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Abstract. We propose a direct solver for the three-dimensional Poisson equation with
a variable coefficient, and an algorithm to directly solve the associated sparse lin-
ear systems that exploits the sparsity pattern of the coefficient matrix. Introducing
some appropriate finite difference operators, we derive a second-order scheme for the
solver, and then two suitable high-order compact schemes are also discussed. For

a cube containing N nodes, the solver requires O(N 3/2 log2 N) arithmetic operations
and O(N logN) memory to store the necessary information. Its efficiency is illustrated
with examples, and the numerical results are analysed.
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1 Introduction

In dealing with sparse linear algebraic systems that arise in the discretization of elliptic
partial differential equations, iterative solvers require the pre-handling of ill-conditioned
matrices, e.g., the Conjugate Gradient and Generalized Minimum Residual methods. On
the other hand, compared with the iterative solvers using direct elimination can always
get result easier when dealing with poorly conditioned coefficient matrices usually.

In a typical direct solver, there is usually an initial ordering step to reorder the rows
and columns, so that the transformed coefficient matrix has some special structure such

∗Corresponding author. Email addresses: hbb21st@lsec.cc.ac.cn (B. Huang), tubin@lsec.cc.ac.cn (B. Tu),
bzlu@lsec.cc.ac.cn (B. Lu)

http://www.global-sci.com/ 1148 c©2012 Global-Science Press



B. Huang, B. Tu and B. Lu / Commun. Comput. Phys., 12 (2012), pp. 1148-1162 1149

as block-triangular form. The internal structure of the dense matrices may also be ex-
ploited, to reduce the computational cost [4,5]. For example, a spiral pattern of the order-
ings that arise from a 2-D elliptic PDE can render the linear system in a block-tridiagonal
form [1]; and it has also been shown that a sweeping ordering efficiently solves a 2-D
discrete system arising from a moving perfectly matching layer (PML), using banded
LU-factorization [2]. Another technique for dimension-reduction, with a much simpler
format to deal with such structured matrices [1], has influenced us in designing our direct
solver. It combines a similar dimension-reduction technique with fast algorithms for the
spiral pattern, to solve the resulting sequence of sparse coefficient matrices.

Our main application is to a Poisson equation with variable coefficient, which arises
in many areas including electric or electromagnetic field theory and heat conduction, i.e.,

∇·ρ∇u= f . (1.1)

For example, Eq. (1.1) applies in the theory of electrolyte solutions, where the distribution
of counterion density strongly depends on the dielectric coefficients [7,8]. Changes in the
dielectric coefficient for the electrolyte solution (from 10 to 25, 40, 60, and 78.5 within
the first 7.4 Angströms at the surface of DNA) substantially increase the calculated sur-
face concentration of counterions of all sizes. In a contoured lattice model involving a
dielectric boundary and Boltzmann equation for the charge density, the Poisson equation

−∇·[ε(r)∇φ(r)]=ρ(r)/ε0

of form similar to (1.1) can be approximated by the finite element representation

∑
j

[(φi−φj)ε ij ]=ρi h2/ε0 ,

where ε ij is the arithmetic average of the dielectric coefficients (for the elements i and j)
and ρi denotes the relevant value of the charge distribution. Yet another example arises
in diffusion-reaction processes [9], where

∂pi(r,t)

∂t
=∇·

{
Di(r)e−βVi(r,t)∇(eβVi(r)pi(r,t))

}
+αi(r)pi(r,t),

∇·ǫ∇φ(r,t)=−ρ f (r)−∑
i

qi pi(r,t)

involves the density distribution function pi(r,t) of the diffusing particles of the ith species
with diffusion coefficient Di(r) and charge qi, the fixed source charge distribution ρ f , the
inverse Boltzmann energy β, the dielectric coefficient ǫ, the potential V i that imposes
driving forces on the ith diffusing species, and the intrinsic reaction rate αi(r). The di-
electric coefficient actually depends in a complicated way on the pressure, temperature
and material density, but for simplicity it was argued that one may adopt the linear form

