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Abstract. Quasi-Monte Carlo methods and stochastic collocation methods based on
sparse grids have become popular with solving stochastic partial differential equa-
tions. These methods use deterministic points for multi-dimensional integration or in-
terpolation without suffering from the curse of dimensionality. It is not evident which
method is best, specially on random models of physical phenomena. We numerically
study the error of quasi-Monte Carlo and sparse grid methods in the context of ground-
water flow in heterogeneous media. In particular, we consider the dependence of the
variance error on the stochastic dimension and the number of samples/collocation
points for steady flow problems in which the hydraulic conductivity is a lognormal
process. The suitability of each technique is identified in terms of computational cost
and error tolerance.
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1 Introduction

The simulation of natural phenomena are susceptible to uncertainties that may be present
on initial conditions, boundary conditions, or material properties. A representative ex-
ample is flow through porous media, where medium properties, such as hydraulic con-
ductivity and porosity, are not precisely known due to the scarcity or limited accuracy of
measurements.

A computational technique widely used for this purpose is the Monte Carlo method
(MC). It entails generation of a large number of random realizations of input variables,
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solving deterministic flow simulations for each realization. This method is robust and
conceptually simple, but requires intensive computational effort since the number of re-
alizations needed to achieve statistical convergence is very large in general. On the other
hand, other techniques for solving these problems have gained great attention in recent
years: quasi-Monte Carlo (QMC) methods [8, 19, 21] and Sparse Grid (SG) collocation
methods based on Smolyak quadrature [2, 4, 10, 30].

Traditionally, QMC methods are based on deterministic numerical integration [19]
in analogy to the technique of Monte Carlo simulation. In QMC, pseudo-random se-
quences are replaced by deterministic, low discrepancy sequences. For these sequences,
Koksma-Hlawka inequality yields a rate of convergence O(N−1

r log(Nr)M), where Nr is
the number of realizations and M represents the stochastic dimension [29]. Such an order
of convergence is an improvement over the Monte Carlo method, which is O(N−1/2

r ) [26].

From another standpoint, SG methods arise from the study of multivariate polyno-
mial interpolation [24] and achieves fast convergence to the solution when it has suffi-
cient smoothness in random space, offering high-order accuracy with convergence rate
depending weakly on dimensionality. Both QMC and SG methods do not suffer from the
curse of dimensionality, i.e., the exponential growth of the computational cost with the
problem dimension, which is typical of tensor-product, multi-dimensional quadrature
rules [22, 27, 30].

The purpose of this paper is to contrast QMC and SG methods. Previous studies in
this direction were done by Bungartz et al. [6], who studied the potential of adaptive
sparse grids for multivariate numerical quadrature. Their numerical results showed that
the adaptive sparse grid is superior to QMC when the integrand is smooth. An analo-
gous procedure is also adopted in context of asset-liability management (ALM) simula-
tions. Gerstner et al. [12] show with different parameter setups how the accuracy of MC,
QMC and SG methods depend on the variance and the smoothness of the corresponding
integration problem and concluded that QMC and SG based on Gauss-Hermite quadra-
ture formulas are often faster and more accurate than Monte Carlo simulation even for
complex ALM models with many time steps.

However, such an analysis has not yet been reported for physical models involving
spatially-correlated random input data, and this is the main motivation of the present
work. Sparse grid methods have been thoroughly studied in this context and theoreti-
cal error estimates are available [23]. Efficient QMC implementations for these models
have been recently proposed [14], though the error analysis is in a preliminary level (see
also [33]). We focus our study in an elliptic equation that describes the fluid flow on a
saturated, randomly heterogeneous porous media in which the hydraulic conductivity is
a lognormal random field represented on the Karhunen-Loève expansion.

