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Abstract. A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a vari-
ant of P1P2 method, is presented for the solution of the compressible Euler equations
on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the
accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polyno-
mial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin
solution using a least-squares method. The stencils used in the reconstruction in-
volve only the von Neumann neighborhood (face-neighboring cells) and are com-
pact and consistent with the underlying DG method. The developed RDG method
is used to compute a variety of flow problems on arbitrary meshes to demonstrate
its accuracy, efficiency, robustness, and versatility. The numerical results indicate that
this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG
method (DG(P2)) in terms of both computing costs and storage requirements.

AMS subject classifications: 65M60, 65M99, 76M25, 76M10
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1 Introduction

The discontinuous Galerkin methods [1–28] (DGM) have recently become popular for the
solution of systems of conservation laws. Originally introduced for the solution of neu-
tron transport equations [1], nowadays they are widely used in computational fluid dy-
namics, computational acoustics, and computational magneto-hydrodynamics. The dis-
continuous Galerkin methods combine two advantageous features commonly associated

∗Corresponding author. Email addresses: hong luo@ncsu.edu (H. Luo), lluo2@ncsu.edu (L. Luo), Robert.
Nourgaliev@inl.gov (R. Nourgaliev)

http://www.global-sci.com/ 1495 c©2012 Global-Science Press



1496 H. Luo, L. Luo and R. Nourgaliev / Commun. Comput. Phys., 12 (2012), pp. 1495-1519

with finite element and finite volume methods. As in classical finite element methods,
accuracy is obtained by means of high-order polynomial approximation within an ele-
ment rather than by wide stencils as in the case of finite volume methods. The physics of
wave propagation is, however, accounted for by solving the Riemann problems that arise
from the discontinuous representation of the solution at element interfaces. In this re-
spect, the DG methods are similar to finite volume methods. The discontinuous Galerkin
methods have many attractive features: 1) They have several useful mathematical prop-
erties with respect to conservation, stability, and convergence; 2) The methods can be
easily extended to higher-order (>2nd) approximation; 3) The methods are well suited
for complex geometries since they can be applied on unstructured grids. In addition,
the methods can also handle non-conforming elements, where the grids are allowed to
have hanging nodes; 4) The methods are highly parallelizable, as they are compact and
each element is independent. Since the elements are discontinuous, and the inter-element
communications are minimal, domain decomposition can be efficiently employed. The
compactness also allows for structured and simplified coding for the methods; 5) They
can easily handle adaptive strategies, since refining or coarsening a grid can be achieved
without considering the continuity restriction commonly associated with the conforming
elements. The methods allow easy implementation of hp-refinement, for example, the
order of accuracy, or shape, can vary from element to element; 6) They have the ability to
compute low Mach number flow problems without recourse to the time-preconditioning
techniques normally required for the finite volume methods. In contrast to the enormous
advances in the theoretical and numerical analysis of the DGM, the development of a
viable, attractive, competitive, and ultimately superior DG method over the more ma-
ture and well-established second order methods is relatively an untouched area. This is
mainly due to the fact that the DGM have a number of weaknesses that have yet to be
addressed, before they can be robustly used for flow problems of practical interest in a
complex configuration environment. In particular, there are three most challenging and
unresolved issues in the DGM: a) how to efficiently discretize diffusion terms required
for the Navier-Stokes equations, b) how to effectively control spurious oscillations in
the presence of strong discontinuities, and c) how to develop efficient time integration
schemes for time accurate and steady-state solutions. Indeed, compared to the finite ele-
ment methods and finite volume methods, the DG methods require solutions of systems
of equations with more unknowns for the same grids. Consequently, these methods have
been recognized as expensive in terms of both computational costs and storage require-
ments.

DG methods are indeed a natural choice for the solution of the hyperbolic equations,
such as the compressible Euler equations. However, the DG formulation is far less cer-
tain and advantageous for the compressible Navier-Stokes equations, where viscous and
heat fluxes exist. A severe difficulty raised by the application of the DG methods to
the Navier-Stokes equations is the approximation of the numerical fluxes for the viscous
fluxes, that has to properly resolve the discontinuities at the interfaces. Taking a simple
arithmetic mean of the solution derivatives from the left and right is inconsistent, be-
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cause the arithmetic mean of the solution derivatives does not take in account a possible
jump of the solutions. A number of numerical methods have been proposed in the liter-
ature, such as those by Bassi and Rebay [21, 22], Cockburn and Shu [23], Baumann and
Oden [24], Peraire and Persson [25], and many others. Arnold et al. [26] have analyzed
a large class of discontinuous Galerkin methods for second-order elliptic problems in a
unified formulation. All these methods have introduced in some way the influence of the
discontinuities in order to define correct and consistent diffusive fluxes. Lately, Gassner
et al. [27] introduced a numerical scheme based on the exact solution of the diffusive
generalized Riemann problem for the discontinuous Galerkin methods. Liu et al. [28],
and Luo et al. [29] used a BGK-based DG method to compute numerical fluxes at the in-
terface for the Navier-Stokes equations, which has the ability to include both convection
and dissipation effects. Unfortunately, all these methods seem to require substantially
more computational effort than the classical continuous finite element methods, which
are naturally suited for the discretization of elliptic problems. More recently, van Leer et
al. [30–32] proposed a recovery-based DG (rDG) method for the diffusion equation using
the recovery principle, which recovers a smooth continuous solution that in the weak
sense is indistinguishable from the discontinuous discrete solution.