ǫ=ǫp+
pw

pw
0

∗(ǫw−ǫp) , (1.2)
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where ǫp and ǫw denote the dielectric coefficients of solute and solvent respectively, pw

the water density, and pw
0 the bulk density (55.5 M in the standard state). The justification

given for the simple form (1.2) is that the induced dipole moment in the water is ap-
proximately proportional to its density. Following our approach to numerically solve the
Poisson equation with variable coefficient, the discretization would treat ε(r) as a contin-
uous function of r and one of two finite difference formats (FDF) with different precision
would be invoked. For a system matrix arising from a cube containing N nodes, the

schemes for both of these FDF require N
3
2 (logN)2 arithmetic operations and O(N logN)

memory.
This paper is structured as follows. In Section 2, we solve the standard 3-D Poisson

equation, as a natural extension of earlier calculations for the corresponding 2-D equation
[1]. The adjustment to solve the elliptic PDE with variable coefficient (1.1) is described in
Section 3.1. The high-order compact finite difference schemes for the solver are discussed
in Section 3.2, where it is explained why they are suitable for our solver. The results of the
numerical experiments and associated problems are then presented in Section 4, before a
final summary in Section 5.

2 Solver for standard 3-D Poisson equation

2.1 Seven-point stencil

The direct solver used for the linear system is associated with a seven-point stencil (cf.
Fig. 1), which can be regarded as an extension of the standard five-point stencil.

In this section, we consider the boundary value problem consisting of the standard
3-D linear Poisson equation in Cartesian coordinates

∇2u= f , (x,y,z)∈ Ω , (2.1)

where

∇2=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

subject to the Dirichlet boundary condition u=u0 where (x,y,z)∈∂Ω. Assuming an equal
grid size in all three Cartesian directions (x,y,z) denoted by h, we proceed to calculate
the solution values at the inner nodes that approximate u(x,y,z) for (x,y,z)∈ Ω. In the
x-direction we take

∂2u

∂x2
=

1

h2
∆2

0,xui,j,k+O(h2),

∂2u

∂y2
=

1

h2
∆2

0,yui,j,k+O(h2),

∂2u

∂z2
=

1

h2
∆2

0,zui,j,k+O(h2),
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Figure 1: The 7-point stencil.

using the relevant central difference operator such that

∆2
0,xui,j,k=ui−1,j,k+ui+1,j,k−2ui,j,k.

On similarly involving central difference operators ∆0,y and ∆0,z in the other two direc-
tions y and z, we obtain the following FDF:

∇2u|i,j,k =
1

h2

(
ui−1,j,k+ui+1,j,k+ui,j−1,k+ui,j+1,k+ui,j,k−1+ui,j,k+1−6ui,j,k

)

= fi,j,k . (2.2)

2.2 Direct method for solving the standard 3-D Poisson equation

Let m denote the number of layers consisting of (2m+1)3 uniform cubes, as illustrated
for m=0,1 and 2 in Fig. 2 (where only 3 layers are shown for the case m=2).

The outer cube defines the boundary of the model, and every cube other than an outer
cube is completely enclosed by other cubes.

Figure 2: Uniform cubes with spiral orderings.
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We collect the nodes into index sets J1, J2,··· , Jm, and number the nodes in each layer
in order. Thus

J1={1,2,3,4,5,6,7,8},

J2={9,10,11,12, ··· ,64},

J3={65,66,67, ··· ,216},

...

Jm ={(2m−2)3+1,(2m−2)3+2,(2m−2)3+3, ··· ,(2m)3} ,

where Jm denotes the set of identifiers of the nodes in the m-th layer, and each identifier
denotes a row number or column number of an element in the coefficient stiffness matrix.
Thus each block in this matrix is a coefficient submatrix, which is generated from the
nodes in the nearby layers. The associated linear system




A11 A12 0 0 ... 0
A21 A22 A23 0 ... 0
0 A32 A33 A34 . . . 0
0 0 A43 A44 . . . 0
...

...
...

...
. . .

...
0 0 0 0 0 Amm







x1

x2

x3

x4
...

xm




=




f1

f2

f3

f4
...

fm




(2.3)

takes on block-tridiagonal form, where the matrix sparsity pattern is shown in Fig. 3.
Nonzero submatrices are composed from nearby layers, and the block Amn is such that
|m−n|≤1, so for example A23 denotes the coefficient block from the second and the third
layer.

