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Abstract. We are concerned with a model of ionic polymer-metal composite (IPMC)
materials that consists of a coupled system of the Poisson and Nernst-Planck equa-
tions, discretized by means of the finite element method (FEM). We show that due to
the transient character of the problem it is efficient to use adaptive algorithms that are
capable of changing the mesh dynamically in time. We also show that due to large
qualitative and quantitative differences between the two solution components, it is
efficient to approximate them on different meshes using a novel adaptive multimesh
hp-FEM. The study is accompanied with numerous computations and comparisons of
the adaptive multimesh hp-FEM with several other adaptive FEM algorithms.
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1 Introduction

Ionic Polymer-Metal Composites (IPMC) have been studied during the past two decades
for their potential to serve as noiseless mechanoelectrical and electromechanical trans-
ducers [1, 4, 5, 7, 9, 10, 17]. The advantages of IPMC over other electroactive polymer
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Figure 1: Conceptual model of the actuation of IPMC. Initial counter ion distribution (a) and the distribution
and resulting bending after applying a voltage (b).

actuators are low voltage bending, high strains (>1%), and an ability to work in wet en-
vironments. A typical IPMC consists of a thin sheet of polymer (often Nafion or Teflon)
which is sandwiched between noble metal electrodes such as platinum or gold. When
fabricated, the polymer membrane is saturated with certain solvent and ions such as wa-
ter and H+. When a voltage is applied to the electrodes, the counter ions start migrating
due to the imposed electric field. By dragging along the solvent, the osmotic pressure
difference near the electrodes results in bending of the material (see Fig. 1).

In this study we will model IPMC materials via a multiphysics coupled problem con-
sisting of the Poisson and Nernst-Planck equations (abbreviated by PNP in the follow-
ing). These equations are used to model charge transport in materials that include ionic
migration, diffusion, and convection. The charge transport process is a key mechanism
for electromechanical transduction.

The PNP system is highly nonlinear and for a typical domain with two electrodes,
largest differences in charge concentration occur in a very narrow region near the bound-
ary. The computing power required for a full scale problem is significant [8]. This is why
we are interested in exploring adaptive algorithms-we hope to obtain meshes that are
optimal in terms of calculation time and calculation error.

The Nernst-Planck equation for a mobile species- in our case for counter ions-has the
form

∂C

∂t
+∇·(−D∇C−µFC∇φ)=0. (1.1)

Here C stands for the counter ion concentration with the initial value of C0, D is diffusion,
µ mobility, F Faraday constant and φ voltage. We have neglected the velocity of the
species as in our case it can be assumed zero. The Poisson equation has the form

−∇2φ=
Fρ

ε
, (1.2)

where ε is the absolute dielectric permittivity. The charge density ρ= C−C0 where C0 is
a constant anion concentration.

The outline of the paper is as follows: Section 2 shows that the solution components
C and φ have very different behavior, which is the reason why it is difficult to find a
common mesh that would be optimal for both of them. This explains why we are inter-
ested in approximation them on individual meshes equipped with mutually independent
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adaptivity mechanisms. The PNP model is presented in Section 3 where also its weak for-
mulation for the Newton’s method is derived. Section 4 presents a brief overview of a
novel adaptive multi-mesh hp-FEM method [3, 12–14] that is used to solve the problem
numerically. Numerical results and comparisons are presented in Section 5, and conclu-
sions and outlook are drawn in Section 6.

2 Motivation

In this section we use a simplified one-dimensional PNP model to illustrate the princi-
pal difficulties encountered in the numerical solution. Table 1 shows relevant constants.
Fig. 2 shows a typical solution for C and φ at t=0.1s and t=3.0s.

Table 1: Constants used in the Poisson-Nernst-Planck system of equations.