Dumbser et al. [18–20] have introduced a new family of in-cell recovery DG methods,
termed PnPm schemes, where Pn indicates that a piecewise polynomial of degree of n is
used to represent a DG solution, and Pm represents a reconstructed polynomial solution
of degree of m (m > n) that is used to compute the fluxes. The PnPm schemes are de-
signed to enhance the accuracy of the discontinuous Galerkin method by increasing the
order of the underlying polynomial solution. The beauty of PnPm schemes is that they
provide a unified formulation for both finite volume and DG methods, and contain both
classical finite volume and standard DG methods as two special cases of PnPm schemes,
and thus allow for a direct efficiency comparison. When n= 0, i.e. a piecewise constant
polynomial is used to represent a numerical solution, P0Pm is nothing but classical high
order finite volume schemes, where a polynomial solution of degree m (m≥ 1) is recon-
structed from a piecewise constant solution. When m= n, the reconstruction reduces to
the identity operator, and PnPn scheme yields a standard DG method. Obviously, the
construction of an accurate and efficient reconstruction operator is crucial to the success
of the PnPm schemes. Normally, this is achieved using a so-called in-cell recovery similar
to the inter-cell recovery originally proposed by Van Leer et al. [30–32], where recovered
equations are obtained using a L2 projection, i.e., the recovered polynomial solution is
uniquely determined by making it indistinguishable from the underlying DG solutions
in the contributing cells in the weak sense. This recovery-based discontinuous Galerkin
PnPm schemes are termed rDG(PnPm) in this paper, where the lower case r indicates
that a higher order polynomial solution of degree m is obtained using a recovery princi-
ple, i.e., a weak interpolation. Nourgaliev et al. [33] have shown that in 1D, the resulting
recovery-based DG method using piecewise-constant approximation rDG(P0P2) is noth-
ing but FV-PPM method [34], linear rDG(P1P5) is 6th order accurate, quadratic rDG(P2P8)
is 9th-order accurate, and cubic rDG(P3P11) 12th-order accurate, versus the 2nd, 3rd, and
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4th-order accuracy of the underlying DG method, while keeping the same number of the
degrees of freedom and being compact. This recovery-based DG method has been suc-
cessfully extended to 2D problems on quadrilateral grids. However, the resulting rDG
methods are not completely satisfactory, since the stencils in the recovery have to in-
volve the vertex-neighboring cells and thus destroy the compactness of the underlying
DG method. For instance, in the case of rDG(P0Pm) recovery, a quadratic polynomial
solution (m=2) in a cell can be fully recovered using piecewise constant solutions at that
cell and its two neighbors in 1D. However, a fully quadratic polynomial has six degrees
of freedom, and thus requires six cells in order to recover a quadratic solution in 2D.
Unfortunately, there are only five cells available on quadrilateral grids and four cells on
triangular grids, when only face-neighboring cells are used in the recovery. Clearly, most
of appealing features possessed by the rDG method are lost for the multidimensional
problems, and especially on unstructured arbitrary grids. The key issue is how to judi-
ciously choose a proper form of a recovered polynomial and a set of contributing cells in
such a way that the resulting recovered linear system is well conditioned, and thus can
be inverted. Instead of attempting to recover a full polynomial solution that has the same
number of degree of freedom as the number of recovered equations, Dumbser et al. only
recover a polynomial solution of a reduced order that has less number of the degrees
of freedom than the number of the recovered equations. The resultant over-determined
system is then solved using a constraint least-squares method, which guarantees exact
conservation, not only of the cell averages but also of all higher order moments in the
reconstructed cell itself, such as slopes and curvatures. However, this conservative least-
squares recovery approach is computationally expensive, as it involves both recovery of
a polynomial solution of higher order and least-squares solution of the resulting over-
determined system. Fortunately, recovery is not the only way to obtain a polynomial
solution of higher order from the underlying discontinuous Galerkin solutions. Rather,
reconstruction widely used in the finite volume methods provides an alternative, prob-
ably a better choice to obtain a higher-order polynomial representation. More recently,
Zhang et al. [43] presented a class of hybrid DG/FV methods for the conservation laws,
where the second derivatives in a cell are obtained from the first derivatives in the cell it-
self and its neighboring cells using a Green-Gauss reconstruction widely used in the finite
volume methods. This provides a fast, simple, and robust way to obtain a higher-order
polynomial solutions.

The objective of the effort discussed in this paper is to develop a Reconstructed Dis-
continuous Galerkin method, termed RDG(P1P2) in short, using a Taylor basis [13] for
the solution of the compressible Euler equations on arbitrary grids, where the upper case
R denotes Reconstruction, different from lower case r for Recovery. Similar to the rDG
methods, higher order accuracy can be expected due to a higher order representation of
the reconstructed polynomial solution. Unlike the rDG methods which use a recovery
principle (weak interpolation) to obtain a higher order polynomial solution, the RDG
methods use a strong interpolation, requiring point values and derivatives to be interpo-
lated, to obtain a higher order polynomial solution. The resulting over-determined linear
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system of equations is then solved in the least-squares sense. This reconstruction scheme
only involves the von Neumann neighborhood, and thus is compact, simple, robust, and
flexible. Furthermore, the reconstruction scheme guarantees exact conservation, not only
of the cell averages but also of their slopes due to a judicious choice of our Taylor ba-
sis. As the underlying DG method is second-order, and the basis functions are at most
linear functions, fewer quadrature points are then required for both domain and face in-
tegrals, and the number of unknowns (the number of degrees of freedom) remains the
same as for the DG(P1). Consequently, this RDG method is expected to be more effi-
cient than the third order DG method. The developed RDG method is used to compute
a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency,
and robustness. The numerical results indicate that this RDG method is able to obtain a
third-order accurate solution at a slightly higher cost than its second-order DG method
and provide a significant increase in performance over the third order DG method in
terms of computing costs and storage requirements. The developed RDG method has
also successfully been extended to discretize the viscous and heat fluxes in the Navier-
Stokes equations using the so-called ”inter-cell reconstruction” [35,38]. The remainder of
this paper is organized as follows. The governing equations are listed in Section 2. The
underlying reconstructed discontinuous Galerkin method is presented in Section 3. Ex-
tensive numerical experiments are reported in Section 4. Concluding remarks are given
in Section 5.