Figure 3: The sparsity pattern of the coefficient matrix.
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We consequently partition the coefficient matrix into four sub-matrices, so the original
matrix in Eq. (2.3) is partitioned as

M0=




A11 A12 0 0 ... 0

A21 A22 A23 0 ... 0

0 A32 A33 A34 . . . 0

0 0 A43 A44 . . . 0

...
...

...
...

. . .
...

0 0 0 0 0 Amm




. (2.4)

We proceed analogously to Gaussian elimination for solving a system of linear equa-
tions, except that here sub-matrices are the pivots. Thus we first eliminate A21 by post-
multiplying the first row by −A−1

11 A21 and adding it to the second row. Then we ignore
the first row and first column in the result, to proceed to consider the reduced algebraic
system 



Ã22 A23 0 ... 0
A32 A33 A34 . . . 0
0 A43 A44 . . . 0
...

...
...

. . .
...

0 0 0 0 Amm







x2

x3

x4
...

xm



=




f̃2

f3

f4
...

fm




, (2.5)

where Ã22=A22−A21 A−1
11 A12, f̃2= f2−A21A−1

11 f1 and the new coefficient matrix here may
be denoted by M1. (The difference between M1 and the corresponding sub-matrix of M0

is that the first block A22 becomes Ã22, where Ã22 is the Schur complement of A22 in the
matrix M0.) Further such elimination row by row successively produces new coefficient
matrices M2, M3, ··· and new right hand sides f2, f3, ··· , until we have the last matrix

Mm−1 corresponding to the linear algebraic system: Ãm,mxm = f̃m. In pseudocode, this
procedure is as follows:

(1) Ã11=A11, f̃1= f1

(2) For k=2 to m

(3) Ãk,k =Ak,k−Ak,k−1 Ã−1
k−1,k−1Ak−1,k

(4) f̃k = fk−Ak,k−1Ã−1
k−1,k−1 f̃k−1

(5) End

We then get xm from the last linear system and proceed by back substitution, similar to
the process following Gaussian elimination but now of course involving matrices. Thus
the value of xm−1 is derived by solving the linear system

Ãm−1,m−1xm−1= f̃m−1−Am−1,mxm,
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and subsequently the values xm−2,xm−3,··· ,x2,x1 are obtained iteratively. Thus this pro-
cess in pseudocode is as follows:

(1) xm = Ã−1
mm f̃m

(2) For k=m−1 to 1

(3) xk = Ã−1
kk ( f̃k−Ak,k+1xk+1)

(4) End

As one would expect, the most time-consuming step here is the matrix inversion. The
Ã−1

k,k is a [(2k)3−(2k−2)3]×[(2k)3−(2k−2)3] dense matrix and hence, since the cost to

invert Ãk,k is O(k6) by methods such as the Gauss algorithm, the total cost can be as large
as O(k7). In order to reduce the time cost as far as possible, we adopted a recursive fast
inversion scheme, a classical divide-and-conquer strategy (D&C) that recursively breaks
down a large matrix into four sub-matrices until all the sub-matrix sizes become less than
a threshold predefined in the direct inversion – viz.

M−1=

[
A B

C D

]−1

=

[
(shurD) −(shurD)BD−1

−D−1C(shurD) D−1+D−1C(shurD)(BD−1)

]
. (2.6)

To further reduce the computational complexity, compressible matrices may be used in
the matrix inversion [1]. An ε-rank-k matrix is defined to be such that most of its k singu-
lar values are larger than ε. If the matrix M can be partitioned into four equal pieces as in
(2.6) and the off-blocks have ε-rank-k at most p, we say M is compressible – and accord-
ingly, the matrices B and C are both compressible for certain ε. The references [14] and [15]
provide an efficient way to obtain the low-rank approximation of the matrices, and [16]
describes the randomized singular value decomposition algorithm for computing a low-
rank approximation of a given numerically low-rank matrix. With the numerically low
rank off-diagonal block B for example, we adopt the algorithm developed in [14] to con-
struct a low-rank approximation B≃U1MUT

2 for given rank p. For a low-rank matrix M,
the rank p is far less than the order of B, hence

−(shurD)BD−1=−(shurD)U1 M(UT
2 D−1)

greatly reduces the number of multiplications between compressible matrices and vec-
tors.