Constant Value Unit Description

D 10×10−11 m2/s Diffusion constant
z 1 - Charge number
F 96,485 C/mol Faraday number
R 8.31 J/mol·K The gas constant

µ(= D
RT ) 4.11×10−14 s/mol·K Mobility

C0 1,200 mol/m3 Anion concentration
ε 0.025 F/m Electric permittivity
l 200×10−6 m length scale

The reader can observe that the solution has two notable characteristics: For the most
part of the domain Ω, the gradient ∇C = 0. Close to ∂Ω2, ∇C is nonzero and moving
in time, and ∇C is very large at ∂Ω1. At the same time, φ is a ”nice” smooth function
for the most part of Ω but it has a large gradient at ∂Ω2. This makes the choice of an
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Figure 2: Sample concentration C and voltage φ in a 1D domain Ω ⊂ R. Dirichlet boundary conditions
(V∂Ω1

=0V and V∂Ω2
=4V) were applied to the Poisson equation (1.2) and Neumann conditions to the Nernst-

Planck equation (1.1).
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optimal mesh highly problematic. Even if the solution was stationary, an optimal mesh
for C could never be optimal for φ and vice versa.

Furthermore, the shape of the solution in Fig. 2 suggests that the polynomial degree of
finite elements in the middle of the domain Ω and near the boundaries ∂Ω1, ∂Ω2 should
be different-large high-degree elements should be used in the middle of the domain while
small low-degree ones should be used in the boundary layers. The qualitative differences
in the solution components C and φ also suggest that using different meshes would be
beneficial.

3 Model

We consider a rectangular 2D domain Ω ⊂R
2 with boundaries ∂Ω1···4 ⊂ ∂Ω, shown in

Fig. 3.

Figure 3: Calculation domain Ω⊂R
2 with boundaries ∂Ω1···4⊂∂Ω.

As there is no flow through the domain’s boundary, Eq. (1.1) is equipped with a Neu-
mann boundary condition

−D
∂C

∂n
−µFC

∂φ

∂n
=0. (3.1)

Furthermore, we prescribe a positive constant voltage Vpos on Ω1 and zero voltage on Ω3:

φ∂Ω1
=Vpos, (3.2a)

φ∂Ω3
=0. (3.2b)

On the rest of the boundary, φ has zero normal derivatives, and thus we prescribe a
Neumann boundary condition

∂φΩ2

∂n
=

∂φΩ4

∂n
=0. (3.3)

3.1 Weak form of the PNP system

To make our results easily reproducible, in the following we present the derivation of
weak forms of Eqs. (1.1) and (1.2), as well as formulas for the Jacobian matrix and residual
vector that are used in actual computations. To simplify notation, we use dimensionless
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formulation of Eqs. (1.1) and (1.2). The following new notations for the independent
variables x, y, t and for the dependent variables C and φ are used [2]:

X =
x

l
, Y =

y

l
, τ =

tD

λDl
, ϕ=

φF

RT
, c=

C

C 0
. (3.4)

Here λD is the Debye screening length and it is expressed as follows [2]:

λD =

√

εRT

2F2C0
. (3.5)

After inserting variables (3.4) into Eq. (1.1) the Nernst-Planck equation and Poisson equa-
tion become:

DC0

λDl

∂c

∂τ
+

1

l
∇d ·

(

−
DC0

l
∇dc−c

DC0

l
∇d ϕ

)

=0, (3.6a)

−
εRT

l2F2C0
∇2

d ϕ= c−1, (3.6b)

where

∇d =
( ∂

∂X
,

∂

∂Y

)

. (3.7)

After simplifying Eqs. (3.6a) and (3.6b) and denoting

ǫ=
λD

l
, (3.8)

the dimensionless form of the PNP system of equations is

∂c

∂τ
−ǫ∇2

dc−ǫ∇d ·
(

c∇d ϕ
)

=0, (3.9a)

−∇2
d ϕ=

c−1

2ǫ2
. (3.9b)

Boundary condition Eq. (3.1) has the form

−
∂c

∂n
−c

∂ϕ

∂n
=0. (3.10)

As the second derivatives of both c and ϕ are present in the equations, the appropriate
function space for them is the Sobolev space V = H1(Ω) where

H1(Ω)=
{

v∈L2(Ω); ∇dv∈
[

L2(Ω)
]2

}

.

