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Abstract. This paper summarizes suitable material models for creep and damage of
concrete which are coupled with heat and moisture transfer. The fully coupled ap-
proach or the staggered coupling is assumed. Governing equations are spatially dis-
cretized by the finite element method and the temporal discretization is done by the
generalized trapezoidal method. Systems of non-linear algebraic equations are solved
by the Newton method. Development of an efficient and extensible computer code
based on the C++ programming language is described. Finally, successful analyses of
two real engineering problems are described.
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1 Introduction

Analyses of many engineering and scientific problems become more complicated in the
course of time because the multiphysics approach is required in branches where the sin-
gle physics was satisfactory several years ago. Civil engineering is not an exception
which can be documented on coupled analyses used for very important and monumen-
tal structures. Usually the mechanical analysis coupled with heat and moisture transfer
is considered. The multiphysics approach can be used because of large achievements
in numerical methods and significant development of computers, especially the parallel
computers.
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From many multiphysics problems of civil engineering, this paper concentrates only
on the coupled hydro-thermo-mechanical analysis of concrete structures. The paper de-
scribes selected material models for mechanical and transport processes, balance and
governing equations, their approximation by the finite element method, efficient meth-
ods for time discretization and solvers of algebraic equations. Special attention is devoted
to development of a computer code which has to be easily extensible and very efficient.
At the end, some real world engineering problems solved by the authors during past five
years are described.

Concrete represents a very specific material which requires multiphysics analysis be-
cause the mechanical behaviour depends strongly on distribution of moisture and tem-
perature. In the past, moisture and temperature were assumed time independent or they
were not taken into account at all. The coupled hydro-thermo-mechanical approach en-
ables description of real conditions and the material and structural response is in accor-
dance with experiments.

The classical mechanical analysis based on the finite element method defines two or
three unknown displacements in nodes of the mesh with respect to the dimension of
problem solved. Heat and moisture transfer can be described by models which define
two or three unknown nodal values. The unknowns represent nodal temperature, mois-
ture content, relative humidity or partial pressures. In the general three-dimensional
case, the coupled analysis deals with six unknowns in each node of the mesh. It is clear
that the requirements on computers grow rapidly with the growing number of nodes in
the mesh.

The classical single processor implementation of coupled problems gives severe lim-
its on finite element mesh. Unfortunately, the mesh has to take into account the shape
of the structure solved as well as possible steep gradients of all unknown variables.
Only two-dimensional or very simple three-dimensional problems can be treated on a
single processor computer. On the other hand, parallel computers with several proces-
sors together with domain decomposition methods represent a very efficient tool which is
able to deal with significantly larger problems and reasonably fine meshes. The domain
decomposition methods were successfully applied in various problems in past twenty
years [9, 19–21, 31, 34, 40].

Another possibility of efficient solution of complicated multiphysics problems is ap-
plication of adaptive methods. It is known, that there are basically three types of adaptive
methods connected with the finite element approach. The h-version changes the meshes
while the degree of polynomials used for approximation on finite elements is constant.
On the other hand, the p-version changes the degree of polynomials used while the finite
element mesh is fixed. Finally, the most efficient hp-version combines the previous ap-
proaches, i.e. the mesh and the degree of polynomials are changed simultaneously [36].
Clearly, the hp-version is the most difficult version in the perspective of computer imple-
mentation but it saves significant number of degrees of freedom which leads to shorter
computational time and smaller demands on computer memory [37].

The paper is organized as follows. Section 2 summarizes useful mechanical material
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models for concrete which are applied in pure mechanical analyses and coupled analyses
as well. Models of creep, isotropic and orthotropic damage are mentioned. Section 3 is
devoted to models of heat and moisture transfer. Namely, Künzel and Kiessl‘s model is
described. Section 4 deals with numerical methods for time discretization and the New-
ton method for solution of non-linear algebraic equations. Section 5 describes implemen-
tation of material models, numerical methods and solvers. Requirements on extensibility
and performance efficiency are also taken into account. The last section 6 describes se-
lected real engineering problems solved. The analysis of watertightness of a foundation
slab and simulation of a reactor vessel are mentioned in detail.

2 Mechanical models

Concrete is heterogeneous material whose behaviour is very complex. Creep, shrinkage,
thermal dilatancy, plasticity, damage and crack propagation are the most important phe-
nomena which should be taken into account for concrete modelling. Usually, the models
describe only one aspect of concrete behaviour and this leads to combination of several
material models. Assuming small strains, the total strain can be additively decomposed
into several parts

ε=εe+εp+εd+εc+εsh+εt, (2.1)

where ε denotes the total strain, εe denotes the elastic strain, εp stands for the plastic
strain, εd stands for damage strain, εc is creep strain which contains also contributions
caused by ageing, εsh denotes part of strain caused by shrinkage and εt is free thermal
strain. The resulting stress σ can be expressed from the Hook’s law of elasticity in the
form

σ=Deεe, (2.2)

where De is the elastic stiffness of material.
Following subsections summarize models based on small strains used for analyses of

real concrete structures described in this paper. In the case of geometrical non-linearity,
the additive strain decomposition is not acceptable and different approach has to be used
(e.g. [26]). The models described can be applied to matured concrete while special models
have to be used for very early ages [38].

2.1 Concrete creep, effect of moisture and temperature

When taking into account the effects included in equation (2.1), the creep strain is most
influenced by the moisture and temperature distribution and their history. Therefore,
the creep has to be coupled with the heat and moisture transfer in order to obtain close
agreement between numerical simulation and experiments. There are special problems,
e.g. analysis of containment and reactor vessels in nuclear power plants, watertightness
of foundation slabs or long term behaviour of long-span bridges, where the creep of
concrete plays a very important role.
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The areas of application of coupled heat and moisture transfer models are much more
extensive. They also include problems such as energy storage and recovery, geother-
mal storage, nuclear waste disposal, evaluating the safety of peculiar concrete structures,
and many others. The magnitude of pore pressures and the loss of moisture caused by
heating of concrete is of considerable concern for predicting the response of prestressed
concrete reactor vessels to hypothetical core disruption accidents as well as the response
of concrete structures to fire. When solving the latter problem, a suitable constitutive
law is required to describe the time-dependent behaviour of a structure due to shrinkage
and creep. Pore relative humidity and temperature influence the creep and shrinkage
in two ways – directly, by varying the viscosity coefficients in a constitutive model, and
indirectly, through the effect of the rate of hydration (ageing). Temperature and pore hu-
midity have also the direct effect on the rate of creep. To this end, the most convenient
representations of compliance J(t,t′) in terms of the Dirichlet-Prony series are considered

J(t,t′)=
M

∑
µ=1

1

Dµ(t′)

{
1−exp [yµ(t

′)−yµ(t)]
}

, (2.3)

where yµ(t)= (t/τµ)qµ , qµ ≤ 1 is a coefficient (usually qµ =
2
3 ). The compliance function

of a linear viscoelastic material represents the strain at time t due to a unit stress σ = 1
applied at time t′. A proper selection of retardation times τµ for J(t,t′) can be found
in [2]. Functions Dµ are usually obtained by fitting the compliance functions (2.3) using
the method of least squares (see, e.g., [13]).

2.1.1 B3 creep model

As the most popular, Bazant’s B3 model with logarithmic-power law was used to de-
scribe concrete creep

J(t,t′)=q1+q2Q(t,t′)+q3ln

[
1+

(
t−t′

λ0

)n]
+q4ln

( t

t′

)
, (2.4)

where J(t,t′) is the compliance function at time t due to a unit stress σ=1 applied at time
t′. The material parameter q1 is the instantaneous strain due to unit stress. The term with
the coefficient q2 represents the ageing viscoelastic compliance, q3 non-ageing viscoelastic
compliance and q4 flow compliance. The coefficient λ0 is almost equal to 1.0 and Q(t,t′)
is a binomial integral. Detailed description of all coefficients can be found, e.g., in [3].