As the off-diagonal blocks all have low rank, the matrix multiplications in shurD and
D−1C(shurD)(BD−1) involve only a small number of multiplications between compress-
ible matrices and vectors. Indeed, if the ranks of the off-diagonal blocks do not grow
larger than p in the recursive procedure, the computational complexity of the scheme is
O(p2k3 log2 k). In our test discussed in Section 4, we set ε = 1.0−10 for all blocks. That
achieves a very high solution accuracy but leads to high rank in most of the off-diagonal
blocks, so it can be a challenge to strike a balance between solution accuracy and the
number of multiplications involved.
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3 Direct method for solving the 3-D Poisson equation with

variable coefficient

3.1 Constructing an FDF

Let us now consider the Poisson equation (1.1) and assume the variable coefficient ρ is
a continuous and differentiable function, although in many physical environments there
are usually only discrete tabular values for ρ. In passing, one may recall the well known
conservative FDF

∑
s∈i,j,k

(
ρs+ 1

2
us+1+ρs− 1

2
us−1−(ρs+ 1

2
+ρs− 1

2
)us

)
= f ,

where for brevity ui+1≡ui+1,j,k, ui−1≡ui−1,j,k, ui≡ui,j,k and ρi+ 1
2
≡ρi+ 1

2 ,j,k, and one similarly

deals with s = j and s = k. However, we have derived a new FDF that exploits several
difference operators, and although the corresponding matrix is not symmetric it has been
found to preserve the efficiency and accuracy of the numerical simulations.

If ρ is constant, the Poisson equation (1.1) of course reduces to the form discussed in
Section 2.1 – viz.

ρ∇2u= f . (3.1)

However, when ρ is not constant Eq. (1.1) may be expanded as

∇ρ·∇u+ρ∇2u= f , (3.2)

the form from which we proceed to derive the new FDF.
The appropriate FDF for the second term on the left-hand side of Eq. (3.2) is that used

in Section 2.1, when Eq. (2.1) is represented by

ρi,j,k

∆2
0,x+∆2

0,y+∆2
0,z

h2
ui,j,k= fi,j,k , (3.3)

for an equidistant spatial meshed and cube with side length h. In proceeding to derive an
FDF for the term ∇ρ·∇u, some useful symbols to denote linear finite difference operators
are as follows:

(1) ε: εuk =uk+1

(2) ∆: ∆uk =uk+ 1
2
−uk− 1

2
= ε

1
2 −ε−

1
2

(3) Γ: Γuk =
1

2

(
uk+ 1

2
+uk− 1

2

)
=

1

2

(
ε

1
2 +ε−

1
2

)

(4) Θ: Θuk =uk

(5) D j: (Dh)ju=
dju

dx j
hj
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A Taylor expansion yields

εu(x)=u(x+h)=u(x)+u′(x)h+
u′′

2!
h2+···=

∞

∑
j=0

ujhj

j!
,

such that

Djuhj =(hD)ju=
dju

dxj
hj =ujhj

and hence εu(x)= ehDu(x), so a new representation of the differential operator D is ob-
tained – viz.

D=
lnε

h
.

Now ε can be represented by ∆ and Θ, i.e., ε=(∆/2+
√

Θ+∆2/4)2, so yet another new
representation of D is obtained:

D=
2

h
ln

(
∆

2
+

√
Θ+

1

4
∆2

)
. (3.4)

Then setting Θ=1 and expanding the right-hand side by the Binomial Theorem, we have

D=
1

h

∞

∑
j=0

(−1)j

2j+1

(
2j

j

)(
∆

4

)2j+1

. (3.5)