The paper is organized as follows. The next section introduces the model problem.
The variational formulation of the problem and spatial discretization are given in Section
3. The MC and QMC algorithms are presented in Section 4. The sparse grid method is
described in Section 5. Numerical experiments are discussed in Section 6.
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2 Model problem

We consider a stochastic model governing the stationary motion of an incompressible
Newtonian fluid in a isotropic and heterogeneous geology. Let D be a convex domain in
R

d (d= 2 or d= 3) with closure D and let (Ω,F,µ) a complete probability space, where
Ω represents the set of outcomes, F⊂ 2Ω is a σ-algebra of events, and µ : F→ [0,1] is
a probability measure. The flow problem is stated as: Find the fluid pressure head p :
D×Ω→R and Darcy seepage velocity q : D×Ω→R

d such that, µ-almost everywhere in
Ω,







q(x;ω)=−κ(x;ω)∇p(x;ω), (x;ω)∈D×Ω,
∇·q(x;ω)= f (x,ω), (x;ω)∈D×Ω,
p(x;ω)=0, x∈∂D.

(2.1)

Here κ(x;ω) is the random hydraulic conductivity and ω represents a random event
in the sample space Ω (see [3, 9] for a discussion on the existence and uniqueness of
solutions). We assume that the log-conductivity Y(x;ω) = ln(κ(x;ω)) is a second-order
stationary Gaussian process and f is square integrable on D×Ω. From here on, angular
brackets 〈·〉 indicate mathematical expectation. In particular, we denote the mean of Y
as 〈Y〉 and the fluctuation around the mean as Ỹ =Y−〈Y〉. We define the covariance
between two points x and y as

CY(x,y)=
〈

Ỹ(x;ω)Ỹ(y;ω)
〉

. (2.2)

We suppose also that the geometric mean κG = exp(〈Y〉) and variance σ2
Y are constant,

and that CY(x,y)=CY(x−y). Moreover, we assume that the covariance is isotropic, i.e.,
CY(x,y)=CY(r), where r= |x−y| is the lag distance.

The numerical evaluation of statistical moments depends on the discretization of
Eq. (2.1) in space and the stochastic domain. Once the problem is discretized in spa-
tial domain, numerical methods may be applied in the stochastic domain. In the next
section we will describe the spatial discretization by the finite element method.

3 Weak formulation

Let us approximate the log-conductivity Y(x;ω) by a truncated Karhunen-Loève (KL)
expansion:

Y(x;ω)≈YM(x;ξ(ω))= 〈Y(x;ω)〉+
M

∑
n=1

√

λnφn(x)ξn(ω), (3.1)

where each realization ω ∈ Ω defined on the probability space (Ω,F,µ) is mapped to
a random vector ξ(ω) = (ξ1(ω),··· ,ξM(ω)) of independent and identically distributed
Gaussian random variables, and whose eigenpairs (λn,φn) are obtained from the Fred-
holm integral equation of the second kind

∫

D
CY(x,y)φn(x)dx=λnφn(y). (3.2)
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The probability space (Ω,F,µ) can be replaced by (Γ,B(Γ),ρ(ξ)dξ), where Γ=ξ(Ω)⊂
R

M, B(Γ) denotes the Borel σ-algebra on Γ, and ρ(ξ)dξ is the probability measure of the
vector ξ [16].

The weak formulation of problem (2.1) consists of finding p ∈ H1
0(D)⊗L2

ρ(Ω) such
that

∫

D
〈exp(YM(x;ξ))∇p(x;ξ)·∇ψ(x;ξ)〉dx=

∫

D
〈 f (x;ξ)ψ(x;ξ)〉dx, (3.3)

for any ψ∈H1
0(D)⊗L2

ρ(Γ), where 〈·〉 is rewritten as 〈·〉=
∫

Γ
·ρ(ξ)dξ.

3.1 Finite element approximation

The stochastic boundary value problem (2.1) now becomes a deterministic Dirichlet bound-
ary value problem for an elliptic PDE with an M-dimensional parameter. It can be
shown [23] that problem (3.3) is equivalent to

∫

D
exp(YM(x;ξ))∇p(x;ξ)·∇ψ(x)dx=

∫

D
f (x;ξ)ψ(x)dx, ∀ψ∈H1

0(D), (3.4)

almost surely in Γ.