2.1.2 Moisture and temperature effect

Any model which has to describe concisely the behaviour of concrete structures exposed
to temperature and moisture changes should cover three complex phenomena in concrete
creep (solidification model [5]):

• The ageing of concrete, which is manifested by a significant decrease of creep with
the age at loading is of two types:
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– Shorter-term chemical ageing, which ceases at room temperature after about a
year and is caused by the fact that new solids are produced by the slowly ad-
vancing chemical reactions of cement hydration and deposit (in an essentially
stress-free) on the walls of capillary pores.

– Long-term non-chemical ageing, manifested by the fact that the decrease of
creep with the age at loading continues unabated even for many years after
the degree of hydration of cement ceased to grow.

• The drying creep effect, also called the stress-induced shrinkage or Picket effect,
which is a transient effect consisting in the fact that the apparent creep during dry-
ing is much larger than the basic creep (i.e., creep at moisture saturation) while the
creep after drying (i.e., after reaching thermodynamical equilibrium with a reduced
environmental humidity) is much smaller than basic creep. It consists of an appar-
ent mechanism consisting of an apparent additional creep due to microcracking
and a true mechanism that resides in the nanostructure.

• The transitional creep, which represents a transient increase of creep after a temper-
ature change, both heating and cooling. In the case of cooling, the transient increase
is of the opposite sign than the final change in creep rate after a steady-state lower
temperature has been regained. Like the drying creep effect, this effect has two
analogous mechanisms [5]:

– An apparent macroscopic mechanism, due to thermally induced microcrack-
ing and similar to drying creep.

– A nanoscale mechanism due to a change in the level of microprestress caused
by a change of chemical potential of nanopore water with a temperature change.

The effect of temperature on concrete creep is twofold, generated by two different
mechanisms:

• A temperature increase accelerates the bond breakages and restorations causing
creep, and thus increases the creep rate.

• The higher the temperature, the faster is the chemical process of cement hydration
and thus the ageing of concrete, which reduces the creep rate.

Usually the former effect prevails and then the overall effect of temperature rise in an
increase of creep. The special time quantities are applied into creep model:

• Reduced time tr characterizing the changes in the rate of bond breakages and restora-
tion on the microstructural level

tr(t)=
∫ t

0
ψ(t′)dt′≤ t, (2.5)
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where

ψ(t)=ψT(t)ψϕ(t), (2.6)

ψT(t)=exp

{
Qv

R

(
1

T0
−

1

T

)}
, (2.7)

ψϕ(t)=αϕ+(1−αϕ)ϕ2(t), (2.8)

where T is the absolute temperature, T0 is the reference temperature, ϕ is the rel-
ative humidity in the pores of cement paste, R is the gas constant, Qv is the acti-
vation energy for the viscous processes and αϕ is a material parameter that has to
be determined experimentally. With respect to a large set of experiments, Bazant
determined the following parameters T0=294 K, Qv/R=5000 K and αϕ =0.1.

• Equivalent time te (equivalent hydration period or maturity), which indirectly char-
acterizes the degree of hydration (te ≥ t)

te(t)=
∫ t

0
β(t′)dt′, (2.9)

where

β(t)=βT(t)βϕ(t), (2.10)

βT(t)=exp

{
Qh

R

(
1

T0
−

1

T

)}
, (2.11)

βϕ(t)={1+[aϕ−aϕ ϕ(t)]4}−1, (2.12)

where Qh is the activation energy, Qh/R=2700 K and aϕ =5.
Moisture changes have the similar effect in ageing of concrete [5]. The rate of hydra-

tion and creep decrease with decreasing relative humidity ϕ and when ϕ approaches 0.3,
the rate of ageing is almost zero.

The effect of temperature and humidity changes (structural thermal expansion and
shrinkage) at zero stress can be expressed in strain rates:

• thermal expansion rate

ε̇t=αṪ ⇒ ∆εt=αṪ∆t=α∆T, (2.13)

• drying shrinkage rate

ε̇sh=kϕ̇ ⇒ ∆εsh=kϕ̇∆t=k∆ϕ, (2.14)

where k={k11,k22,k33,k23,k31,k12}
T is the incremental shrinkage coefficient vector, which

depends on ϕ, T and te, and α={α11,α22,α33,α23,α31,α12}
T is the thermal expansion coef-

ficient vector.
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Providing the shrinkage and thermal expansion are independent of stress, they as-
sume the form

k= ε0
shψm, α=α0m, m={1,1,1,0,0,0}T , (2.15)

where (−ε0
sh)=0.0002÷0.001 and α0 are empirical constants, and (−ψ)=E(t′)/E(te)3ϕ2

for 0.4≤ ϕ≤0.98.
In the presence of stress, the shrinkage and thermal expansion coefficient vectors are

approximated as linear functions of the stress vector [4], σ={σ11,σ22,σ33,σ23,σ31,σ12}
T as

k= ε0
shψ(m+rσsign(Ḣ)), α=α0(m+ρσsign(Ḣ)), (2.16)

where Ḣ = ϕ̇+cṪ (c being a non-negative constant). Empirical coefficients normally at-
tain the values r=(0.1÷0.6)/ f ′t (MPa−1), ρ=(1÷2)/ f ′t (MPa−1), where f ′t is the tensile
strength. In [2], Eq. (2.16) are simplified by considering c→0 in case of k, to get sign(Ḣ)=
sign(ϕ̇), and by setting c→∞ in case of α, thus yielding sign(Ḣ) = sign(Ṫ). A general
linear dependence (2.16) would also include terms proportional to σmean=σ

Tm/3, which,
however, seem to be negligible.

Generalization into 3D and including incremental form of shrinkage ∆εsh =k∆ϕ and
thermal dilatation ∆εt=α∆T, the incremental constitutive equation based on the Dirichlet-
Prony series is obtained

∆σ= ÊiD̂
(
∆ε−k∆ϕ−α∆T−∆εc−∆εd

)
, (2.17)

where

Êi=
M

∑
µ=1

Ēµ

∆yµ

(
1−e−∆yµ

)
, with Ēµ =

1

Dµ
, (2.18)

Ĉ= D̂
−1

=




1 −ν −ν 0 0 0
1 −ν 0 0 0

1 0 0 0
2(1+ν) 0 0

2(1+ν) 0
2(1+ν)




. (2.19)

2.2 Scalar isotropic damage model

Concrete belongs to quasi-brittle materials. In such materials, exceeding of a certain level
of strains leads to evolution of defects such as microcracks and microvoids. If the evolu-
tion of strains continues, the growth of defects localizes to some of them while evolution
of the rest stops. The process is called as localization of inelastic strains. It can be de-
scribed by a variety of models depending on the concept of yielding.