In order to derive the weak form of the Nernst-Planck equation Eq. (3.9a), we first multi-
ply it with a test function vc∈V and integrate over the domain Ω,

∫

Ω

∂c

∂τ
vcdx−

∫

Ω
ǫ∇2

dcvcdx−
∫

Ω
ǫ∇dc·∇d ϕvcdx−

∫

Ω
ǫc∇2

d ϕvcdx=0. (3.11)
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Applying the Green’s first identity to the terms that contain second derivatives, we obtain

∫

Ω

∂c

∂τ
vcdx+ǫ

∫

Ω
∇dc·∇dvcdx−ǫ

∫

Ω
∇dc·∇d ϕvcdx

+ǫ
∫

Ω
∇d(cvc)·∇d ϕdx−ǫ

∫

∂Ω

∂c

∂n
vcdS−

∫

∂Ω
ǫ

∂ϕ

∂n
cvcdS=0. (3.12)

Expanding the nonlinear term and using the boundary condition (3.10), we have

∫

Ω

∂c

∂τ
vcdx+ǫ

∫

Ω
∇dc·∇dvcdx−ǫ

∫

Ω
∇dc·∇d ϕvcdx

+ǫ
∫

Ω
∇d ϕ·∇dcvcdx+ǫ

∫

Ω
c
(

∇d ϕ·∇dvc
)

dx=0. (3.13)

After the third and fourth terms cancel out, we obtain the final weak form of the Nernst-
Planck equation

∫

Ω

∂c

∂τ
vcdx+ǫ

∫

Ω
∇dc·∇dvcdx+ǫ

∫

Ω
c
(

∇d ϕ·∇dvc
)

dx=0. (3.14)

Analogously we derive also the weak form of the Poisson equation (3.9b),

−
∫

Ω
∇2

d ϕvϕdx−
1

2ǫ2

[

∫

Ω
cvϕdx−

∫

Ω
vϕdx

]

=0. (3.15)

After performing integration by parts and taking into account the boundary conditions
for ϕ, we obtain

∫

Ω
∇d ϕ·∇dvϕdx−

1

2ǫ2

[

∫

Ω
cvϕdx−

∫

Ω
vϕdx

]

=0. (3.16)

3.2 Jacobian matrix and residual vector for the Newton’s method

To employ the Newton’s method for the nonlinear system (3.14), (3.16), formulas for
the Jacobian matrix and residual vector need to be derived. Time discretization will be
performed using the second-order Crank-Nicolson method. The unknown solution com-
ponents cn+1 and ϕn+1 at the end of the time step δτ are expressed as linear combinations
of finite element basis functions vc

k and v
ϕ
k with unknown coefficients,

cn+1 = c(Yn+1)=
Nc

∑
k=1

yc
kvc

k, (3.17a)

ϕn+1 = ϕ(Yn+1)=
Nϕ

∑
k=1

y
ϕ
k v

ϕ
k . (3.17b)

Here Yn+1 is a coefficient vector of length Nc+Nϕ comprising the unknown solution
coefficients yc

k and y
ϕ
k (in this order). We will also be using cn = c(Yn) and ϕn = ϕ(Yn) for

the previous time step solutions.
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With the notation (3.17a), (3.17b), the time discretized Eq. (3.14) leads to the formula
for the first part Fc of the residual vector F,

Fc
i (Y)=

∫

Ω

c(Y)

δτ
vc

i dx−
∫

Ω

cn

δτ
vc

i dx+
1

2
ǫ
[

∫

Ω
∇dc(Y)·∇dvc

i dx+
∫

Ω
∇dcn ·∇dvc

i dx

+
∫

Ω
c(Y)

(

∇d ϕ(Y)·∇dvc
i

)

dx+
∫

Ω
cn

(

∇d ϕn ·∇dvc
i

)

dx
]

, (3.18)

where i = 1,2,··· ,Nc. Analogously, Eq. (3.16) defines the second part Fϕ of the residual
vector F,

F
ϕ
i (Y)=

∫

Ω
∇d ϕ(Y)·∇dv

ϕ
i dx−

1

2ǫ2

[

∫

Ω
c(Y)v

ϕ
i dx−

∫

Ω
v

ϕ
i dx

]

, (3.19)

where i = Nc+1,Nc +2,··· ,Nc+Nϕ. The nonlinear discrete problem that needs to be
solved at the end of each time step thus has the form F(Y)=0.