The power of the operator ∆ in each term in this infinite series is odd and cannot be used
to construct mappings in R2, so the operator Γ is now introduced. Since 4Γ2=ε+ε−1+2Θ

and ∆2 = ε+ε−1−2Θ, we then obtain

Θ=ΓΓ−1=Γ

(
Θ+

1

4
∆2

)− 1
2

=Γ
∞

∑
i=0

(−1)i

(
2i

i

)(
∆2

16

)i

, (3.6)

so Θ can be represented by Γ times an even power series in ∆. If we now recall that
Γ∆uk =(uk+1−uk−1)/2, the differential operator D may finally be rewritten

D=ΘD=
Γ∆

h

[(
∞

∑
j=0

(−1)j

2j+1

(
2j

j

)(
∆

4

)2j
)][

∞

∑
i=0

(−1)i

(
2i

i

)(
∆2

16

)i
]
=

Γ∆

h
+O(∆) , (3.7)

so that when truncated at O(∆) we have a representation for D that uses the fewest nodes
in the corresponding FDF. A more precise representation for D is of course always possi-
ble by adopting a higher order truncation, but that brings in more node layers and hence
more calculation. Alternative and possibly better ways to provide a higher precision FDF
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will be discussed in Section 3.2. However, on the implicit assumption of continuity and
differentiability we will now adopt

∂ui,j,k

∂x
=

1

2h
(ui+1,j,k−ui−1,j,k)+O(h2),

∂ui,j,k

∂y
=

1

2h
(ui,j+1,k−ui,j−1,k)+O(h2),

∂ui,j,k

∂z
=

1

2h
(ui,j,k+1−ui,j,k−1)+O(h2),

and hence the FDF

∇ρ·∇u=
∂ρ

∂x

∂ui,j,k

∂x
+

∂ρ

∂y

∂ui,j,k

∂y
+

∂ρ

∂z

∂ui,j,k

∂z

=
1

2h
(ui+1,j,k−ui−1,j,k)

∂ρ

∂x
+

1

2h
(ui,j+1,k−ui,j−1,k)

∂ρ

∂y

+
1

2h
(ui,j,k+1−ui,j,k−1)

∂ρ

∂z
, (3.8)

so we have the following composite FDF for Eq. (3.2):

∇ρ·∇u+ρ∇2u=ui+1,j,k

(
ρ

h2
+

1

2h

∂ρ

∂x

)
+ui−1,j,k

(
ρ

h2
− 1

2h

∂ρ

∂x

)

+ui,j+1,k

(
ρ

h2
+

1

2h

∂ρ

∂y

)
+ui,j−1,k

(
ρ

h2
− 1

2h

∂ρ

∂y

)

+ui,j,k+1

(
ρ

h2
+

1

2h

∂ρ

∂z

)
+ui,j,k−1

(
ρ

h2
− 1

2h

∂ρ

∂z

)
− 6ρui,j,k

h2

= fi,j,k. (3.9)

The FDF (2.2) and (3.9) only differ in their coefficients, so Eq. (3.2) can be solved by merely
altering the coefficients of the stiffness matrix described in Section 2.2. Thus the compu-
tational cost of the scheme using (3.9) remains O(N3/2 log2 N) and requires O(N logN)
memory to store the information used, as for (2.2). The numerical test and results are
given in Section 4. Usually, evaluation of ∇ρ at the nodes is by interpolation from tabu-
lar values for ρ.

3.2 High-order compact scheme

In this subsection, we introduce a higher precision method with truncation error O(h4).
The spiral pattern over the entire cube and the sparsity pattern of the corresponding
matrix indicates that a most suitable approach is a compact difference scheme restricted
to a patch of cells adjacent to any given node in the mesh.

A high-order compact FDF has previously been obtained through a process depend-
ing on the desired approximate order [17, 18], where the leading error term in an initial
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central difference approximation for a particular equation is expanded continuously until
the desired approximate order is reached. Thus in principle one may derive any high-
order compact difference scheme, although the derivations typically involve long and
tedious algebraic manipulations. The symbolic software package Mathematica has been
used to help obtain several compact schemes for the three-dimensional Poisson equa-
tion, where truncated Taylor series expansions and a computer-aided tool to automati-
cally generate high order discretization are invoked [19, 21]. Inter alia, this approach has
yielded an explicit fourth-order compact finite difference scheme for approximating the
3-D convection-diffusion equation

∆u(x,y,z)+(λ(x,y,z),µ(x,y,z),φ(x,y,z))·∇u(x,y,z)= f (x,y,z) ,

which has three parameters with definite physical meaning and is very important in com-
putational fluid dynamics to describe transport phenomena.