The scalar isotropic damage model is one of the simplest models of continuum dam-
age mechanics. More details about the model can be found in [24] and [33]. The damage
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models consist in concepts of virgin, damaged and pseudo-undamaged states of mate-
rial. The material is assumed to be at virgin state when no defects are present which
corresponds to elastic state. Considering the one-dimensional case, the area of the cross-
section of a bar element is denoted by A at the virgin state. The bar element is subjected
to increasing uniaxial stress. Evolution of defects starts at a certain level of deformation.
Let the area of these defects be denoted by Ad. In the damaged state, the nominal stress
σ is assumed acting on the original cross-section area A while in the pseudo-undamaged
state the effective stress σ̃ acts on the undamaged area Ã= A−Ad. The equilibrium con-
dition on the bar element can be written in the form

σA= σ̃Ã (2.20)

and dimensionless damage parameter ω can be defined

ω=
Ad

A
. (2.21)

Using Eqs. (2.20) and (2.21), the stress-strain relation for the one-dimensional case can be
written

σ=(1−ω)Eε̄, (2.22)

where ε̄ represents strain without irreversible strains in the form

ε̄= ε−εp−εc−εsh−εt (2.23)

and E is the Young modulus of elasticity. Eq. (2.22) can be rewritten to the form

σ=E(ε̄−εd)=Eεe, (2.24)

where

εd =ωε̄. (2.25)

Additionally, the evolution law for damage parameter ω has to be established and
it depends on the type of the modelled material. In reference [28], the evolution law
suitable for concrete was proposed in the form

ω=
a(ε̄− ε̄0)b

1+a(ε̄− ε̄0)b
, (2.26)

where ε̄0 is the strain threshold, a and b are material parameters controlling the peak
value and slope of the softening branch. The damage evolves after the strains exceed the
limit value of ε̄0.

It is known, [24], that damage models are mesh sensitive. It is connected with the
dissipated energy which depends on the characteristic size of a damaged element and it
leads to physically unrealistic results. Dissipated energy tends to zero with decreasing
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characteristic size of the element. The so-called method of the variable softening modu-
lus was developed, [30], in order to avoid the spurious mesh dependency. The method
consists in involving of the characteristic element length into the damage evolution law.
Assuming the one-dimensional case, the stress can be expressed in the form

σ= ft exp

(
−

wcr

wcr0

)
, (2.27)

where ft is the tensile strength in [Pa], wcr is the crack opening in [m] and wcr0 is the
material parameter controlling the initial slope of the softening branch in [m]. The crack
opening can be smeared over the element using the following equation

ε̄−εe =
wcr

h
, (2.28)

where h is the characteristic element length. When combining Eqs. (2.22), (2.28) and
(2.27), the resulting non-linear equation for the damage parameter ω yields

(1−ω)Eε̄= ft exp

(
−

ωhε̄

wcr0

)
. (2.29)

In the general three-dimensional case, the stress-strain relation can be obtained simi-
larly in the form

σ=(1−ω)Deε̄. (2.30)

The damage parameter ω is computed with help of the evolution law similar to the one-
dimensional case where the strain ε̄ has to be substituted by equivalent strain κ. There
are many definitions of the equivalent strain κ but in the case of concrete modelling, the
most used definition is the Mazars’ norm [27] which has the form

κ=
√
〈ε̄α〉〈ε̄α〉, (2.31)

where ε̄α denotes the principal values of the strain tensor ε̄ and the symbol 〈〉 denotes
selection of positive components (McAulley brackets).

2.3 Orthotropic damage model

The main drawback of the scalar isotropic damage model is that it uses only one damage
parameter for all principle directions regardless of tension or compression. Once the
damage parameter caused by exceeding limit strain in one principle direction evolves,
it reduces stiffness in all remaining principle directions even though they should not be
influenced. This drawback is not significant in the case of the one-dimensional stress state
such as pure bending but it becomes more important especially for the three-dimensional
stress state.
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That led to development of the more advanced damage model which can describe
better the 3D problems. In reference [28], the authors proposed general anisotropic model
for concrete which contains nine material parameters. The laboratory measurements of
the required material parameters has to be performed but it caused difficulties for certain
cases. Additionally, the model required a significant number of internal variables that
have to be stored. These difficulties led to development of a simplified version of the
model which is based on six material parameters – three for tension and another three
parameters for compression.

The model is based on the following stress-strain relation

σα=
(

1−H(ε̄α)D
(t)
α −H(−ε̄α)D

(c)
α

)[(
K−

2

3
G

)
ε̄v+2Gε̄α

]
, (2.32)

where the subscript α stands for the index of principle components of the given quantity.

The model defines two sets of damage parameters D
(t)
α and D

(c)
α for tension and compres-

sion, respectively. In the equation (2.32), the symbol H() denotes the Heaviside function,
K is the bulk modulus, G is the shear modulus and ε̄v stands for volumetric strain.

There are many evolution laws that can be used for D
(t)
α and D

(c)
α description. In

our problems, the two evolution laws for the damage parameters are used similar to the
laws used in the scalar isotropic damage model. The first law gives better results for
compression but the determination of the material parameters is more complicated. It
can be written in the form

D
(β)
α =

A(β)
(
|ε̄
(β)
α |− ε̄

(β)
0

)B(β)

1+A(β)
(
|ε̄
(β)
α |− ε̄

(β)
0

)B(β)
, (2.33)

where the superscript (β) represents indices t or c which are used for tension and com-

pression. A(β), B(β) and ε̄
(β)
0 are material parameters with the same meaning as in the

similar law defined by (2.26). The second law involves correction of the dissipated en-
ergy with respect to the size of elements and it describes tension better. It is defined by
the non-linear equation (2.34) which can be solved using the Newton method

(
1−D

(β)
α

)
E|ε̄

(β)
α |= fβ exp

(
−

D
(β)
α h|ε̄

(β)
α |

w
(β)
cr0

)
. (2.34)

In the above equation, fβ represents the tensile or compressive strength and w
(β)
cr0 controls

the initial slope of the softening branches. More details about the implemented models
can be found in [16–18].
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3 Heat and moisture transfer

Transport of heat and moisture in porous medium can be assumed by convection, dif-
fusion or their combination. In all cases, three types of equations have to be solved.
The transport equations express fluxes with respect to gradients of unknown variables.
The constitutive equations define relationships between unknown variables and internal
variables. As an example can serve the retention curves, sorption isotherms, etc. Finally,
the third set of equations contains the balance (conservation) equations. Gradual sub-
stitution of the constitutive equations to the transport equations and then to the balance
equations leads to the governing equations. The governing equations are partial differ-
ential equations and they have to be solved numerically. After spatial discretization of
governing equations using the finite element method and after temporal discretization
by the generalized trapezoidal method, the system of non-symmetric and non-linear al-
gebraic equations is obtained.

One of the most popular models is summarized in this paper. It is the Künzel and
Kiessl‘s phenomenological model [23] based on the diffusion theory. This model is suit-
able for numerical simulations of building structures under common climatic condi-
tions. Other models and description of climatic conditions can be found in references
[6, 10, 14, 15, 25, 29].

3.1 Künzel and Kiessl‘s coupled heat and moisture transfer approach

The model introduces two unknowns in a material point, relative humidity ϕ [-] and tem-
perature T [K]. The model divides overhygroscopic region into two subranges – capillary
water region and supersaturated region, where different conditions for water and water
vapour transport are considered. For the description of simultaneous water and water
vapour transport, the relative humidity ϕ is chosen as the only moisture potential for
both hygroscopic and overhygroscopic range. This model uses certain simplifications.
Nevertheless, proposed model describes all substantial phenomena and the predicted re-
sults comply well with experimentally obtained data, which is the main advantage of the
model together with easy and quick determination of the material properties measured
in a laboratory.

3.1.1 Transport equations

Künzel proposed that the moisture transport mechanisms relevant to numerical analysis
in the field of building physics are just water vapour diffusion and liquid transport [23].
Vapour diffusion is the most important in large pores, whereas liquid transport takes
place on pore surfaces and in small capillaries.

Vapour diffusion in porous media is described in the model by the Fick’s diffusion
and effusion in the form

Jv=−δp∇p=−
δ

µ
∇p, (3.1)
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where Jv is the water vapour flux, δp [kg m−1 s−1 Pa−1] is the vapour permeability of the
porous material, p denotes vapour pressure [Pa], the vapour diffusion resistance number
µ is a material property and δ [kg m−1 s−1 Pa−1] is the vapour diffusion coefficient in the
air.