The Jacobian matrix J(Y)= DF/DY has a 2×2 block structure,

J(Y)=













∂Fc
i

∂yc
j

∂Fc
i

∂y
ϕ
j

∂F
ϕ
i

∂yc
j

∂F
ϕ
i

∂y
ϕ
j













, (3.20)

and its entries are obtained by calculating the partial derivatives of F with respect to the
components of the coefficient vector Y. For this it is useful to realize that

∂c(Y)

∂yc
j

=vc
j ,

∂∇dc(Y)

∂yc
j

=∇dvc
j , etc.

We obtain

∂Fc
i

∂yc
j

(Y)=
∫

Ω

1

δτ
vc

j v
c
i dx+

1

2
ǫ
[

∫

Ω
∇dvc

j ·∇dvc
i dx+

∫

Ω
vc

j

(

∇d ϕ(Y)·∇dvc
i

)

dx
]

, (3.21a)

∂Fc
i

∂y
ϕ
j

(Y)=
1

2
ǫ
∫

Ω
c(Y)

(

∇dv
ϕ
j ·∇dvc

i

)

dx, (3.21b)

∂F
ϕ
i

∂yc
j

(Y)=−
1

2ǫ2

∫

Ω
vc

j v
ϕ
i dx, (3.21c)

∂F
ϕ
i

∂y
ϕ
j

(Y)=
∫

Ω
∇dv

ϕ
j ·∇dv

ϕ
i dx. (3.21d)

3.3 Newton’s iteration

At the beginning of the (n+1)st time step we set Yn+1
0 = Yn, where Yn is the coefficient

vector that was calculated in the nth time step (or coming from the initial condition if
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n=0). We set k=0 and run the Newton’s iteration

J(Yn+1
k )δτYn+1

k+1 =−F(Yn+1
k ),

Yn+1
k+1 =Yn+1

k +δτYn+1
k+1 ,

k := k+1

over k until it converges. Then we set Yn+1 :=Yn+1
k . We use a combined stopping criterion

that makes sure that both the norm of the residual vector ‖F(Yn+1)‖ as well as the norm
of the increment ‖δYn+1‖ are sufficiently small.

4 Adaptive hp-FEM

The hp-FEM is a modern version of the Finite Element Method (FEM) that is capable of
exponential convergence (the approximation error drops exponentially as new degrees
of freedom are added during adaptivity) while standard FEM can only attain algebraic
(polynomial) convergence rates which are much slower [15].

In traditional low-order FEM (based on piecewise-linear or piecewise quadratic ele-
ments), refining an element is not algorithmically complicated, and so the most difficult
part is to find out what elements should be refined. To do this, various techniques ranging
from rigorous guaranteed a-posteriori error estimates to heuristic criteria such as residual
error indicators or error indicators based on steep gradients are employed.

However, these approaches are in general not very well suited for multiphysics cou-
pled problems or higher-order finite element methods: rigorous guaranteed error esti-
mates only exist for very simple problems (such as linear elliptic PDE) and only for low-
order finite elements. Heuristic techniques are usually somehow doable for all problems,
but they fail in more complicated situations. Moreover, they lack a transparent relation
to the true approximation error and thus they may give wrong results.

Automatic adaptivity in higher-order finite element methods (hp-FEM) is much dif-
ferent from adaptivity in low-order FEM. Firstly, analytical error estimates capable of
guiding adaptive hp-FEM do not exist even for the simplest linear elliptic equations, not
speaking about nonlinear multiphysics coupled systems. Secondly, a higher-order ele-
ment can be refined in many different ways, as illustrated in Fig. 4.