2 Governing equations

The Euler equations governing unsteady compressible inviscid flows can be expressed as

∂U(x,t)

∂t
+

∂Fk(U(x,t))

∂xk
=0, (2.1)

where the summation convention has been used. The conservative variable vector U,
and inviscid flux vector F are defined by

U=





ρ
ρui

ρe



, Fj =





ρuj

ρuiuj+pδij

uj(ρe+p)



. (2.2)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, re-
spectively, and ui is the velocity of the flow in the coordinate direction xi. The pressure
can be computed from the equation of state

p=(γ−1)ρ

(

e−
1

2
ujuj

)

(2.3)

which is valid for perfect gas, where γ is the ratio of the specific heats.



1500 H. Luo, L. Luo and R. Nourgaliev / Commun. Comput. Phys., 12 (2012), pp. 1495-1519

3 Reconstructed discontinuous Galerkin method

The governing equation (2.1) is discretized using a discontinuous Galerkin finite element
formulation. To formulate the discontinuous Galerkin method, we first introduce the fol-
lowing weak formulation, which is obtained by multiplying the above conservation law
by a test function W, integrating over the domain Ω, and then performing an integration
by parts,

∫

Ω

∂U

∂t
WdΩ+

∫

Γ

FknkdΓ−
∫

Ω

Fk
∂W

∂xk
dΩ=0, ∀W∈V, (3.1)

where Γ(= ∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector to
the boundary. We assume that the domain Ω is subdivided into a collection of non-
overlapping elements Ωe, which can be triangles, quadrilaterals, polygons, or their com-
binations in 2D and tetrahedra, prisms, pyramids, and hexahedra or their combinations
in 3D. We introduce the following broken Sobolev space Vh

p

V
p

h =
{

vh ∈ [L2(Ω)]m : vh|Ωe ∈
[

Vm
p

]

∀Ωe∈Ω
}

, (3.2)

which consists of discontinuous vector-values polynomial functions of degree p, and
where m is the dimension of the unknown vector and

Vm
p =span

{

∏xαi
i : 06αi6 p, 06 i6d

}

, (3.3)

where α denotes a multi-index and d is the dimension of space. Then, we can obtain the
following semi-discrete form by applying weak formulation on each element Ωe

Find Uh ∈V
p

h such as

d

dt

∫

Ωe

UhWhdΩ+
∫

Γe

Fk(Uh)nkWhdΓ−
∫

Ωe

Fk(Uh)
∂Wh

∂xk
dΩ=0, ∀Wh ∈V

p
h , (3.4)

where Uh and Wh represent the finite element approximations to the analytical solu-
tion U and the test function W respectively, and they are approximated by piecewise-
polynomial functions of degrees p, which are discontinuous between the cell interfaces.
Assume that B is the basis of polynomial function of degrees p, this is then equivalent to
the following system of N equations,

d

dt

∫

Ωe

UhBidΩ+
∫

Γe

Fk(Uh)nkBidΓ−
∫

Ωe

Fk(Uh)
∂Bi

∂xk
dΩ=0, 16 i6N, (3.5)

where N is the dimension of the polynomial space. Since the numerical solution Uh is
discontinuous between element interfaces, the interface fluxes are not uniquely defined.
The flux function Fk(Uh)nk appearing in the second terms of Eq. (3.5) is replaced by a
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numerical Riemann flux function Hk(U
L
h ,UR

h ,nk) where UL
h and UR

h are the conservative
state vector at the left and right side of the element boundary. This scheme is called
discontinuous Galerkin method of degree p, or in short notation DG(P) method. Note
that discontinuous Galerkin formulations are very similar to finite volume schemes, es-
pecially in their use of numerical fluxes. Indeed, the classical first-order cell-centered
finite volume scheme exactly corresponds to the DG(P0) method, i.e., to the discontinu-
ous Galerkin method using a piecewise-constant polynomial. Consequently, the DG(Pk)
methods with k>0 can be regarded as a natural generalization of finite volume methods
to higher order methods. By simply increasing the degree P of the polynomials, the DG
methods of corresponding higher order are obtained.

The domain and boundary integrals in Eq. (3.5) are calculated using Gauss quadra-
ture formulas. The number of quadrature points used is chosen to integrate exactly poly-
nomials of order of 2p on the reference element. In 2D, two, three, and four points are
used for linear, quadratic, and cubic basis function in the boundary integrals. The do-
main integrals are evaluated using three, six, and thirteen points for triangular elements
and four, nine, and sixteen points for quadrilateral elements, respectively.

In the traditional DGM, numerical polynomial solutions Uh in each element are ex-
pressed using either standard Lagrange finite element or hierarchical node-based basis
as following

Uh =
N

∑
i=1

Ui(t)Bi(x), (3.6)

where Bi are the finite element basis functions. As a result, the unknowns to be solved
for are the variables at the nodes Ui, as illustrated in Fig. 1 for linear and quadratic poly-
nomial approximations.

                                Q1/P1                                                       Q2/P2

Figure 1: Representation of polynomial solutions using finite element shape functions.