The liquid transport mechanism includes liquid flow in the absorbed layer (surface
diffusion) and in the water filled capillaries (capillary transport). The driving potential in
both cases is capillary pressure (suction stress) or relative humidity ϕ. The flux of liquid
water is described by

Jw =−Dϕ∇ϕ, (3.2)

where the liquid conductivity Dϕ [kg m s−1] is the product of the liquid diffusivity Dw

[m2 s−1] and the derivative of water retention function Dϕ=Dw ·dw/dϕ.
The heat flux is proportional to the thermal conductivity of the moist porous material

and the temperature gradient (Fourier’s law)

q=−λ∇T, (3.3)

where λ [W m−1 K−1] is the thermal conductivity of the moist material. The enthalpy
flows through moisture movement and phase transition is taken into account in the form
of source terms in the heat balance equation.

3.1.2 Balance equations

The heat and moisture balance equations are closely coupled because the moisture con-
tent depends on the total enthalpy and thermal conductivity while the temperature de-
pends on moisture flow. The resulting set of differential equations for the description of
simultaneous heat and moisture transfer, expressed in terms of temperature T and rel-
ative humidity ϕ, have the form of partial differential equations defined on a domain
Ω

dw

dϕ

∂ϕ

∂t
=∇T

(
Dϕ∇ϕ+δp∇(ϕpsat)

)
, x∈Ω, (3.4)

(
ρC +

dHw

dT

)∂T

∂t
=∇T

(
λ ∇T

)
+hv∇

T
(
δp∇(ϕpsat)

)
, x∈Ω, (3.5)

where Hw [J m−3] is the enthalpy of the material moisture, w [kg m−3] is the water con-
tent of the material, hv [J kg−1] is the evaporation enthalpy of the water, psat [Pa] is the
water vapour saturation pressure, ρ [kg m−3] is the material density, C [J kg−1 K−1] is the
specific heat capacity and t [s] denotes time. Boundary of the domain Ω is split into parts
ΓT, Γϕ, ΓqpT, ΓJpϕ, ΓqcT and ΓJcϕ. The parts ΓT, ΓqpT and ΓqcT are disjoint and their union is
the whole boundary Γ. The same is valid for the parts Γϕ, ΓJpϕ and ΓJcϕ. The heat fluxes
are prescribed on the part Γq = ΓqpT

⋃
ΓqcT and the moisture fluxes are prescribed on the

part ΓJ =ΓJpϕ
⋃

ΓJcϕ.
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3.1.3 Initial and Boundary conditions

The system of equations (3.4) and (3.5) are accompanied with three types of boundary
conditions:

• Dirichlet boundary conditions

T(x,t)=T(x,t), x∈ΓT, (3.6)

ϕ(x,t)= ϕ(x,t), x∈Γϕ, (3.7)

• Neumann boundary conditions

q(x,t)=q(x,t), x∈ΓqpT, (3.8)

J(x,t)= J(x,t), x∈ΓJpϕ, (3.9)

• Cauchy boundary conditions

q(x,t)=βT(T(x,t)−T∞(x,t)), x∈ΓqcT, (3.10)

J(x,t)=βϕ(p(x,t)−p∞(x,t)), x∈ΓJcϕ, (3.11)

where T(x,t) is the prescribed temperature, ϕ(x,t) is the prescribed relative humidity,
q(x,t) is the prescribed heat flux, J(x,t) is the prescribed moisture flux, βT [W m−2 K−1]
and βϕ [kg s−1 Pa−1] are the heat and mass transfer coefficient, T∞ is the ambient tem-
perature and p∞ is the ambient water vapour pressure. Besides the boundary conditions,
the initial conditions are prescribed, i.e.

T(x,0)=T0(x), x∈Ω, (3.12)

ϕ(x,0)= ϕ0(x), x∈Ω, (3.13)

where T0(x) denotes the initial temperature and ϕ0(x) denotes the initial relative humid-
ity.

3.1.4 Discretization of the differential equations

The finite element method is used for spatial discretization of the partial differential equa-
tions (3.4) and (3.5). The weighted residual statement is applied to the mass balance
equation assuming δT=0 on ΓT and δϕ=0 on Γϕ

∫

Ω
δϕ
(dw

dϕ

∂ϕ

∂t
−∇T

(
Dϕ∇ϕ+δp∇(ϕpsat)

))
dΩ=0 (3.14)

and also to the energy balance equation

∫

Ω
δT
((

ρC +
dHw

dT

)∂T

∂t
−∇T

(
λ ∇T

)
−hv∇

T
(
δp∇(ϕpsat)

))
dΩ=0. (3.15)
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Applying Green’s theorem the weak formulation for the mass transfer yields
∫

Ω
δϕ
(dw

dϕ

∂ϕ

∂t

)
dΩ+

∫

Ω
∇(δϕ)

(
Dw

dw

dϕ
+δppsat

)
∇ϕdΩ+

∫

Ω
∇(δϕ)

(
δpϕ

dpsat

dT

)
∇TdΩ

−
∫

Γ J

δϕ
(

Dw
dw

dϕ
+δppsat

)∂ϕ

∂n
dΓ−

∫

Γq

δϕ
(

δpϕ
dpsat

dT

)∂T

∂n
dΓ=0 (3.16)

and the weak formulation for heat transfer
∫

Ω
δT
(

ρC +
dHw

dT

)∂T

∂t
dΩ+

∫

Ω
∇(δT)

(
λ+hvδpϕ

dpsat

dT

)
∇TdΩ

+
∫

Ω
∇(δT)

(
hvδp psat

)
∇ϕdΩ−

∫

Γ J

δT
(

hvδppsat

)∂ϕ

∂n
dΓ

−
∫

Γq

δT
(

λ+hvδp ϕ
dpsat

dT

)∂T

∂n
dΓ=0. (3.17)

In the finite element method, the temperature T and relative humidity ϕ are approxi-
mated in the form

T=N(x)dT, ϕ=N(x)dϕ (3.18)

and the gradients of temperature and relative humidity are also needed

∇T=B(x)dT, ∇ϕ=B(x)dϕ . (3.19)

In the previous equations, N(x) denotes the matrix of approximation functions, B(x)
is the matrix of their derivatives, dT denotes the vector of nodal temperatures and dϕ

denotes the vector of nodal relative humidities. Using approximations (3.18) and (3.19)
in Eqs. (3.16) and (3.17), a set of the first order differential equations is obtained in the
matrix form

(
Kϕϕ KϕT

KTϕ KTT

)(
dϕ

dT

)
+

(
Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ

ḋT

)
=

(
Jϕ

qT

)
. (3.20)

The matrices Kϕϕ, KϕT, KTϕ and KTT create the conductivity matrix of the problem and
they have the form

Kϕϕ=
∫

Ω
BTDϕϕBdΩ, KϕT =

∫

Ω
BTDϕTBdΩ, (3.21)

KTϕ=
∫

Ω
BTDTϕBdΩ, KTT =

∫

Ω
BTDTTBdΩ, (3.22)

where the conductivity matrices of material Dϕϕ, DϕT, DTϕ and DTT are diagonal matri-
ces and the diagonal entries are equal to appropriate conductivities

kϕϕ =Dw
dw

dϕ
+δppsat, kϕT =δpϕ

dpsat

dT
, (3.23)

kTϕ=hvδp psat, kTT =λ+hvδpϕ
dpsat

dT
. (3.24)
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The matrices Cϕϕ, CϕT, CTϕ and CTT create the capacity matrix of the problem and they
have the form

Cϕϕ =
∫

Ω
NTH ϕϕNdΩ, CϕT =

∫

Ω
NTH ϕT NdΩ, (3.25)

CTϕ=
∫

Ω
NT HTϕNdΩ, CTT =

∫

Ω
NT HTTNdΩ, (3.26)

where capacity matrices of material H ϕϕ, H ϕT, HTϕ and HTT are diagonal matrices and
the diagonal entries are equal to appropriate capacities

cϕϕ =
dw

dϕ
, cϕT =0, (3.27)

cTϕ=0, cTT =ρC +
dHw

dT
. (3.28)

The vectors Jϕ and qT contain prescribed nodal fluxes and have the form

Jϕ=
∫

Γ J

NT JϕdΓ, qT =
∫

Γq

NTqTdΓ, (3.29)

where Jϕ denotes the mass boundary fluxes and qT denotes the heat boundary fluxes.