The number of possible element refinements is implementation dependent. In gen-
eral it is very low in h-adaptivity and p-adaptivity, and much higher in hp-adaptivity.
Moreover, this number grows very fast when anisotropic refinements are enabled.

4.1 The Hermes library

Hermes† is a free and open-source C++ library that implements higher-order finite ele-
ments approximations and adaptive hp-FEM. It supports 8 different adaptivity modes-

†http://hpfem.org/hermes.
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Figure 4: Many possible refinement candidates for a fourth-order element.

three isotropic and five anisotropic. The isotropic refinements are h-isotropic (H ISO), p-
isotropic (P ISO), hp-isotropic (HP ISO). Anisotropic refinement modes are h-anisotropic
(H ANISO), hp-anisotropic-h (HP ANISO H), p-anisotropic (P ANISO), hp-anisotropic-
p (HP ANISO P), and hp-anisotropic (HP ANISO). The eight adaptivity modes are sum-
marized in Fig. 5. It must be noted that in case of HP ANISO H, only element size is
adapted anisotropically whereas polynomial degree is adapted isotropically. The oppo-
site holds true for HP ANISO P.

Note that triangular elements do not support anisotropic refinements. Due to the

Figure 5: Refinement candidates for every refinement mode for quad type elements.
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large number of refinement options, classical error estimators that provide a constant er-
ror estimate per element, cannot be used to guide automatic hp-adaptivity. For this, one
needs to know the shape of the approximation error. Hermes uses a pair of approxima-
tions with different orders of accuracy to obtain this information: coarse mesh solution
and fine mesh solution [11]. The initial coarse mesh is read from the mesh file, and the
initial fine mesh is created through its global refinement both in h and p. The fine mesh
solution is the approximation of interest both during the adaptive process and at the end
of computation. Global orthogonal projection of the fine mesh solution on the coarse
mesh is used to extract the low-order part from the reference solution. The adaptivity al-
gorithm is guided by the difference between the reference solution and its low-order part.
Note that this approach to automatic adaptivity is PDE-independent and thus naturally
applicable to a large variety of multiphysics coupled problems.

4.2 Multimesh hp-FEM

In multiphysics PDE systems such as Poisson-Nernst-Planck it can happen that one phys-
ical field is very smooth where others are not, as we illustrated in Fig. 2. If all the fields
are approximated on the same mesh, then refinements will be present in smooth areas
where they are not necessary. This can be very wasteful.

Hermes implements a novel adaptive multimesh hp-FEM [3,12,14] that makes it pos-
sible to approximate different fields on individual meshes, without breaking the mono-
lithic structure of the coupling mechanism. For practical reasons, the meshes in the sys-
tem are not allowed to be completely independent-they have a common coarse mesh that
we call master mesh. The master mesh is there for algorithmic purposes only and it may
not even be used for discretization purposes. Every mesh in the system is obtained from
the master mesh via an arbitrary sequence of elementary refinements. Assembling is
done on a union mesh, a geometrical union of all meshes in the system (imagine printing
all meshes on transparencies and positioning them on top of each other).

The union mesh is not constructed physically in the computer memory-it merely
serves as a hint to correctly transform the integration points while integrating over sub-
elements of elements in the existing meshes. As a result, the multimesh discretization of
the PDE system is monolithic in the sense that no physics is lost-all integrals in the dis-
crete weak formulations are evaluated exactly up to the error in the numerical quadra-
ture. The exact preservation of the coupling structure of multiphysics coupled problems
makes the multimesh hp-FEM very different from various interpolation and projection
based methods that suffer from errors made while transferring data between different
meshes in the system.