On each cell, a system of N×N has to be solved, where the polynomial solutions are
dependent on the shape of elements. For example, for a linear polynomial approximation
in 2D as shown in Fig. 1, a linear polynomial is used for triangular elements and the
unknowns to be solved for are the variables at three vertices. For quadrilateral elements,
a bi-linear polynomial is used, and the unknowns to be solved for are the variables at four
vertices. However, numerical polynomial solutions U can be expressed in other forms as
well. In the present work, the numerical polynomial solutions are represented using a
Taylor series expansion at the center of the cell. For example, if we do a Taylor series
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expansion at the centroid of the cell, the quadratic polynomial solutions can be expressed
as follows

Uh =Uc+
∂U

∂x

∣

∣

∣

∣

c

(x−xc)+
∂U

∂y

∣

∣

∣

∣

c

(y−yc)+
∂2

U
∂x2

∣

∣

∣

∣

c

(x−xc)2

2

+
∂2U

∂y2

∣

∣

∣

∣

c

(y−yc)2

2
+

∂2U

∂x∂y

∣

∣

∣

∣

c

(x−xc)(y−yc), (3.7)

which can be further expressed as cell-averaged values and their derivatives at the center
of the cell:

Uh=Ũ+
∂U

∂x

∣

∣

∣

∣

c

(x−xc)+
∂U

∂y

∣

∣

∣

∣

c

(y−yc)+
∂2U

∂x2

∣

∣

∣

∣

c





(x−xc)2

2
−

1

Ωe

∫

Ωe

(x−xc)2

2
dΩ





+
∂2

U
∂y2

∣

∣

∣

∣

c





(y−yc)2

2
−

1

Ωe

∫

Ωe

(y−yc)2

2
dΩ





+
∂2

U
∂x∂y

∣

∣

∣

∣

c



(x−xc)(y−yc)−
1

Ωe

∫

Ωe

(x−xc)(y−yc)dΩ



, (3.8)

where Ũ is the mean value of U in this cell. The unknowns to be solved for in this
formulation are the cell-averaged variables and their derivatives at the center of the cells,
regardless of element shapes, as shown in Fig. 2.

Figure 2: Representation of the polynomial solutions using a Taylor series expansion for a cell-centered scheme
(left) and vertex-centered scheme (right).

In this case, the dimension of the polynomial space is six and the six basis functions
are

B1=1, B2= x−xc, B3=y−yc, (3.9a)

B4=
(x−xc)

2

2
−

1

Ωe

∫

Ωe

(x−xc)
2

2
dΩ, B5=

(y−yc)
2

2
−

1

Ωe

∫

Ωe

(y−yc)
2

2
dΩ, (3.9b)

B6=(x−xc)(y−yc)−
1

Ωe

∫

Ωe

(x−xc)(y−yc)dΩ. (3.9c)
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The discontinuous Galerkin formulation then leads to the following six equations

d

dt

∫

Ωe

ŨdΩ+
∫

Γe

Fk(Uh)nkdΓ=0, i=1, (3.10a)

M5×5
d

dt

(

∂U

∂x

∣

∣

∣

∣

c

∂U

∂y

∣

∣

∣

∣

c

∂2

U
∂x2

∣

∣

∣

∣

c

∂2

U
∂y2

∣

∣

∣

∣

c

∂2

U
∂x∂y

∣

∣

∣

∣

c

)T

+R5×1=0. (3.10b)

Note that in this formulation, equations for the cell-averaged variables are decoupled
from equations for their derivatives due to the judicial choice of the basis functions and
the fact that

∫

Ωe

B1BidΩ=0, 26 i66. (3.11)

In the implementation of this DG method, the basis functions are actually normalized in
order to improve the conditioning of the system matrix (3.5) as follows:

B1=1, B2=
x−xc

∆x
, B3=

y−yc

∆y
, (3.12a)

B4=
(x−xc)

2

2∆x2
−

1

Ωe

∫

Ωe

(x−xc)
2

2∆x2
dΩ, B5=

(y−yc)
2

2∆y2
−

1

Ωe

∫

Ωe

(y−yc)
2

2∆y2
dΩ, (3.12b)

B6=
(x−xc)(y−yc)

∆x∆y
−

1

Ωe

∫

Ωe

(x−xc)(y−yc)

∆x∆y
dΩ, (3.12c)

where ∆x=0.5(xmax−xmin), and ∆y=0.5(ymax−ymin), and xmax, xmin, ymax, and ymin are
the maximum and minimum coordinates in the cell Ωe in x-, and y-directions, respec-
tively. A quadratic polynomial solution can then be rewritten

Uh = ŨB1+UxB2+UyB3+UxxB4+UyyB5+UxyB6, (3.13)

where

Ux=
∂U

∂x
|c∆x, Uy=

∂U

∂y
|c∆y, (3.14a)

Uxx=
∂2U

∂x2
|c∆x2, Uyy=

∂2U

∂y2
|c∆y2, Uxy=

∂2U

∂x∂y
|c∆x∆y. (3.14b)