4 Numerical solution

From the numerical point of view, coupled problems are described by balance equations
which have the form of partial differential equations. The exact solution cannot be ob-
tained with respect to non-linearities hidden in the material models. Another obstacle is
caused by very general domains which are solved in real engineering problems. There-
fore, numerical methods have to be used.

The spatial discretization of the balance equations is done by the finite element method
[7] and a system of ordinary differential equations with time variables is obtained. In the
case of hydro-thermo-mechanical problem, the system may have the form




Cuu CuT Cuϕ

CTu CTT CTϕ

Cϕu CϕT Cϕϕ






ḋu

ḋT

ḋϕ


+




Kuu KuT Kuϕ

KTu KTT KTϕ

Kϕu KϕT Kϕϕ






du

dT

dϕ




=




f u

f T

f ϕ


=




f uu+ f uT+ f uϕ

f Tu+ f TT+ f Tϕ

f ϕu+ f ϕT+ f ϕϕ


, (4.1)

where the subscript u denotes the displacements, the subscript ϕ denotes the relative
humidity and the subscript T denotes the temperature. The vectors du, dT and dϕ denote
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unknown nodal variables, the vectors f u, f T and f ϕ denote prescribed nodal forces and
fluxes (usually denoted g and q in transport processes, see Eq. (3.29)), the matrices K with
subscripts denote the stiffness, conductivity and coupling matrices and the matrices C
with subscripts denote the capacity and coupling matrices. The vectors f u, f T and f ϕ are
further split to three contributions. The vector f u is the sum of vectors f uu, f uT and f uϕ

which represent contributions to the nodal forces from mechanical analysis, temperature
changes and humidity changes. The meaning of other contributions is similar.

The system of differential equations (4.1) can be written more compactly in the form

C(d)ḋ+K(d)d= f , (4.2)

where the dependency of the stiffness, conductivity, capacity and coupling matrices on
the attained values of variables is explicitly denoted. d and ḋ denote increments of nodal
variables and their time derivatives.

The system (4.2) has to be solved by an incremental method. Time discretization is
based on the v-form of the generalized trapezoidal method [12] defined by the relation-
ships

dn+1=dn+∆tvn+γ , (4.3)

vn+γ=(1−γ)vn+γvn+1 , (4.4)

where v denotes the first derivatives of nodal values with respect to time and γ is a
parameter from the range [0,1]. The subscript n denotes the time step and it serves also
as an index in the incremental method, called the outer iteration loop. It is assumed that
all variables are known at the time tn and variables at the time tn+1 are searched.

Substitution of expressions defined in Eqs. (4.3) and (4.4) to the system of differential
equations (4.2) leads to relationship

(Cn+∆tγKn)vn+1= f n+1−Kn (dn+∆t(1−γ)vn), (4.5)

where Cn and Kn denote the capacity and stiffness/conductivity matrices evaluated with
the help of values dn. The system of algebraic equations (4.5) is generally non-linear and
the Newton-Raphson method [7, 8] has to be used at each time step.

The trial solution vn+1,0 of the system of equations (4.5) is used for computation of
the trial nodal values dn+1,0 which are obtained from Eqs. (4.4) and (4.3). Substitution of
the trial solution back to the system of equations (4.5) with modified matrices does not
generally lead to equality. An iteration loop, called the inner iteration loop, in every time
step is based on residual which is computed from the relationship

rn+1,j= f n+1−Kn (dn+∆t(1−γ)vn)−
(
Cn+1,j+∆tγKn+1,j

)
vn+1,j , (4.6)

where Cn+1,j and Kn+1,j denote the matrices evaluated for dn+1,j and j is the index in the
inner loop. Correction of nodal time derivatives are computed from the equation

(
Cn+1,j+∆tγKn+1,j

)
∆vn+1,j+1= rn+1,j (4.7)
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and new time derivatives are in the form

vn+1,j+1=vn+1,j+∆vn+1,j+1 . (4.8)

It has to be noted that the permanent recalculation of matrices K and C with respect
to actual nodal values is very computationally demanding. In such a case, the matrix
of the system of equations C(d)+∆tγK(d) has to be always factorized and it requires
additional computational time. The numerical examples show that the modified Newton
method, which changes the system matrix only at the beginning of a new time step is the
best choice.

5 Implementation

Implementation of numerical methods, material models and tools for parallel computing
has to satisfy several contradicting requirements. Easy extensibility of a code is proba-
bly the most important requirement. Another important requirement is connected with
code performance. These two basic requirements on a code are definitely contradictory
because really very efficient implementation of a numerical method differs significantly
from description of the method in textbooks and therefore the orientation in the code is
much more difficult.

The computer code SIFEL developed at our department is written in the C++ lan-
guage and can be found at the web address [32]. The attention is not concentrated on
particular programming language but rather on suitable formulation of the problem and
correct analysis. Detailed analysis of a system of non-linear ordinary differential equa-
tions (4.1) reveals similarity of particular submatrices. The stiffness and conductivity
matrices (denoted by K with appropriate subscripts) have generally the form

Kij=
∫

Ω
BT

i DijBjdΩ, (5.1)

where Bi and Bj denote the gradient matrices, Dij denotes the matrix of stiffness or con-
ductivity of the material and the subscripts i and j substitute any of subscripts u, T or ϕ.
Similarly, the capacity matrices (denoted by C with appropriate subscripts) have gener-
ally the form

Cij =
∫

Ω
NT

i H ijN jdΩ, (5.2)

where N i and N j denote the matrices of base functions and H ij denotes the matrix of
material parameters.

For better understanding, the following extension of the mechanical analysis is pre-
sented. Let an elastic material be assumed. The constitutive equation (Hook’s law) has
the form

σ=Duuε(u) (5.3)
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and it relates the strains ε(u) and stresses σ. Duu is the stiffness matrix of the material. It
should be noted that the strains depend on displacements u which are discretized and the
nodal displacements are denoted by du. The mechanical problem with negligible inertial
forces can be written in the form

Kuudu = f u , (5.4)

where Kuu denotes the stiffness matrix of structure and f u denotes the vector of pre-
scribed nodal forces. Eq. (5.4) expresses the equilibrium condition.

If the temperature plays a role, the constitutive relationship (5.3) has to be replaced
by the following constitutive equation

σ=Duuε(u)+DuT∇T, (5.5)

where T is the temperature and DuT denotes the matrix of material coefficients. More-
over, the constitutive relationship between the heat flux q and the temperature gradient
is needed and it has the form

q=DTT∇T, (5.6)

where DTT is the conductivity matrix of material. It is usually accepted that the heat
flux is independent of the displacements u. The equilibrium condition (5.4) is therefore
extended with the heat balance equation and the system of equations has the form

(
Kuu KuT

0 KTT

)(
du

dT

)
=

(
f u

f T

)
, (5.7)

where dT is the vector of nodal temperatures and f T is the vector of prescribed nodal heat
fluxes. The first equation in the system (5.7) expresses the equilibrium condition while
the second equation in the system (5.7) expresses the heat balance condition. The zero
block in the heat balance equation determines the independence of the heat transfer on
the mechanical problem but on the contrary, the mechanical problem is coupled with the
heat transfer.