5 Numerical results and comparisons

The solutions to the PNP problem exhibit a specific behavior that was described above.
In order to find the best adaptive method to deal with this type of problems, we per-
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Figure 6: Initial coarse mesh (a), refined mesh (b), and symmetrically refined mesh for length scale study
(c). The coarse mesh (a) and refined mesh (b) were used in the initial calculations, the latter one in case of
p-adaptivity (including HP ANISO P).

formed numerous computations using all adaptivity modes in both the single-mesh and
multi-mesh regimes. In the numerical experiments we paid attention to the relative error,
cumulative CPU time, and problem size in terms of number of degrees of freedom (DOF)
in each time step. The scaled variables c and ϕ and the unscaled time t are used to present
the solutions. The simulations were performed with physical time step of 0.05s and the
final time of 3.0s was chosen as it is close to the time scaling constant τ. The time step
was chosen after many numerical experiments in such a way that the error in time was
approximately the same as the error in space. The implementation of advanced adaptive
implicit higher-order Runge-Kutta methods is in progress.

We used two types of initial meshes—a finer mesh shown in Fig. 6(b) was used for
p-adaptivity and a very coarse initial mesh shown in Fig. 6(a) was used for h-adaptivity
and hp-adaptivity.

An example of the solution at t = 0.1s and t = 3.0s calculated with the HP ANISO
refinement mode is shown in Figs. 7 and 8.

The reader can see that at t = 0.1s some ionic migration has already taken place and
large concentration gradients near the boundaries ∂Ω1 and ∂Ω3 have formed. The figures
also show that the meshes at t=0.1s and t=3.0s are different.

5.1 Comparison of single mesh low-order FEM and hp-FEM

First of all, the low-order FEM and hp-FEM were compared. A single mesh H ANISO
with polynomial degrees p=1 and p=2 were compared to HP ANISO mode. The coarse
initial mesh as shown in Fig. 6(a) was used in the solutions. The results are shown in
Figs. 9 and 10.
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Figure 7: Scaled concentration c and voltage ϕ at t=0.1s.

Figure 8: Scaled concentration c and voltage ϕ at t=3.0s.

It can be seen that hp-FEM results in a shorter computing time and smaller number
of DOF than the low-order FEM. The same holds true for H ISO and HP ISO modes. In
fact, in case of H ISO the relative error did not converge to the pre-set threshold value
of 0.5% within acceptable range of degrees of freedom of nDOFthreshold =5000. Therefore,
the h-FEM solutions will be omitted from the further comparisons. Instead, only hp-FEM
solutions on the coarse mesh and p-FEM solutions on the fine mesh will be discussed.

5.2 Comparison of single-mesh and multi-mesh hp-FEM

Running the simulation with different adaptivity modes and meshes showed that the
multi-mesh hp-FEM configuration resulted in the smallest problems and similar error
convergence compared to any single-mesh configuration. However, multi-mesh prob-
lems generally resulted in longer computing times. This is a known shortcoming of
Hermes at this point and it is due to the fact that multi-mesh uses the union mesh (see
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Figure 10: Cumulative CPU time as a function of physical time for single-mesh H ANISO (in case of p=1 and
p=2) and single mesh HP ANISO.
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Figure 11: Number of DOF as a function of physical time for single-mesh and multi-mesh configurations with
HP ANISO adaptivity mode.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Physical time (s)

0

200

400

600

800

1000

1200

1400

1600

CP
U 

tim
e 

(s
)

CPU time with single-mesh and multi-mesh
HP_ANISO (multi)
HP_ANISO (single)

Figure 12: Cumulative CPU time as a function of physical time for single-mesh and multi-mesh configurations
with HP ANISO adaptivity mode.
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Figure 13: Higher-order FEM mesh for c and ϕ at t=0.1s.

Figure 14: Higher-order FEM mesh for c and ϕ at t=3.0s.

Section 4) where the numerical integration of high order is done on very small elements.
The problem size and computing time are illustrated for HP ANISO adaptivity mode in
Fig. 11 and Fig. 12. The same holds true for HP ISO mode. It must be also noted that the
error converged to or below 0.5% for all p-FEM and anisotropic hp-FEM results.

Figs. 13 and 14 show higher-order meshes in the adaptive multi-mesh hp-FEM com-
putation for c and ϕ at t =0.1s and t =3.0s, respectively. Different colors mean different
polynomial degrees. A diagonal pattern inside an element tells that the element has dif-
ferent polynomial degrees in the horizontal and vertical directions.