This formulation allows us to clearly see the similarities and differences between the DG
and FV methods. In fact, the discretized governing equations for the cell-averaged vari-
ables and the assumption of the polynomial solutions on each cell are exactly the same
for both methods. The only difference between them is the way how they obtain high-
order (>1) polynomial solutions. In the finite volume methods, the polynomial solutions
of degree p are reconstructed using information from the cell-averaged values of the flow
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variables, which can be obtained using either TVD/MUSCL or ENO/WENO reconstruc-
tion schemes. Unfortunately, the multi-dimensional MUSCL approach suffers from two
shortcomings in the context of unstructured grids: 1) Uncertainty and arbitrariness in
choosing the stencils and methods to compute the gradients in the case of linear recon-
struction; This explains why a nominally second-order finite volume scheme is hardly
able to deliver a formal solution of the second order accuracy in practice for unstructured
grids. The situation becomes even more evident, severe, and profound, when a highly
stretched tetrahedral grid is used in the boundary layers. Many studies, as reported by
many researchers [36–38] have demonstrated that it is difficult to obtain a second-order
accurate flux reconstruction on highly stretched tetrahedral grids and that for the dis-
cretization of inviscid fluxes, the classic 1D-based upwind schemes using median-dual
finite volume approximation suffer from an excessive numerical diffusion due to such
skewing. 2) Extended stencils required for the reconstruction of higher-order (>1st) poly-
nomial solutions. This is exactly the reason why the current finite-volume methods us-
ing the TVD/MUSCL reconstruction are not practical at higher order and have remained
second-order on unstructured grids. When the ENO/WENO reconstruction schemes are
used for the construction of a polynomial of degree p on unstructured grids, the dimen-
sion of the polynomial space N=N(p,d) depends on the degree of the polynomials of the
expansion p, and the number of spatial dimensions d. One must have three, six, and ten
cells in 2D and four, ten, and twenty cells in 3D for the construction of a linear, quadratic,
cubic Lagrange polynomial, respectively. Undoubtedly, it is an overwhelmingly chal-
lenging task to judiciously choose a set of admissible and proper stencils that have such
a large number of cells on unstructured grids especially for higher order polynomials
and higher dimensions. Nevertheless, recently, higher-order ENO/WENO methods have
been successfully extended on unstructured grids [46–52]. Unlike the FV methods, where
the derivatives are reconstructed using cell average values of the neighboring cells, the
DG method computes the derivatives in a manner similar to the mean variables. This is
compact, rigorous, and elegant mathematically in contrast to the arbitrariness character-
izing the reconstruction schemes with respect how to compute the derivatives and how
to choose the stencils used in the FV methods. It is our believe that this is one of the main
reasons why the second order DG methods are more accurate than the FV methods using
either TVD/MUSCL or ENO/WENO reconstruction schemes and are less dependent on
the mesh regularity, which has been demonstrated numerically [13]. Furthermore, the
higher order DG methods can be easily constructed by simply increasing the degree p of
the polynomials locally, in contrast to the finite volume methods which use the extended
stencils to achieve higher order of accuracy.

However, in comparison to the reconstructed FV methods, the DG methods have a
significant drawback in that they require more degrees of freedom, an additional do-
main integration, and more Gauss quadrature points for the boundary integration, and
therefore more computational costs and storage requirements. On one hand, the recon-
struction methods that FV methods use to achieve higher-order accuracy are relatively
inexpensive but less accurate and robust. On the other hand, the DG methods that can
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be viewed as a different way to extend a FV method to higher orders are accurate and
robust but costly. The ”reconstructed DG” method to be described below, which can be
regarded as a variant of more general PnPm schemes originally introduced by Dumb-
ser et al. [18–20], is our attempt to combine the efficiency of the reconstruction methods
and the accuracy of the DG methods. Although our discussion in this work is mainly fo-
cused on the linear DG method in 2D, its extension to higher-order and 3D DG methods
is straightforward. In the case of DG(P1) method, a linear polynomial solution Ui in any
cell i is

Ui = Ũi+UxiB2+UyiB3. (3.15)

Using this underlying linear polynomial DG solution in the neighboring cells, one can
reconstruct a quadratic polynomial solution UR

i as follows:

UR
i = ŨR

i +UR
xiB2+UR

yiB3+UR
xxiB4+UR

yyiB5+UR
xyiB6. (3.16)

In order to maintain the compactness of the DG methods, the reconstruction is required to
involve only von Neumann neighborhood, i.e., the adjacent cells that share a face with the
cell i under consideration. There are six degrees of freedom, and therefore 6 unknowns
must be determined. The first three unknowns can be trivially obtained, by requiring
the consistency of the RDG with the underlying DG: 1) The reconstruction scheme must
be conservative, and 2) The values of the reconstructed first derivatives are equal to the
ones of the first derivatives of the underlying DG solution at the centroid i. Due to the
judicious choice of Taylor basis in our DG formulation, these three degrees of freedom
simply coincide with the ones from the underlying DG solution, i.e.,

ŨR
i = Ũi, UR

xi=Uxi, UR
yi=Uyi. (3.17)

As a result, only three second derivatives need to be determined. This can be accom-
plished by requiring that the point-wise values and first derivatives of the reconstructed
solution and of the underlying DG solution are equal at the cell centers for all the adjacent
face neighboring cells. Consider a neighboring cell j, one requires

Uj= Ũi+UxiB2+UyiB3+UR
xxiB4+UR

yyiB5+UR
xyiB6, (3.18a)
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, (3.18b)
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∆yi
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xyi

B2

∆yi
, (3.18c)

where the basis functions B are evaluated at the center of cell j, i.e., B=B(xj,yj). This can
be written in a matrix form as follows:
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where R is used to represent the right-hand-side for simplicity. Similar equations can be
written for all cells connected to the cell i with a common face, which leads to a non-
square matrix. The number of face-neighboring cells for a triangular and a quadrilateral
cell is three and four, respectively. Correspondingly, the size of the resulting non-square
matrix is 9×3 and 12×3, respectively. This over-determined linear system of 9 or 12
equations for 3 unknowns can be solved in the least-squares sense. In the present work,
it is solved using a normal equation approach, which, by pre-multiplying through by the
matrix transpose, yields a symmetric linear 3×3 system of equations as follows
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. (3.20)

This linear system of 3×3 can be then trivially solved to obtain the second derivatives of
the reconstructed quadratic polynomial solution.

