matching principle, i.e. matching the continuous and
discrete central moments of various quantities at successively higher orders as discussed
in earlier sections. In particular, the statistical averaged/filtered discrete collision op-
erator Ω

c can be obtained by considering reduced compressibility effects and factorized
attractors as in Section 13. Furthermore, the corresponding source terms in velocity space
S can be constructed using the procedure outlined in Section 9. The operator averaged
LBE, in terms of the transformed distribution function f

α
for improved accuracy, can be

finally written as

f
α
(−→x +−→e α,t+1)= f

α
(−→x ,t)+Ωc

α(−→x ,t)+Sα(−→x ,t), (14.16)

where f
α
= f

α
− 1

2 Sα. Here, as before, we have adopted the standard discretization for the

streaming step (see the comment following Eq. (6.5)). The resolved hydrodynamic fields
in the reduced compressibility formulation can then be obtained as

ρ=
8

∑
α=0

f
α
= 〈 f

α
|ρ〉, (14.17a)

ρ0ui=
8

∑
α=0

f
α
eαi+

1

2
ρ a

′

i = 〈 f
α
|eαi〉+

1

2
ρ a

′

i, i∈ x,y. (14.17b)

This provides a minimal lattice kinetic equation for incorporating turbulence models,
where the unresolved turbulent motion are inertial frame invariant with respect to the
resolved fluid motion. Here, we clarify the meaning of this statement as follows. Unlike
other areas in fluid mechanics, where models have been developed starting from contin-
uous kinetic theory, its role for fluid turbulence has been more limited. This is mainly
due to the fact that kinetic theory generally considers distinct scale separation of physical
processes. On the other hand, turbulence is a flow phenomenon intrinsically containing
a continuous spectrum of scales with no scale separation. As such, therefore, turbu-
lence modeling developments have to rely much on phenomenology whose mathemati-
cal forms are then constrained by invariance principles (e.g. material frame indifference
and inertial frame invariance mentioned earlier in the introduction) and realizability con-
siderations [81, 90]. Thus, except for some early models such as those based on mixing
length concepts and derivation of some recent phenomenological models (e.g. [54]) based
on kinetic theory, turbulence modeling developments are generally based on macroscopic
models. The ultimate goal of our central moment approach for the filtered kinetic equa-
tion discussed above, is, then, to simulate resolved turbulent fields which are inertial
frame independent, when an appropriate macroscopic turbulence model for the unre-
solve field is used in the forcing term.

15 Summary and conclusions

A discrete lattice kinetic model for the continuous Boltzmann equation, including forc-
ing, based on central moments is derived. The collision operator as well as the source
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term of this lattice Boltzmann equation is constructed by matching the corresponding
continuous and discrete central moments successively at various orders. The local at-
tractor of the collision operator is constructed to satisfy the factorization property of the
Maxwellian during relaxation process. An exact hierarchical identity of the central mo-
ment of sources, that incorporates non-equilibrium effects, is maintained at the discrete
level. The resulting approach provides Galilean invariant hydrodynamic fields in the
presence of any external or self-consistent internal forces in a discrete kinetic framework.
It is further extended to incorporate reduced compressibility effects for better represen-
tation of incompressible flow, a limiting case. An important physical characteristic of
turbulent flows is that it is inertial frame independent for all or any subset of scales. In
consequence, for general applicability, all turbulence models and their simulation ap-
proaches, should satisfy this requirement. A statistical averaged/filtered lattice kinetic
equation based on central moments that maintains Galilean invariant representation of
unresolved fluid motion with respect to the resolved fields of turbulent flow is thus con-
structed. The formalism presented here can extended to other lattice velocity sets and in
three-dimensions as well as to other physical problems such as complex fluids.

In this regard, we make the following remark on the development of more efficient
schemes for the former aspect. Symmetry and finiteness of the standard lattice sets lead
to degeneracies of higher order moments in terms those at lower orders that can result
in frame dependent contributions to viscous stresses. This necessitates considerations of
extended lattice sets. In this case, it is proposed that the central moments relaxation (as
well as forcing) be considered only up to those higher order moments that have bearing
on the physics of hydrodynamics, such as stress tensors and heat flux vectors. In turn, this
would impose Galilean invariance of the macroscopic description of the fluid motion.
The relaxation of the rest of the higher moments (including forcing) related to the fast
kinetic or ghost modes can be considered in terms of the standard or raw moments. Here,
the form of the hierarchical identity for the sources derived in this paper for those higher
(kinetic) moments would be the same with the simple replacement of the central moment
terms by the corresponding raw moments. It is envisaged that such mixed central/raw
moment approach would exhibit interesting mathematical structures for the resulting
collision operator and the sources, as well as being computationally more effective. This
strategy is currently under investigation.
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