Additional variables can be introduced in the constitutive equations and additional
balance equations can be added to the system. The thermo-mechanical problem (5.7)
extended by the relative humidity and capacity terms result in the form (4.1).

The previous analysis of the structure of system (4.1) offers directly the instruction for
efficient implementation. Our implementation of the coupled hydro-thermo-mechanical
problems is based on three independent modules. The first module, MEFEL, is an in-
dependent computer code for mechanical analysis which can stand alone. It means, the
code is able to deal with the pure mechanical analysis. It assembles submatrix Kuu and
subvector f uu from system (4.1). The second module, TRFEL, is an independent com-
puter code for heat and moisture transfer which can also be used separately. It assembles
the submatrices KTT, KTϕ, KϕT, Kϕϕ, CTT, CTϕ, CϕT, Cϕϕ and subvectors f TT, f Tϕ, f ϕT,
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f ϕϕ. The coupling between the mechanical and transport part is implemented in the
third module, METR, which deals with the off-diagonal terms in the coupled problem.
It means, this module assembles the submatrices KuT, Kuϕ, KTu, Kϕu, CuT, Cuϕ, CTu, Cϕu

and the subvectors f uT, f uϕ, f Tu and f ϕu.

At this time, many concepts of merging software especially based on Python language
can be found in literature. These concepts combine the existing computer codes and the
exchange data among them. Unfortunately, a fully coupled analysis cannot be attained by
these concepts. They result in staggered algorithms. In our concept, we do not merge the
whole codes but we are using suitable subroutines from particular codes. The coupled
problems are solved by the third module, METR, which uses many subroutines from the
MEFEL and TRFEL codes. Of course, new subroutines dealing with the coupling terms
had to be implemented. For better understanding, the numbers of lines of the source code
are summarized. The MEFEL code contains approximately 210,000 lines, the TRFEL code
contains 120,000 lines and the METR code contains 30,000 lines. It is clear that the number
of lines of source code in METR is larger than is the usual number of lines in the Python
merging code. On the other hand, it enables staggered as well as fully coupled analysis
and the resulting code is compiled and therefore very fast.

Additional advantage stems from the fact that any improvement of the mechanical or
transport module is automatically projected to the code for coupled problems. It is also
very convenient for developers which can deal with one part of the whole code.

Modelling of the sequential construction of a structure is another important require-
ment on the software for civil engineering problems. There are many possibilities for
implementation of this feature. Some programs use a transfer of results from the mesh
of the calculated stage to the next one via files but SIFEL uses more efficient implemen-
tation. The mesh is generated for all construction stages at once and individual parts of
the mesh are switched on and off by the state time functions specified for each element.
Changes in the state of elements are monitored in the course of time and if there is a
change, the nodal degrees of freedom are renumbered automatically.

The program can solve stationary and non-stationary, linear and non-linear problems
of heat and moisture transfer as well as linear and non-linear statics, eigenvibrations,
dynamics and time dependent problems with negligible inertial forces. A 2D and 3D
domain can be modeled by various types of finite elements. The SIFEL has implemented
the bar, triangular, quadrilateral, tetrahedron and hexahedron elements where both types
of approximation functions, linear and quadratic, can be used.

5.1 Material models

The matrices defined by (5.1) and (5.2) are assembled with respect to the used material
models. The proper selection of a material model is the key point in the analyses of
real engineering and scientific problems. The implementation of material models con-
sists in writing several functions connected with the evaluation of the material matrices
and stresses or fluxes. There is no need for rewriting the other module parts such as
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the routines dealing with elements. It can be demonstrated on the implementation of
a new mechanical material model. In such a case, the user have to write the following
procedures containing:

• reading of material parameters,
• assembling of the material stiffness matrix,
• computation of the stresses from the given strains,
• update of internal variables of the material model.

Both the modules TRFEL and MEFEL contain a number of material models. Many of
them describe behaviour of concrete or soils because our team is focused on civil engi-
neering problems where these materials play an important role.

The models implemented in MEFEL can be split into several main categories such as
plasticity (J2 flow, Drucker-Prager, Mohr-Coulomb, Cam-Clay, HISS and Chen models),
damage (scalar isotropic, orthotropic and anisotropic damage models), creep (Bazant’s
B3, simple viscoplasticity) and other (Microplane M4).

In the TRFEL module, there are implemented several material models, approaches
and theories for heat transfer, moisture transfer, coupled heat and moisture transport,
coupled heat-moisture and salt transport with phenomenological based models (Künzel
and Kiessl, Grunewald, Pedersen) and micromechanical based models (Lewis and Schre-
fler, Tenchev). Various types of sorption isotherms and moisture storage functions are
also implemented (Root, Hansen, Bazant, Baroghel-Bouny), functions for experimentally
measured data and non-linear behaviour of material parameters (heat conductivity, ca-
pacity, permeability, etc.) The code allows to describe different types of boundary and
initial conditions, e.g. Dirichlet boundary conditions (prescribed temperature, moisture,
relative humidity, etc.), Neumann b. c. (prescribed fluxes of heat and mass), Cauchy b.
c. (heat transfer on boundary, diffusion effect), climatic conditions exposure (wind effect,
rain, water contact, heat transfer and moisture diffusion, short and long wave radiation)
and the heat source condition, e.g. measured data from calorimetry, multiscale modelling
of cement hydration process based on the model CEMHYD3D [35], etc.

6 Solved problems

Development of the SIFEL package was motivated by real civil engineering problems that
were solved at our department. The software was used for a variety of problems starting
with dynamics of bridges, rock slope stability, analysis of tunnel sheeting, foundation
slabs and finishing with complex coupled problems such as analysis of a nuclear power
plant containment.

A complex analysis of the reactor vessel in the UK was the first coupled problem
solved with METR. The problem was solved within the scope of European project MAE-
CENAS whose topics were connected with prolongation of the service life of nuclear
power plants. The problem was solved as a coupled thermo-hydro-mechanical analysis
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and more details can be found in [22].

The problem of the lift layer separation on bridge decks was another coupled thermo-
hydro-mechanical analysis solved using METR. This problem was observed during re-
construction of bypass road bridge in Valašské Meziřı́čı́ (Czech Republic). The recon-
structed lift layer was relatively thin (10∼12 cm) and it caused large crack propagation
due to shrinkage. In addition, the important role of climate conditions during casting
was acknowledged. Proper curing procedure and reinforcement were proposed on the
basis of the performed analyses which are described in paper [16].

The most complex coupled problems solved by METR are presented in the follow-
ing subsections. High demands of these problems were caused by complex geometry,
the amount of modelled details, complexity of material models and the high number of
performed time steps.

6.1 Watertightness of foundation slabs

High performance concrete in the diaphragm walls and foundation slabs was one of the
topics of the CIDEAS project in whose scope, the research of watertightness of foundation
slabs was carried out. The motivation of this research was the construction of a commer-
cial building in Prague (Czech Republic) near the Vltava river. The building was founded
on a slab 10 meters under the ground-water level which led to the increased demands on
watertightness of the used concrete.

Foundation slabs are often built in deep ditches under the ground-water level and
they can have a significant thickness. The watertightness is influenced by a variety of
factors, especially:

• concrete mixture composition,
• degree and form of reinforcement,
• technology of casting procedure,
• arrangement of working gaps,
• proper curing of concrete during hydration.

Watertight concrete is often designed as high-performance, self-compacting or easy-
compacting where, except the basic material parameters such as water-cement ratio and
particular aggregates, an important role also play the admixtures such as superplasti-
fiers and accelerators. These admixtures influence significantly evolution of hydration
heat and autogeneous shrinkage whose values are raised when compared to the usual
concrete.