This reconstructed quadratic polynomial solution is then used to compute the do-
main and boundary integrals of the underlying DG(P1) method in Eq. (3.5). The result-
ing DG method, termed a ”reconstructed DG” method (RDG(P1P2) in short notation), is
expected to have the third order of accuracy at a moderate increase of computing costs
in comparison to the underlying DG(P1) method. The extra costs are mainly due to the
least-squares reconstruction, which is relatively cheap in comparison to the evaluation of
fluxes, and an extra Gauss quadrature point, which is required to calculate the domain
integrals for the triangular element (four quadrature points). Like in the DG(P1), two
quadrature points are used to calculate the boundary integrals, and four points are used
to calculate the domain integrals for quadrilateral elements. In comparison to DG(P2),
this represents a significant saving in terms of flux evaluations. Furthermore, the num-
ber of degrees of freedom is considerably reduced, which leads to a significant reduction
in memory requirements, and from which implicit methods will benefit tremendously.
The cost analysis for the FV(P1), DG(P1), RDG(P1P2) and DG(P2) is summarized in Table
1, where the memory requirement for storing only the implicit diagonal matrix is given as
well, and which grows quadratically with the order of the DG methods. We would like
to emphasize that the storage requirements for the implicit DG methods are extremely
demanding, especially for higher-order DG methods.

This reconstructed DG method has been implemented in a well-tested, fully-verified
2D DG code [13–17, 29]. In this code, a fast, low-storage p-multigrid method [16, 17] is
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Table 1: Cost analysis for different numerical methods in 2D.

FV(P1) DG(P1) RDG(P1P2) DG(P2)
Number of quadrature points 1 2 2 3

for boundary integrals
Number of quadrature points 0 3(triangle) 4 6

for domain integrals 4(quadrilateral) 4 9
Reconstruction Yes No Yes No

Order of Accuracy O(h2) O(h2) O(h3) O(h3)
Storage for Implicit 25 words 225 225 900

Diagonal Matrix Per element

developed to obtain steady state solutions, and an explicit three-stage third-order TVD
Runge-Kutta scheme is used to advance solution in time for the unsteady flow prob-
lems. Many upwind schemes have been implemented for the discretization of the invis-
cid fluxes, although HLLC scheme is exclusively used for the approximate solution of the
Riemann problem in this work.

4 Numerical examples

All of the computations are performed on a Dell XPS M1210 laptop computer (2.33 GHz
Intel(R) Core(TM) 2 CPU T7600 with 4GBytes memory) using a Suse 11.0 Linux operating
system. A well-tested finite volume code [39–44] is used as a reference to compare the
accuracy and performance of the DG method for some test cases. All the unstructured
hybrid grids are generated using the method described in References [44] and [45]. All
the test cases are chosen to demonstrate that the developed RDG(P1P2) method is able to
maintain the accuracy and robustness of the underlying DG method.

4.1 Sod shock tube problem

The shock tube problem constitutes a particularly interesting and difficult test case, since
it represents an exact solution to the full system of one-dimensional Euler equations con-
taining simultaneously a shock wave, a contact discontinuity, and an expansion fan. This
test case is chosen to demonstrate that the reconstructed DG method is able to maintain
the robustness of the underlying DG methods, as the reconstruction scheme used in the
finite volume methods will unavoidably generate negative values for density and energy
in this case, leading to a breakdown of the finite volume solution process. The initial
conditions in the present computation are the following: ρ=1, u=0, p=1 for 0≤ x≤0.5,
and ρ=0.125, u=0, p=0.1 for 0.5≤ x≤1. Fig. 3 shows a comparison of the density pro-
files obtained by the unlimited DG(P0), DG(P1), DG(P2), and RDG(P1P2) and the exact
solutions, respectively. This is a 2D simulation of a 1D problem. The mesh consists of
50 cells in the X-direction and 1 cell in the Y-direction. As expected, unlimited higher or-
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Figure 3: Comparison of the computed density profile for Sod shock tube problem obtained by unlimited DG(P0),
DG(P1), DG(P2), and RDG(P1P2) solutions with the analytical solution.

der DG(P1), DG(P2), and RDG(P1P2) solutions exhibit small oscillations in the vicinity of
discontinuities and higher order DG solution yields a sharper resolution for both contact
discontinuity and shock wave than a lower order DG solution. The RDG(P1P2) solution
is more accurate than the DG(P1) solution, although not as accurate as DG(P2) solution.
The reconstruction scheme used in the DG method does not create negative density, and
thus does not lead to the breakdown of the solution process. This can be attributed to the
robustness of the underlying DG(P1) method upon which a reconstruction is based.

4.2 Subsonic flows past a circular cylinder

This is a well-known test case: subsonic flow past a circular cylinder at a Mach number
of M∞=0.38. This test case is chosen to verify if a formal order of the convergence rate of
the RDG method can be achieved for the compressible Euler equations on unstructured
grids. Fig. 4 shows four successively refined o-type grids having 16×5, 32×9, 64×17,
and 128×33 points, respectively. The first number is the number of points in the angular
direction, and the second number is the number of points in the radial direction. The
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Figure 4: Sequences of four successively globally refined triangular meshes 16×5, 32×9, 64×17, 128×33 for
computing subsonic flow past a circular cylinder.

radius of the cylinder is r1 = 0.5, the domain is bounded by r33 = 20, and the radii of
concentric circles for 128×33 mesh are set up as

ri = r1

(

1+
2π

128

i−1

∑
j=0

αj

)

, i=2,··· ,33,

where α=1.1580372. The coarser grids are generated by successively coarsing the finest
mesh. Numerical solutions to this problem are computed using FV(P1), DG(P1), DG(P2),
and RDG(P1P2) methods on these four grids to obtain quantitative measurement of the
order of accuracy and discretization errors. The detailed results for this test case are
presented in Tables 2-5. They show the mesh size, the number of degrees of freedom,
the L2-error of the solutions, and the order of convergence. In this case, the following
entropy production ε defined as

ε=
S−S∞

S∞

=
p

p∞

(

ρ∞

ρ

)γ

−1

is served as the error measurement, where S is the entropy. Note that the entropy pro-
duction is a very good criterion to measure accuracy of the numerical solutions, since the
flow under consideration is isentropic. Fig. 5 shows the computed Mach number con-
tours in the flow field obtained by FV(P1) on the 128×33 mesh, DG(P1) on the 64×17
mesh, and DG(P2) and RDG(P1P2) on the 32×8 mesh, respectively. One can see that the
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Table 2: Subsonic circular cylinder test case: reconstructed FV(P1) is order of O(h2).