Now let us perform the spatial discretization with the Galerkin method. In particular
we choose Wh(D)⊂ H1

0(D) as a standard finite element space of dimension Nh, which
contains continuous piecewise polynomials defined on a regular triangulation Th that
has a maximum mesh spacing parameter h>0. It induces a semi-discrete approximation
ph ∈Wh(D)⊗L2

ρ(Γ) such that

∫

D
exp(YM(x;ξ))∇ph(x;ξ)·∇ψh(x)dx=

∫

D
f (x;ξ)ψh(x)dx, ∀ ψh∈Wh(D). (3.5)

The fully-discrete approximation by the stochastic collocation method, the Monte
Carlo method, and quasi-Monte Carlo methods can be written as

∫

D
exp

(

YM(x;ξ(m)
)

∇ph(x;ξ(m))·∇ψh(x)dx=
∫

D
f (x;ξ(m))ψh(x)dx, (3.6)

for any ψh∈Wh(D), where m=1,··· ,Nr and Nr represents the number of realizations. We

can use ph(x;ξ(1)),··· ,ph(x;ξ(Nr)) to compute approximations of the probability distribu-
tion or statistical moments of ph(x;ξ). These computations will depend on the choice of

the vectors ξ(m) and their weights. Quasi-Monte Carlo and Sparse Grid algorithms are
reviewed in the next sections.
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4 Monte Carlo and quasi-Monte Carlo methods

The Monte Carlo method approximation for (3.5) is constructed by generating a pseudo-

random set of normally distributed, independent samples ξ(1),··· ,ξ(Nr). For each real-

ization ξ(m) we solve the deterministic problem (3.6) for ph(x,ξ(m)). These realizations
are equally-weighted; in particular, the expected value of ph(x;ξ), defined by the M-
dimensional integral

µph
(x)=

∫

Γ
ph(x;ξ)ρ(ξ)dξ (4.1)

is approximated by the equally-weighted average

µMC
ph

(x)≈
1

Nr

Nr

∑
k=1

ph(x;ξ(k)). (4.2)

Let us introduce quasi-Monte Carlo methods with the problem of multi-dimensional
integrals such as (4.1). These methods approximate the integral of a given function f
on the hypercube [0,1]M by an equally-weighted average of deterministic, uniformly-
distributed points, i.e,

∫

[0,1]M
f (X)dX≈

1

Nr

Nr

∑
k=1

f (X(k)), (4.3)

whose deterministic points X(1),X(2),··· ,X(Nr) ∈ [0,1]M are chosen as elements of a low-
discrepancy sequence. Several low-discrepancy sequences are extensively studied in [22].
In particular, the classical example of a low-discrepancy sequence is the unidimensional
Sobol sequence, which is defined from a binary expansion of a natural integer n. In
particular, for

n≡ (qm ···q0)2,

we have that X
(k)
2 is defined as

X
(k)
2 =

m

∑
j=0

qj

2j+1
. (4.4)

Fig. 1 shows the frequency distribution of 1000 normally-distributed pseudo-random
numbers generated by Matlab c© command randn(·) and the inverse of the normal cumu-
lative distribution function evaluated on 1000 terms of the Sobol sequence. We observe
that the Sobol samples are better fitted to the normal distribution and require a small
computational effort. However, this advantage holds if the integrand is smooth and the
stochastic dimension M is small [20].

An s-dimensional generalization of this sequence, known as the Halton sequence,

is given by X(k)=(X
(k)
p1

,··· ,X
(k)
ps ) where (p1,··· ,ps) are relatively prime integers, usually

taken to be the first s primes. Even though standard Halton sequences perform well
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Figure 1: Frequency Histogram of 1000 samples of normally-distributed pseudo-random numbers (top) and the

transformed Sobol sequence Φ
−1(X(1)),··· ,Φ−1(X(1000)) (bottom).

in low dimensions, correlation problems have been noted in the sequences generated
with higher primes [22]. In order to deal with this problem in our experiments we use
the scrambled Halton sequence, which uses permutations of the coefficients used in the
construction of the standard Halton sequence [17].