Now provided ρ 6= 0 the Poisson equation (3.2) can be converted into such a 3-D
convection-diffusion form – viz.

∆u(x,y,z)+
∇ρ

ρ
·∇u(x,y,z)=

f (x,y,z)

ρ
, (3.10)

so the envisaged discretization scheme yields a 19-point formula

18

∑
l=0

clul =F1 ,

where ul denotes the value of the function u(x,y,z) at the node labeled l in Fig. 4 and cl

denotes the corresponding coefficient [21]. In addition, There is also a 6th-order accurate
finite difference scheme that employs the 27 points of the cubic grid [20] as shown in
Fig. 5, which yields a 27-point formula that can be obtained through a method similar
to that discussed in Reference [21]. The nodes that both schemes employ are located in
adjacent cubes, so the corresponding matrices have the same form as shown in Fig. 3.
Thus the algorithm of the direct solver described in Section 2.2 remains effective in both
cases, except that the blocks Ãii and Aij become density matrices and whether or not the
off-diagonal blocks still have low rank depends on the coefficients.

Figure 4: 19-point stencil. Figure 5: 27-point stencil.
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4 Numerical tests and analysis

Let us now describe the results of our numerical experiments and analyze the perfor-
mance of our proposed methods. All programs were written in Matlab but not optimized,
and the computer used had a 3.0GHz CPU and 1GByte RAM. As described in Section 2,
we implemented the direct solver using the FDF (2.2) with order of accuracy O(h2). Our
test case was a series of nested cubes, where the outermost cube is a fixed boundary with
unit length.

Table 1: Numerical results for standard Poisson equation.

Hierarchy N TSolve(Sec) Mem(M) e1(relative) e2(absolute)
2 64×64 0.0571 1.536e-002 0 0.0504
3 216×216 0.0398 3.226e-001 4.1397e-017 0.0247
4 512×512 0.1326 1.809e+000 1.2478e-016 0.0147
5 1000×1000 0.4284 6.024e+000 1.7200e-016 0.0098
6 1728×1728 1.2473 1.518e+001 1.6615e-016 0.0070
7 2744×2744 5.4488 3.214e+001 2.3144e-016 0.0052
8 4096×4096 18.7720 6.047e+001 2.8569e-016 0.0040
9 5832×5832 62.6291 1.043e+002 3.7982e-016 0.0032

10 8000×8000 132.7445 1.687e+002 5.7511e-016 0.0026
* 20 64000×64000 55.4674 2.989e+003 - -
* 30 216000×216000 10595.4768 - - -

Table 1 illustrates the numerical results of the test described in Section 2.2, for the
given function v= sin(2πx)sin(2πy)sin(2πz) that describes a periodic electrostatic po-
tential, and the periodic variable coefficient ρ= sinx+siny+sinz. Thus we numerically
solved the elliptic partial differential equation

∇·ρ∇u=∇ρ·∇v+ρ∇2v

with that given variable coefficient and the boundary condition u= v. In the table, “Hi-
erarchy” denotes the number of layers of nested cubes, N is the size of the matrix arising
from the corresponding discretization, TSolve and Mem denote the corresponding time
and memory cost in constructing the matrix Ã−1

mm, and e1 and e2 are the relative and ab-
solute errors generated by the difference formula (2.2) defined by

e1=
||ShurAk,k||−||Ãk,k ||

||Ãk,k||
and e2=

√
||u−ureal ||2 .

Note that e1 can be used to compare the computed Schur complement against the result
from an iterative solver, and e2 is the difference between the computed and actual values
of u. In the last two tests listed in the table, the cubes were divided into 20 and 30 layers
respectively, but in these two cases we did not calculate the corresponding Schur com-
plement due to the limited memory (in order to reduce the otherwise considerable time
and memory cost).
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Table 2: Results of numerical test with ρ=sin(2πx)sin(2πy)sin(2πz).