Mesh No. DOFs L2-error Order
16×5 80 2.37148E-01 -
32×9 288 7.76551E-01 1.595

64×17 1,088 1.36962E-02 2.551
128×33 4,224 3.54568E-03 1.951

Table 3: Subsonic circular cylinder test case: DG(P1) is order of O(h2).

Mesh No. DOFs L2-error Order
16×5 360 5.68722E-02 -
32×9 1,536 1.07103E-02 2.443

64×17 6,144 1.67302E-03 2.688
128×33 24,576 2.34369E-04 2.838

Table 4: Subsonic circular cylinder test case: DG(P2) is order of O(h3).

Mesh No. DOFs L2-error Order
16×5 768 8.40814E-03 -
32×9 3,072 5.26017E-04 4.055

64×17 12,288 4.48952E-05 3.536
128×33 49,152 4.16294E-06 3.434

Table 5: Subsonic circular cylinder test case: RDG(P1) is order of O(h3).

Mesh No. DOFs L2-error Order
16×5 360 1.91161E-02 -
32×9 1,536 9.72523E-04 4.358

64×17 6,144 8.00571E-05 3.615
128×33 24,576 9.33899E-06 3.102

results obtained by DG(P2) on the 32×8 mesh are more accurate than the ones obtained
by DG(P1) on the 64×17 mesh, which in turn are more accurate than the ones obtained
by FV(P1) on the 128×33 mesh. Both RDG(P1P2) and DG(P2) solutions are virtually
identical for this case. However, the DG(P2) does yield a slightly more accurate solution
than the RDG(P1P2) at the same grid resolution. This can be seen in Fig. 6, providing
the details of the spatial convergence of each method for this numerical experiment. As
expected, the DG method exhibits a full O(hp+1) order of convergence. The RDG(P1P2)
method does offer a full O(hp+2) order of the convergence, adding one order of accuracy
to the underlying DG(P1) method. Fig. 7 illustrates that higher order DG methods re-
quire significantly less degrees of freedom than lower order ones for the same accuracy.
Moreover, the RDG(P1P2) outperforms DG(P2), by measuring the number of the degrees
of freedom required to achieve the same accuracy.
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Figure 5: Computed Mach number contours in the flow field obtained by the FV(P1) method on 128×33 mesh
(top left), DG(P1) method on 64×17 mesh (top right), DG(P2) method on 32×9 mesh (bottom left), and
RDG(P1P2) on 32×9 mesh (bottom right) for subsonic flow past a circular cylinder at M∞ =0.38.

Figure 6: Convergence history for subsonic flow
past a circular cylinder for FV(P1), DG(P1),
DG(P2), and RDG(P1P2) methods.

Figure 7: L2-errors of numerical solutions vs. the
number of degrees of freedom for subsonic flow
past a circular cylinder by FV(P1), DG(P1),
DG(P2), and RDG(P1P2) methods.

4.3 Low Mach number flow past a circular cylinder

This test case is chosen to demonstrate that the RDG method is able to maintain the ac-
curacy of the underlying DG method for solving low Mach number flow problems. The
computation performed for low speed flows past a circular cylinder at a Mach number
of M∞ =0.01 using both DG(P2) and RDG(P1P2) methods on a hybrid mesh is shown in
Fig. 8, where the comparison of the velocity distributions on the surface of the circular
cylinder obtained by these two methods, and those of the FV(P1) solution and the ana-
lytic solution for incompressible flows are presented as well. One can see clearly dramatic
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Figure 8: Left: Unstructured hybrid grid (1,024 triangles, 512 quadrilaterals, 1,536 grid points, 128 boundary
faces) used for computing low Mach number flow past a circular cylinder. Right: Comparison of the computed
velocity distributions on the surface of the circular cylinder obtained by the RDG(P1P2) and DG(P2) methods
with the incompressible solution for low Mach number flow past a circular cylinder at M∞ =0.01.

Figure 9: Computed Mach number contours obtained by the RDG(P1P2) (left) and DG(P2) (right) methods
for low Mach number flow past a circular cylinder at M∞ =0.01.

deterioration of the FV(P1) solution. The mesh consists of 1,024 triangular elements, 512
quadrilateral elements, 1,536 grid points, and 128 boundary faces. The computed Mach
number contours in the flow field obtained by these two methods are shown in Fig. 9,
respectively. The results illustrate that the RDG(P1P2) and the DG(P2) solutions are vir-
tually identical, demonstrating that the RDG(P1P2) method is able to yield an accurate
solution, and thus maintain the ability of the underlying DG method for the low Mach
number flows. A grid convergence study is also conducted for this test case to verify if
a formal order of convergence rate for the RDG(P1P2) method can be achieved for the
low Mach number flows on the hybrid triangular and quadrilateral grids. Fig. 10 shows
four successively refined hybrid grids having 16×5, 32×9, 64×17, and 128×33 points,
respectively. The grid convergence history versus the cell size and the number of degrees
of freedom is displayed in Fig. 11, where the convergence history obtained by RDG(P1P2)
for the test case 2 is also provided to see the effect of the Mach number on convergence.
Again, one observes that the RDG(P1P2) does provide a full 3rd order of convergence for
low Mach number flows and on unstructured hybrid grids. What is surprising is that
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Figure 10: Sequences of four successively globally refined hybrid meshes 16×5, 32×9, 64×17, 128×33 for
computing subsonic flow past a circular cylinder.