As in the experiments we deal with the estimation of integrals over unbounded do-
mains with Gaussian weight, a change of variables is necessary in the expected value of
the integral (4.1). In this case given an univariate standard normal cumulative distribu-
tion function Φ : Γ→ [0,1]M we have:

µph
(x)=

∫

[0,1]M
ph(x;Φ−1(X))dX. (4.5)

Thus the moments of (4.5) are approximated by

µQMC
ph

(x)≈
1

Nr

Nr

∑
k=1

ph(x;Φ−1(X(k))), (4.6a)

σ2,QMC
ph

(x)≈
1

Nr

Nr

∑
k=1

(ph(x;Φ−1(X(k)))−µQMC
ph

(x))2. (4.6b)

5 Sparse grid algorithm

Let us review the stochastic collocation method and the sparse grid algorithm follow-
ing the approaches [4, 31]. We have to properly select M-dimensional collocation points

ΘM={ξ(j)}Nr

j=1∈Γ. The standard stochastic collocation method constructs ΘM from a ten-

sor product of one-dimensional points. For each direction i= 1,··· ,M we select mi one-
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dimensional collocation points Θi
1 = {ξ

(j)
i }mi

j=1 (for instance, Gaussian quadrature points)

and define the interpolation operator Ii as follows:

Ii( f )(ξ)=
mi

∑
j=1

f (ξ
(j)
i )L

(j)
i (ξ), (5.1)

where L
(j)
i (ξ) are Lagrange polynomials satisfying L

(j)
i (ξ

(k)
i ) = δkj, 1≤ k, j ≤ mi. The in-

terpolation operator I of M-dimensional functions f : Γ→R is defined by the following
tensor-product formula:

I( f )(ξ)=I1⊗···⊗IM( f )(ξ)=
m1

∑
j1=1

···
mM

∑
jM=1

f (ξ
(j1)
1 ,··· ,ξ

(jM)
M )L

(j1)
1 (ξ1)···L

(jM)
M (ξM). (5.2)

The fully-discrete approximation of Eq. (3.5) is then based on

ph(x,ξ)≈ pSG
h (x,ξ)=

Nr

∑
m=1

Nh

∑
j=1

p
(m)
j ψj(x)Lm(ξ), (5.3)

where Lm(ξ)=L
(j1)
1 (ξ1)···L

(jM)
M (ξM), m=m(j1,··· , jM), and Nr=m1×···×mM. By approx-

imating 〈·〉 by a quadrature formula

〈 f 〉≈
Nr

∑
m=1

wm f (ξ(m)), (5.4)

Eq. (3.5) decouple and we arrive at (3.6). The full tensor-product space leads to the so-
called curse of dimensionality, since Nr grows exponentially fast with the stochastic dimen-
sion M (see, for instance, [2]). In order to reduce the problem of curse of dimensionality
and to expand the limits of practical computability we employ the sparse grid algorithm.

Let us introduce the vector i=(i1,··· ,iM)∈N
M with cardinality |i|= i1+···+iM. The

Smolyak interpolation formula [24] is

Aq,M( f )= ∑
|i|≤q

∆i1 ⊗···⊗∆iM
( f )=Aq−1,M( f )+ ∑

|i|=q

∆i1 ⊗···⊗∆iM
( f ), (5.5)

where I0 = 0 and ∆i = Ii−Ii−1, i ∈N. The integer parameter q ≥ M controls the order
of interpolation. The Smolyak formula may also be written as a linear combination of
tensor product formulas of the following type:

Ii1⊗···⊗IiM
( f )(ξ)=

mi1

∑
j1=1

···

miM

∑
jM=1

f (ξ
(j1)
i1

,··· ,ξ
(jM)
iM

)L
(j1)
i1

(ξi1)···L
(jM)
iM

(ξiM
), (5.6)
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where, in contrast with (5.2), the indices i1,··· ,iM are not restricted to the ordered se-
quence {1,···M}. It can be shown (see [4] and the references therein) that the Smolyak
formula (5.5) is equivalent to