These factors are necessary to take into account in computer simulation of slab be-
haviour. The computer simulation should represent

• used casting procedure by particular layers and shrinkage parts (the slab has to be
cast in several layers with thickness 400∼600 mm),

• curing of concrete (watering and protection against sun radiation),
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• autogeneous shrinkage in early stages,
• drying shrinkage in late stages,
• increasing stiffness and strength of concrete in course of time,
• creep of concrete,
• possible damage of concrete.

All these effects depend on time, temperature and humidity and thus the coupled thermo-
hydro-mechanical analysis should be performed.

The foundation slab of the mentioned commercial building in Prague was analyzed
by a staggered approach where the transport processes influenced the mechanical analy-
sis. It should be emphasized that the heat and moisture transfer were fully coupled.

The slab is created from two parts which are mutually shifted 1.3 m. The thickness of
slab is 1 m and the spans are 15.0 and 15.8 m. On the boundaries are left shrinkage bands
whose width is 1.5 m. The scheme of the slab is depicted in Fig. 1.

The slab was reinforced by 12 bars of reinforcement V25 per meter in longitudinal and
transversal directions. There were also ties made from reinforcement V16 whose density
was 9 pieces per square meter.

The slab was cast in three layers of the thickness of approximately 33 cm in order to
avoid the damage due to the generated hydration heat. The cast sections were watered
for three days and they were covered by PE sheets after casting. The generation of hydra-
tion heat during first several hours and damage evolution due to shrinkage and thermal
strains were the reasons for small time steps used at the beginning of analysis. Damage
evolution causes the increase of the norm of the unbalanced force vector in the Newton-
Raphson method and if the time step is not chosen carefully, convergence problems arise.

The computer simulation begins at 1 hour after the end of casting of the first layer. In
the performed thermo-hydro-mechanical analysis, the Künzel-Kiessl’s model was used
for modelling of transport processes, the B3 creep model and the scalar isotropic damage
model were used for the description of the mechanical behaviour. These models were
in SIFEL computer code complemented by a hydration heat model for concrete and by
statistically processed data of climatic conditions for Prague region. The slab was sup-
ported by springs at the bottom. Stiffness of the springs near the corners were increased
in order to capture of subsoil behaviour. A dead weight load was applied on the whole
slab. An important role was played by the thermal boundary conditions used in the heat
transfer analysis. In this case, thermal boundary conditions simulated the average aerial
daily temperatures in June and they were obtained by long-term measurements in the
given region.

Thermo-hydro-mechanical coupled problems have very large demands on computa-
tional power. Because many material models were coupled together, an extraordinarily
large number of internal variables were stored in each integration points. The stored
internal variables and the large matrix of the system of algebraic equations led to ex-
tremely large demands on computer memory. In this case, the memory space used for
internal variables and memory space used for the system matrix are comparable. Taking
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Figure 1: Dimensions of the model and finite element mesh – section view.

into account the memory requirements, the 2D model of the problem was created even
though the program can solve 3D problems as well as the material models are derived
for 3D too. The use of 2D elements reduces the number of both internal variables and
unknowns. The reduced number of unknowns is also important for the speed of factor-
ization of the equation system (4.5). The factorization has to be performed once or several
times at each time step depending on the results from the Newton-Raphson method that
has to be used due to non-linearities hidden in the scalar isotropic damage model.

The sizes of finite elements used were about 4 cm in both directions except of the thin
bottom and top layers where the mesh is twice finer in the transversal direction. The
necessity of the finer mesh is given by increased temperature and humidity gradients in
these layers and the consequent damage occurrence. Details of mesh decomposition are
captured in Fig. 2.

The generated mesh takes into account the sequential casting procedure and the par-
ticular concrete layers are generated with different material properties. In Figs. 1 and 2,
these layers are drawn by various colours.

B3 model was used for the creep and shrinkage description, which involves evolution
of Young’s modulus with respect to age of concrete while the scalar isotropic damage
model assumed the material parameters to be constant. It was especially necessary to
introduce a time dependent evolution of the tensile strength. In this case, a simple linear
function was assumed

ft(t)= cE(t), (6.1)

where c is material parameter and E(t) is the value of time dependent Young’s modulus
which was calculated by the B3 model. The material parameters for concrete class C35/45
were used in the B3 model and c was set to 10−4.

Two conclusions follow from the results of the coupled heat and moisture transfer
analysis and from the simultaneous mechanical analysis. The first is that the accumu-
lated hydration heat expires approximately after 7 days (Fig. 3) simultaneously with au-
togeneous shrinkage phase. The second conclusion is that during the process of drying,
the drop of moisture content and temperature occurs first in the surface layers and much
later in the core. The effect of the diffusion process of drying (shrinkage of concrete) on
the stress development and micro-cracks distribution is rather extensive. Smeared cracks
can cause the initialization of main cracks.



908 J. Kruis, T. Koudelka and T. Krejčı́ / Commun. Comput. Phys., 12 (2012), pp. 885-918

Figure 2: Detail of FE mesh near drop.

Figure 3: Temperature history.

The following figures depict the resulting course of the normal stresses σx (Fig. 4), the
shear stresses τxy (Fig. 5), the deformed shape of the structure (Figs. 6-8) and the damage
parameter ω (Figs. 9-11) for particular construction stages of the lower slab. The results
were calculated at the time shortly before the casting of the next layer for the two bottom
layers and for the top layer, they were calculated at the time of 15 hours since casting of
the first layer. Detailed views of the damaged areas are captured in Figs. 12 and 13.

The results of the analysis confirmed that the correct modelling of the sequential con-
struction influences the evolution of the damage parameter significantly. In Fig. 12, the
distribution of nonzero values of the damage parameter can be seen on the bottom layer
which extends to 20 cm of its thickness. The maximum value of the damage parameter is
0.4. The damage is caused by hydration heat generation of the top layer which is delayed
when compared to the bottom layers. The peak of hydration heat generation in the top
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Figure 4: Distribution of stresses σx.

Figure 5: Distribution of stresses τxy.

Figure 6: Deformed shape of the first layer of concrete.

Figure 7: Deformed shape of the second layer of concrete.

Figure 8: Deformed shape of the third layer of concrete.

Figure 9: Distribution of the damage parameter ω in the first layer of concrete.
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Figure 10: Distribution of the damage parameter ω in the second layer of concrete.

Figure 11: Distribution of the damage parameter ω in the third layer of concrete.

Figure 12: Distribution of the damage parameter ω in the middle of the slab.

Figure 13: Distribution of the damage parameter ω in the right corner of the slab.

layer causes nonuniform distribution of thermal strains and consequently, the slab tends
to deflect upward. In the middle of the slab, the influence of dead weight load domi-
nates and it leads to the damage of the bottom layer. The resulting deformed shape of the
structure is captured in Fig. 8.

Another factor causing damage are the climate conditions. It can be observed in
Fig. 12 that the whole top surface is damaged but only to a shallow depth. The damage
was caused by drying shrinkage which was intensified by the applied climatic condi-
tions. The last area with significant damage evolution is at the top right corner of the slab
(see Fig. 13). In this case, the damage was caused by shear stresses whose concentration
at the corner can be observed in Fig. 5.
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6.2 Computer simulation of reactor vessel

Reliability and durability of reactor containments depend directly on the prestressing
system. General results from in-situ measurements during the whole time of operation
show the increase of deformations and the increase of prestress losses since the onset of
service. Most measurements also indicate that the temperature has a major influence on
the prestress losses. These conclusions were obtained, e.g., from thirty years of measured
prestress at Swedish nuclear reactor containments [1]. This section presents a computer
simulation of a nuclear power plant containment under cyclic temperature loading dur-
ing service, when stages of service and planned stops are changed. It is well known that
the increase of temperature influences the rate of concrete creep. This fact can cause sig-
nificant prestress losses of the structure. Moreover, increasing deformations are observed
and additional cracks could occur. An advanced two-level model is used for predicting
the prestress losses and the structure response. It is a combination of a global macro-
level model and a local model. The aim of the global one is the modelling of evolution
of prestress forces changed by the temperature and climatic loading. The local model
is loaded by the mechanical and thermal loading from the global model. The staggered
coupled thermo-mechanical analysis is the main part of the local model which has to ex-
plain the time dependent processes in the containment wall. The heat transfer analysis
is running in parallel with the mechanical analysis where the temperature effect on con-
crete creep is modeled by Bazant’s microprestress-solidification theory. The local model
is subsequently completed by suitable damage models.