Figure 11: L2-error of numerical solutions against the cell size (left) and the number of degrees of freedom
(right) for low Mach number and subsonic flow past a circular cylinder by the RDG(P1P2) method.

RDG(P1P2) converges faster for low Mach number flows (M∞ = 0.01) than for higher
Mach number flows (M∞ =0.38).

4.4 Subsonic flow past a NACA0012 airfoil

Our next test case involves an inviscid flow past a NACA0012 airfoil at a Mach num-
ber of 0.63, and an angle of attack 2◦. This numerical experiment is designed to test the
ability of the RDG method to obtain highly accurate solutions to the Euler equations on
viscous hybrid grids. Being able to produce an accurate inviscid solution on a highly
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Figure 12: Unstructured hybrid mesh (top left) (1,533 quadrilaterals, 3,469 triangles, 3,346 grid points, 157
boundary faces) and computed Mach number contours by the DG(P1) (top right), the RDG(P1P2) (bottom
left), and the DG(P2) (bottom right) methods, respectively for subsonic flow past a NACA0012 airfoil at
M∞ =0.63, α=2◦.

Figure 13: Comparison of the computed pressure coefficient (left) and entropy production (right) distributions
for subsonic flow past a NACA0012 airfoil at M∞ =0.63, α=2◦.

stretched Navier-Stokes grid is extremely difficult and challenging, and yet of utmost
importance for the accurate solution to the Navier-Stokes equations, thus serving as a
good criterion to measure accuracy and robustness of a numerical method. Many fi-
nite volume methods are unable to obtain the same quality of an inviscid solution on
an anisotropic Navier-Stokes grid as on an isotropic Euler grid, suffering from either ex-
cessive numerical dissipation or spurious oscillations due to a combination of the mesh
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irregularity and deficiencies of the reconstruction schemes. Fig. 12 shows the mesh used
in this numerical experiment and the computed Mach number contours in the flow field
obtained by DG(P1), RDG(P1P2), and DG(P2) methods, respectively. The mesh consists
of 1,533 quadrilateral cells, 3,469 triangular cells, 3,346 grid points, and 157 boundary
faces. The computed Mach number contours in the flow field obtained using DG(P1),
RDG(P1P2), and DG(P2) methods are also shown in Fig. 12, where accurate and smooth
solutions are observed in spite of the highly stretched grid used in the boundary layer.
The computed pressure coefficient and entropy production distribution on the surface of
the airfoil obtained by these three methods are compared in Fig. 13. All three solutions
are virtually identical by judging the Mach number contours in the flow field and the
pressure coefficient distributions on the surface of the airfoil, indicating that the numeri-
cal solution is order-independent, (i.e., a convergence on these flow quantities is reached).
The RDG(P1P2) solution however is significantly improved compared with the DG(P1)
solution by judging the entropy production distribution on the surface of the airfoil. Note
that the entropy production is directly related to the error of the numerical methods, as
it should be zero everywhere for subsonic flows. The DG(P2) solution provides a further
improvement over the RDG(P1) solution, although the difference is very small. This nu-
merical experiment demonstrates that the RDG(P1P2) method, unlike some of its finite
volume counterparts, has the ability to accurately solve the compressible Euler equation
on anisotropic grids designed for solving the Navier-Stokes equations.

4.5 Subsonic flow past a three-element airfoil

Finally, an illustrative example is presented to demonstrate that the developed RDG
method can be applied to problems of scientific and industrial interests. The compu-
tation is performed on a three-element airfoil at a free stream of Mach number of 0.2 and
an angle of attack of 10◦. The hybrid unstructured Cartesian and triangle grid is shown
in Fig. 14, which consists of 13,892 Cartesian cells and 3,981 triangular elements. The
computed Mach number and pressure contours in the flow field are shown in Fig. 15,
demonstrating the accuracy and robustness of the developed RDG method for comput-
ing complicated flows of practical importance.

5 Conclusions

A reconstructed discontinuous Galerkin method using a Taylor basis has been devel-
oped for the solution of the compressible Euler equations on arbitrary grids. Similar to
the recovery-based rDG(P1P2) method, The developed reconstruction-based RDG(P1P2)
method is able to achieve a third-order accuracy: one order accuracy higher than the
underlying DG method. In comparison with the recovery-based DG methods, the re-
construction DG methods are relatively simple to implement, numerically robust and
flexible, and computationally efficient. A number of numerical experiments have been
conducted to demonstrate the superior performance of the RDG(P1P2) method over the
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Figure 14: Hybrid unstructured Cartesian and triangle mesh (13,892 Cartesian cells, and 3,981 triangular cells)
used for computing subsonic flow past a three-element airfoil at M∞ =0.2, α=10◦.

Figure 15: The computed Mach number (left) and pressure (right) contours obtained by the RDG(P1P2)
method for subsonic flow past a three-element airfoil at M∞ =0.2, α=10◦.

underlying DG(P1) and DG(P2) methods. The developed RDG method has also success-
fully been extended to discretize the viscous and heat fluxes in the Navier-Stokes equa-
tions using the so-called ”inter-cell reconstruction”. The current development is focused
on the extension of this reconstructed DG method for 3D problems, and the development
of the RDG(P2P4) method is also under consideration.
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[45] H. Luo, S. Spiegel, and R. Löhner, A Hybrid Unstructured Cartesian and Triangu-
lar/Tetrahedral Grid Generation Method for Complex Geometries, AIAA journal. Vol. 48,
No., 11 pp. 2639-2647, 2010.

[46] R. Abgrall, On Essentially Non-Oscillatory Schemes on Unstructured Meshes: Analysis and
Implementation, Journal of Computational Physics, Vol. 114, pp. 45-58, 1994.

[47] O. Friedrich, Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean
Values on Unstructured Grid, Journal of Computational Physics, Vol. 144, pp. 194-212, 1998.
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