Aq,M( f )= ∑
q−M+1≤|i|≤q

(

M−1
q−|i|

)

Ii1⊗···⊗IiM
( f ). (5.7)

The set ΘM of collocation points for the interpolation formula (5.7) is given by the
sparse grid

ΘM =Sq,M=
⋃

q−M+1≤|i|≤q

Θ
i1
1 ×···×Θ

iM
1 . (5.8)

The Smolyak formula uses tensor products with a relatively small number of knots.
Furthermore, exactness of one-dimensional interpolation is preserved for M > 1, in the
sense that Aq,M is exact when q=M+KSG for any polynomial of degree KSG [4].

We employ the sparse grid implementation by Heiss and Winschel [15], in particu-
lar the Kronrod-Patterson rule for the normal probability measure ρ(ξ)dξ. This choice
assures that, the one-dimensional nodal sets Θi

1 of non-equidistant knots are nested, i.e,

Θi
1⊂Θi+1

1 , and subsequently Sq,M⊂Sq,M+1.
We choose Wh(D) as the space spanned by the Lagrange polynomials associated to

the points in Sq,M and approximate ph(x,ξ) as in (5.3). We also consider a quadrature for-
mula in the form (5.4), according to the Kronrod-Patterson rule. Moreover, we have from
(5.3) and (5.4) the following approximations of the mean and the variance of solution:

µSG
ph
(x)=

Nr

∑
k=1

pSG
h (x,ξ(k))〈Lk(ξ)〉=

Nr

∑
k=1

pSG
h (x,ξ(k))wk, (5.9)

σ2,SG
ph

(x)=
Nr

∑
k=1

Nr

∑
j=1

(pSG
h (x,ξ(k))−µSG)wkwj(pSG

h (x,ξ(j))−µSG). (5.10)

We should note that the accuracy of quadrature formulas depends strongly on the smooth-
ness of the integrand [15].

6 Numerical results

In the following we present some experiments of two-dimensional flow in a saturated
heterogenous porous media. The choose the flow domain and the log-conductivity mean
as D=]0,1[×]0,1[ and 〈Y〉=0, respectively.

We study the dependence of the variance error on the stochastic dimension M and the
number of realizations Nr. We employ the latter to compare the computational costs of
SG and QMC. For SG the parameter Nr depends on the polynomial degree, the stochastic
dimension, and the choice of the sparse grid (unlike QMC, in which this parameter is
explicitly chosen). Table 1 shows the number of realizations of the SG algorithm with the
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Table 1: Number of realizations for the Smolyak sparse grid algorithm with the Kronrod-Patterson rule.

M=10 M=20 M=30 M=40 M=50 M=100
KSG =2 21 41 61 81 101 201
KSG =3 201 801 1801 3201 5001 20001
KSG =4 1201 10001 34401 82401 162001 1314001

Smolyak sparse grid and the Kronrod-Patterson rule for some values of the probabilistic
space M and the polynomial degree KSG (see also Table 1 in [15]).

6.1 Lognormal pressure head

This example is a two-dimensional version of the experiment presented by Galvis and
Sarkis [9]. Let us write the log-saturated hydraulic conductivity Y= log(κ) as

Y(x,ω)=≪ω,φ≫, ≪ω,φ≫=
∞

∑
n=1

√

λnφn(x)ξn(ω). (6.1)

The source term f (x,ω) is chosen such that the exact solution of (2.1) is given by

p(x,ω)= p(x1,x2,ω)=
x1x2(1−x1)(1−x2)

4
e−≪ω,φ≫; (6.2)

that is,

f (x1,x2,ω)=0.25x2(1−x2)(2−(1−2x1)≪ω,∂x1
φ≫+x1(1−x1)≪ω,∂x1x1

φ≫)

+0.25x1(1−x1)(2−(1−2x2)≪ω,∂x2 φ≫+x2(1−x2)≪ω,∂x2x2 φ≫). (6.3)