The presented study is a part of the global reliability and durability model of nuclear
power plant containment in Temelı́n in the Czech Republic. The presented computation
attempts to model and explain the increase of radial deformation and decreasing of ten-
don forces since the onset of service. There was a lot of measurements to explain this
phenomena at Swedish nuclear reactor containment with non-injected (non-bounded)
prestress tendons [1] in the time period of 5 years (6.5 years in Czech Republic). Time
evolution of the tendon force is plotted in logarithmic scale in Fig. 14.

Two gradients of the tendon force losses were also observed in prestress measure-
ments at the Czech containment. With reference to [1] and discussions in theoretical
studies [5] and [11], it can be concluded that the increase of temperature influences ac-
celeration of creep. Every change of temperature, moisture content, and loading causes
changes of creep rate [5]. There is no doubt that the temperature is one of the sources
of prestress losses increase. The influence of temperature will be the dominant phe-
nomenon, the damage will have the minor effect, and the radial strains increase will
be neglected.

6.2.1 Basic data

The containment of the nuclear power plant in the Czech Republic is a monolithic post-
tensioned structure made from reinforced concrete. It consists of two parts – the lower
cylindrical part and the upper dome. The cylinder has the internal diameter of 45.00 m
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Figure 14: Change of tendon force gradient since service time [1].

and the wall is 1.20 m thick. The dome is fixed into a massive girder. The scheme of the
structure is in Fig. 15. The leak-proofness of the containment is secured by the 8 mm thick
steel lining placed inside the structure. Unbonded tendons are placed in three parallel
layers in the containment wall.

Figure 15: Geometry – section view of the containment.

6.2.2 Local model

Geometry. The local model – the cylindrical segment represents a periodic unit cell
(PUC) from the cylindrical part of the containment with channels for prestressing ten-
dons and with vertical, radial and horizontal reinforcement. It is captured in Fig. 17.
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Figure 16: Scheme of PUC. Figure 17: Tendon channels and reinforcement.

The height of PUC is 2.12 m and it covers the section of the angle of 7.5◦ (Fig. 16). The
prestressing tendons are not modeled. Their effect is introduced as mechanical loading.

The finite element mesh was generated by the automatic mesh generator T3D [39].
The thermo-mechanical coupled algorithm of the finite element computer code SIFEL
[32] was used.

6.2.3 Loading

Temperature loading. The impact of temperature is modeled by the Dirichlet boundary
conditions. Temperatures from in-situ measurements (inner and outer surface) are ap-
plied directly into computation. The temperature cycle loading depicted in Fig. 18 was
considered in one year intervals.

Mechanical loading. Mechanical loading of the cylindrical segment is considered as a
combination of four types of loading: (i) Dead weight of the segment. (ii) Dead weight

Figure 18: Temperatures of inner and outer sur-
face considered in the computer simulation since
the end of construction.

Figure 19: Change of the prestress force in the
anchorage system since the end of construction.
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of the containment over the segment is considered as a loading on the top surface. (iii)
Vertical loading of the prestress forces is considered also as loading on the top surface.
It is computed from the reactions of the anchorage system decreased by prestress losses
caused by friction in tendon channels. (iv) Loading prescribed directly in tendon chan-
nels is consisting of radial and tangential components.

The first two loadings are instantaneous. The latter two loadings are calculated as
a multiple of prestress forces in tendons in place of the anchorage system. The values
of prestress forces are obtained from in-situ measurements by a magneto-elastic method
(MEM) and they are displayed in Fig. 19. The data were approximated by a logarithmic
regression method. In the graph, jumps which simulate in the cycle service time – the
planned stop are obtained from the global model.

Material properties and equations. In the transport part of the problem, the non-
stationary heat transport was solved assuming constant material parameters. The me-
chanical part of the computation considered four types of constitutive material models,
namely creep, damage, plasticity and the thermal dilatation. The B3 creep model influ-
enced by temperature and moisture changes and a damage model describe the behaviour
of concrete. Several damage models were used in the computer simulation. There were
local and non-local versions of scalar isotropic damage model, anisotropic damage model
and orthotropic model. Results obtained using the orthotropic model showed the best co-
incidence with in-situ measurements. The application of damage models is described in
detail in [17]. The steel reinforcement was modeled using the bar finite elements with
plasticity model using Huber-Mises-Hencky condition. The thermal dilatation model
was assumed in both materials (concrete and reinforcement).

6.2.4 Results of computation and conclusions

The relation between the response of the local model and the tensile strength of concrete
in damage models was observed during the computer simulation. Hence, there were
made several calculations with different tensile strengths in order to verify the damage
evolution. The scalar isotropic damage model gives the upper estimate because the dam-
age parameter influenced all principal directions.

Therefore, the more realistic anisotropic or orthotropic models should be used in a
reliable prognosis of the containment durability. The distribution of damage parameter
for orthotropic damage model is captured in Fig. 20.

From the concrete creep point of view, the different levels of the temperature effect on
concrete creep were also studied. In term of explanation of the increase of radial defor-
mation, the most monitored graphs are strains in radial reinforcement depicted in Fig. 21.
It can be concluded from the data of the analysis that the temperature effect, which in-
creases concrete creep, is vanishing in time. In the case of some accompanying effect due
to cracking strain evolution, the increase of radial deformation and decreasing of tendon
forces during service life can be observed. The strains in the radial reinforcement are
plotted in Fig. 21 in comparison with the average data from in-situ measurements.
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Figure 20: Isosurfaces of damage parameter in time of 6000 hours since the end of construction.

Figure 21: Comparison of strain in radial reinforcement obtained from computation (solid line) and from in-situ
measurements (dashed line – averaged data).

Conclusions from the results of analysis are the following:

• The explanation of the increase of radial strains and decreasing of tendon forces
since the onset of service is based on the theoretical knowledge in concrete creep
influenced by the temperature changes and partly on the prestress losses measure-
ments mainly at Swedish nuclear reactor containments. The influence of the tem-
perature increase during the service was proved.

• The results obtained from the connection of the simplified global model and the
local model show relatively good coincidence with in-situ measurements.

• For the best coincidence between the computer simulation and the measurements,
calibration of all appearing material models and their parameters should be per-
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formed and compared with laboratory and in-situ measurements. Especially, the
tensile strength which is the basic property for monitoring the hypothetical dam-
age of the containment has to be determined.

7 Conclusions

The coupled hydro-thermo-mechanical analysis was successfully used for description of
behaviour of several complicated concrete structures. Creep and damage models were
coupled with heat and moisture effects which enabled description of structure response
from construction till the end of service life. In several cases, parallel computers were
used because of the extremely large demands on computer memory and power. Future
development will be devoted to multiscale modelling which can lead to better results,
especially in the early stages of concrete. The application of hp-version of the finite ele-
ment adaptivity is promising because it reduces the number of unknowns and therefore
the computer memory.
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(2009), 199-216.
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