Hierarchy N TSolve(Sec) e1(symmetry) e2(asymmetry) e3(10−12) e3(10−16)
2 64×64 0.0470 0.0511 0.0504 2.2180e-006 2.2180e-006
3 216×216 0.2572 0.0249 0.0246 2.9738e-010 2.9738e-010
4 512×512 0.2934 0.0148 0.0146 1.0697e-012 4.8439e-015
5 1000×1000 0.7425 0.0098 0.0097 1.3160e-012 3.6814e-016
6 1728×1728 2.0181 0.0070 0.0069 1.2255e-012 4.4100e-016
7 2744×2744 5.7910 0.0052 0.0052 1.3810e-012 4.7388e-016
8 4096×4096 16.3040 0.0041 0.0040 1.4068e-012 7.0017e-016
9 5832×5832 36.7263 0.0033 0.0032 1.4102e-012 1.0201e-015

10 8000×8000 74.5259 0.0027 0.0026 1.3052e-012 1.4787e-015
11 10648×10648 142.4446 0.0022 0.0022 1.2639e-012 2.0806e-015
12 13824×13824 280.6617 0.0019 0.0019 1.2741e-012 3.3745e-015
13 17576×17576 487.4073 0.0016 0.0016 1.2578e-012 4.5457e-015
14 21952×21952 833.4443 0.0014 0.0014 1.2050e-012 1.1086e-011
15 27000×27000 1419.8219 0.0012 0.0012 1.2343e-012 1.0371e-014

Table 2 illustrates the numerical results of the test described in Section 3.1. Since the
structure of the stiffness matrix arising from FDF (3.9) is the same as for the FDF (2.2), the
memory required is identical so Mem is omitted from Table 2. In this test e1 denotes the
error generated from the discrete formula in conservative form where the corresponding
matrix is symmetric, whereas e2 denotes the error generated from FDF (3.9) and

e3=
√
||u−uGMRES||2

denotes the difference between the solution obtained by the proposed solver and the so-
lution obtained by the GMRES with the tolerance r(r=10−12,10−16). Our proposed direct
solver evidently achieved high accuracy, to at least the same precision for the GMRES
with tolerance 10−12.

Table 3 shows the rank of some off-diagonal blocks arising in the matrix inversion
process in the previous test, when the matrix size is 27000×27000. The results indi-
cate that the rank of the off-diagonal blocks increases with the block size, and increasing
the computational accuracy ε does not significantly reduce the ranks of the off-diagonal
blocks. However, the increased rank does not match the increased size of the blocks, so
the method remains effective for compressible matrices and vectors.

5 Conclusion

We have presented a direct solver for a 3-D elliptic partial differential equation, with cor-
responding FDF and the direct solution of linear algebraic system that arise from a cube
with nodes in a spiral pattern. The proposed solver adopts fast algorithms for compress-
ible matrices arising from the elliptic 3-D partial differential equation with variable coef-
ficient considered. Suitable high-order compact schemes for the solver were discussed.
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Table 3: Ranks of the off-diagonal blocks in numerical test with ρ.

Off-Diagonal Blocks ε=1.0−10 ε=1.0−5

120×120 98 94
122×122 100 95
127×127 87 77
127×127 115 106
127×127 103 80
148×148 64 64
182×182 143 133
242×242 100 99
254×254 194 175
254×254 193 176
364×364 144 123
338×338 248 220
508×508 196 147
508×508 198 149
676×676 246 175

It must be admitted that some real performance gaps remain between the solution for
2-D and the 3-D partial differential equations. In particular, the complexity increases
from O(n) to O(n2) where n denotes the number of nodes; and secondly, the ranks of
the off-diagonal blocks increase as the size of the blocks increases, whereas in 2-D they
remain almost the same. Our proposed scheme is nevertheless quite promising, given its
success on the test problem involving the 3-D Poisson equation with variable coefficient,
although of course its application to further concrete problems (with associated analysis)
is warranted.
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