We choose the separable exponential covariance function CY(x,y) = σ2
Y exp(−|x1−

y1|/η−|x2−y2|/η). Here σ2
Y and η denote the variance and correlation length, respec-

tively. The mean and the variance of the exact solution are given by

〈p〉=
x1x2(1−x1)(1−x2)

4
eσ2

Y/2, (6.4a)

σ2
p =

x1x2(1−x1)(1−x2)

4
e2σ2

Y −〈p〉2. (6.4b)

Moreover (see, e.g., [32]), the eigenvalues and eigenfunctions associated with CY(x,y) are

λn = λ̃iλ̃j, φn(x1,x2)= φ̃i(x1)φ̃j(x2), (6.5)

where {λ̃i,φ̃i} are the eigenpairs for the one-dimensional domain,

λ̃i=
2ησY

η2γ2
i +1

, φ̃i(x)=
ηγi cos(γix)+sin(γix)
√

(η2(γi)2+1)/2+η
, (6.6)
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and the index n=n(i, j) is set to arrange the eigenvalues in decreasing order. The param-
eters γ1,γ2,··· are roots of the equation

(η2γ2−1)sin(γ)=2ηγcos(γ). (6.7)

The exact solution (6.2) with σY =1 and η =0.1 will be the target in comparison with
QMC and SG methods based on KL expansion. The domain is uniformly discretized into
40×40 square elements.

Motivated by the error analysis in [23], we also consider the truncation error ‖σ2
p−

σ2
pM
‖, where pM is obtained by truncating the random input data. In particular, we trun-

cate the operator (6.1) as follows:

≪ω,φ≫M=
M

∑
n=1

√

λnφn(x)ξn(ω). (6.8)

The corresponding solution pM is

pM(x1,x2,ω)=
1

4
x1x2(1−x1)(1−x2)exp(−≪ω,φ≫M),

and the first two moments are

〈pM〉=
x1x2(1−x1)(1−x2)

4
exp

(

1

2

M

∑
n=1

λnφn(x)
2

)

, (6.9a)

σ2
pM

=
x1x2(1−x1)(1−x2)

4
exp

(

2
M

∑
n=1

λnφn(x)
2

)

−〈p〉2. (6.9b)

Fig. 2 depicts the comparison of head variance derived from exact solution and quasi-
Monte Carlo methods with 100 and 1000 realizations considering the Halton and Sobol
sequences. The QMC solution with M = 10 had a modest improvement from Nr = 100
to Nr =1000. When the stochastic dimension is high, as illustrated by the solutions with
M= 100 and M= 400, the variances obtained from 100 samples are far from having the
smooth and even features of the target solution, but greatly improve with Nr =1000.

Fig. 3 shows the profile curves of variance computed with the SG algorithm. These
curves are smoother than the ones in Fig. 2, but the solutions given the SG algorithm
underestimate the exact variance and depend on using a large stochastic dimension M to
effectively decrease the error, as in QMC.

Fig. 4 shows the error in the L2 norm of the variance as the stochastic dimension M
varies from 10 to 50. The convergence of QMC is faster and it is comparable with SG
with KSG=4, which needs a much larger number of realizations (Table 1). The truncation
error has the same magnitude of the total errors, which suggests that this component
dominates the total error of both methods. Moreover, the truncation error decreases very
slowly with M due to the tensorial structure of the eigenpairs in (6.5).
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Figure 2: Cross sections of pressure head variance along the line x2 = 0.5 for QMC with Sobol and Halton
sequences.
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Figure 3: Cross sections of pressure head variance along the line x2 =0.5 for SG.

We present next the variance error of both methods with respect to the number of re-
alizations Nr . Fig. 5 contrasts the variance errors of QMC with M=10, 100 and 400 with
the errors of SG with KSG=2,3,4. The dashed lines in Fig. 5 (left) connect variance errors
with M=10 and M=20; these lines would be vertical lines in Fig. 4 (left) and show that
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Figure 4: Error (on L2 norm) of the variance with respect to stochastic dimension M. Left: SG and pM; Right:
QMC with Halton (solid lines) and Sobol (dashed lines) sequences.
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Figure 5: Error (on L2 norm) of the variance with respect to the number of realizations. Left: SG (dashed
lines connect variance errors with M=10 and with M=20); Right: QMC with Halton (solid lines) and Sobol
(dashed lines) sequences.

the error decreases with the polynomial degree for a fixed value of M. QMC algorithms
provide lower errors because they are able to handle M≥ 100 with a smaller number of
realizations. Such values of M can be reached with SG with a similar number of real-
izations only if KSG = 2, but this polynomial degree is not sufficient to approximate the
exponential dependence of the solution on Y(x,ω). Furthermore, the error decay of both
QMC methods become very low past Nr=1000 regardless of the stochastic dimension M
(see also [14]).
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Figure 6: Error (on L2 norm) of the variance with respect to the number of realizations: SG, QMC, and MC

with Halton and Sobol sequences. The reference solution is the truncated solution pM with M=10.

Fig. 6 depicts the convergence of SG and QMC in the absence of truncation error by
considering pM with M= 10 as the reference solution. In order to establish connections
with previous works, we also include the variance error of MC. In SG the number of re-
alizations varies with KSG = 2,··· ,5. The lower error magnitudes with respect to Fig. 5
confirm that the truncation error is the most significant part of the total error. The con-
vergence of SG is faster than QMC and MC, which is consistent with [6, 12]. In fact, the
truncated operator (6.8) renders the input data smoother than in the target problem.

6.2 Five-Spot problem

We now consider the classical five-spot problem. The domain has no-flow boundaries at
the four sides, and consists of one injection well at the lower left corner and one pumping
well at the upper right corner (see Fig. 7). The source and sink terms have strengths
+1 and −1, respectively, and are approximated by uniformly distributed loads over the
corner elements [7]. The uniqueness of the Neumann problem is ensured by enforcing a
zero mean pressure through a penalty formulation [5].

The statistics of the log conductivity is a Gaussian process with power-law covariance

CY(x,y)=
σ2

Y

|x−y|β
, or CY(r)=σ2

Yr−β, (6.10)

with σ2
Y = 1 and Hurst exponent β= 0.5. Moreover, the power-law covariance admits a

singularity at short distances, and a cut off is employed to regularize the fractal random
field in a sufficiently small lag distance [5].

We consider an unstructured mesh with 945 nodes and 1728 triangular elements,
which was generated with the open-source code triangle [27]. A reference solution for



1064 J. S. Azevedo and S. P. Oliveira / Commun. Comput. Phys., 12 (2012), pp. 1051-1069

x1

x2

n L

∂D

D

Pumping well

L

Injection well

Impervious
boundary

Figure 7: Geometry and boundary conditions for the five-spot problem.

the purpose of comparing the accuracy of the QMC and SG methods is computed by the
Monte Carlo method. To numerically illustrate the statistical convergence of the Monte
Carlo method, we define the relative error of head variance as

Erel(Nr)=
‖σ2

p(Nr)−σ2
p(Nr+1)‖

‖σ2
p(Nr+1)‖

, (6.11)

where σ2
p(Nr) denotes the variance of Nr samples generated by the Monte Carlo method

based on the expansion (3.1), which was computed by a piecewise-constant finite element
approximation of the Fredholm integral equation (3.2). We chose as the reference solution
the Monte Carlo solution with 20000 realizations, which lies in an interval where the
fluctuation of the relative error is below 10−3 (Fig. 8).
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Figure 8: Fluctuation of the relative error (6.11) of the pressure head variance

Fig. 9 shows the mean and variance of this reference solution. The variation of poten-
tial is maximum near the top of the flow boundary and minimum elsewhere due to the
nature of flow.
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Figure 9: Mean (a) and variance (b) of Monte-Carlo solution of the five-spot problem.

As in Figs. 2-3, we compute QMC solutions with Halton and Sobol sequences consid-
ering M=10,100,400 and the Smolyak sparse grid algorithm with KSG =2,3,4. Compar-
isons of the pressure variance profiles derived from Monte Carlo simulations (MC) and
the QMC for Nr = 100 and 1000 are illustrated in Fig. 10 and between profiles from MC
and SG by Fig. 11 using semi-log scale. By comparing the variance profiles of Figs. 2 and
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Figure 10: Cross sections of pressure head variance along the line (x1,x2) = (t,t) for QMC with Sobol and
Halton sequences.



1066 J. S. Azevedo and S. P. Oliveira / Commun. Comput. Phys., 12 (2012), pp. 1051-1069

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

t

σ
2 p

Sparse Grid, KSG = 2

 

 

MC
M = 10
M = 100

(a)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

t

σ
2 p

Sparse Grid, KSG = 3

 

 

MC
M = 10
M = 100

(b)

Figure 11: Cross sections of pressure head variance along the line (x1,x2)=(t,t) for SG.

10, we notice that the convergence of the QMC methods is faster in the five-spot problem
(which has a smoother source term) than in the lognormal pressure head problem. This
is consistent with the fact that smoother integrands enhance the convergence of QMC
methods [20, 22]. In Fig. 11(b) there are missing points in the curve for M=100 because
of negative values of variance. These spurious values have also been reported in [28] and
are present because the Smolyak quadrature may produce negative weights [13].

As done in the previous experiments, we present in Fig. 12 the error on norm L2 of
the head variance of QMC and SG solutions with respect to the number of realizations
Nr. Again the variance error of QMC slowly decreases for Nr >1000. On the other hand,
the SG solution for KSG = 2 initially seems to converge to the reference solution, but for
higher values of M it comes closer to the SG solutions with KSG=3,4.
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Figure 12: Error (on L2 norm) of the variance with respect to the number of realizations. Left: SG (dashed
lines connect variance errors with M=10 and with M=20); Right: QMC with Halton (solid lines) and Sobol
(dashed lines) sequences.
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7 Conclusions

In this study, we compared the solution accuracy and computational cost of QMC and
SG methods, based on Karhunen-Loève decomposition, for saturated flow in randomly
heterogeneous porous media. QMC methods resort to low discrepancy sequences to gen-
erate their realizations, whereas SG are built upon algorithms for high-order and high-
dimensional polynomial interpolation with a reduced number of collocation points. Both
methods generate uncoupled systems of equations, similarly to MC.

We considered two examples of steady state flow in a two-dimensional rectangular
domain. In the first example, a random source term is chosen so that the exact solution
is a lognormal field with separable, exponential covariance. The second example is a
five-spot problem in which the covariance of the log-conductivity is fractal.

In this study, QMC seems to be the best choice for experiments with a small number
of realizations. The simulation of highly heterogeneous and/or nonlinear problems may
need a large (Nr >1000) number of realizations if the user requires a low error tolerance.
In these cases it is worth considering SG methods, in particular some variants that allow
the use of higher stochastic dimensions, such as adaptive sparse grids [11, 18].

Regarding the stochastic dimension, QMC managed to perform well for M ≥ 100,
which supports the use of QMC on problems with high-dimensional input (see a discus-
sion on this issue in [33]). In the absence of truncation error, the results were consistent
with [6] in the sense that SG had the best performance for a low dimensional, smooth in-
tegrand. Furthermore, the truncation error can significantly contribute to the total error,
which makes this a promising field for theoretical contributions such as [23, Sec. 3.2].

The setting of the numerical experiments presented herein have limited the analysis
of QMC methods to the KL decomposition in contrast with [14], where the efficiency
of QMC has a sharper picture. On the other hand, the KL decomposition allows for a
more detailed study of the errors, in particular the separation of truncation and spatial
discretization errors [23]. The results of both [14] and the present work provide insight for
a comprehensive error analysis that takes into account the full potential of QMC methods.

Although all numerical examples presented in this paper take into account indepen-
dent and identically distributed variables, the models developed in this study are also
applied to condition variables. The latter could be obtained either from Gaussian condi-
tioning kriging [25] or through of Markov Chain Monte Carlo methods [1].
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