The result are in good agreement with Fig. 8—in the vicinity of the boundaries ∂Ω1

and ∂Ω3, the concentration gradient is much greater than the voltage gradient. Therefore
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at t = 0.1s, the multi-mesh hp-FEM adaptivity algorithm has increased the maximum
polynomial degree for the c-space to 6 while the maximum polynomial degree for the ϕ-
space is 4. The meshes are not that different in the beginning of the calculation. However,
one can also see that the mesh refinement for c at t = 3.0s is notably different compared
to ϕ. For instance, the highest polynomial degree for c-space is 8 whereas for ϕ-space
is 4. Since these results are representative for all adaptivity modes, only multi-mesh
configurations are considered in the following.

5.3 Comparison of isotropic and anisotropic refinements

Next we would like to illustrate the role of anisotropic mesh refinements. Figs. 15 and
16 show typical results for the HP ISO, HP ANISO H, HP ANISO adaptivity modes in
terms of DOF and cumulative CPU time. Fig. 17 shows corresponding error convergence.
It can be seen that HP ISO is notoriously inefficient as the error does not converge within
the limited number of degrees of freedom of nDOFthreshold =5000 and computing time is
very large. Due to that fact, the calculation of HP ISO was canceled before t=3.0s.

Figs. 18 and 19 present a similar comparison for the P ISO, P ANISO, and
HP ANISO P modes. Recall that these computations use a different initial mesh that
was a-priori refined in space.
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Figure 15: Number of DOF as a function of physical time for multi-mesh configurations with HP ANISO,
HP ANISO H, and HP ISO adaptivity modes (logy scale).
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Figure 16: Cumulative CPU time as a function of physical time for multi-mesh configurations with HP ANISO,
HP ANISO H, and HP ISO adaptivity modes (logy scale).
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Figure 17: Relative solution error as a function of physical time for multi-mesh configurations with HP ANISO,
HP ANISO H, and HP ISO adaptivity modes.
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Figure 18: Number of DOF as a function of physical time for multi-mesh configurations with P ISO, P ANISO,
and HP ANISO P adaptivity modes.
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Figure 19: Cumulative CPU times as a function of physical time for multi-mesh configurations with P ISO,
P ANISO, and HP ANISO P adaptivity modes.

As a conclusion, the reader can see that the anisotropic adaptivity modes always per-
form better than the isotropic ones. In particular, HP ANISO results into the smallest
problem size. In the p-adaptivity group, HP ANISO P and P ANISO lead to a small
problem size consistently in each time step, whereas P ISO yields large problems during
the first time steps.

HP ANISO also results in the fastest computing time among hp-adaptivity group
whereas HP ANISO P results in the fastest overall computing time. This is due to the
fact that HP ANISO P calculation is performed on the refined mesh. Regardless, the
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HP ANISO adaptivity mode is the most suitable for the PNP problem due to the small
size and relative fastness compared to the other adaptivity modes. A way to optimize the
computing time of HP ANISO will be considered next.

5.4 Time step control of HP ANISO adaptivity

To optimize the calculation time of HP ANISO, an adaptive time step control was em-
ployed. The classical PID controller was used [3, 16]. Since c and ϕ change differently in
time as was demonstrated in Figs. 7 and 8, the relative changes between the solutions at
different time steps were monitored:

en
c =

‖cn−cn−1‖

‖cn‖
, (5.1a)

en
ϕ =

‖ϕn−ϕn−1‖

‖ϕn‖
. (5.1b)

The relative changes to control the time step was calculated as follows:

en =max
{

en
c , en

ϕ

}

. (5.2)

If en
< δ where δ > 0 is a defined tolerance, then the time step for the next iteration is

increased smoothly to

δτn+1 =
( en−1

en

)kP
( δ

en

)kl
[ (en−1)2

enen−2

]kD

δτn, (5.3)

where parameters are from [16]:

kp =0.075, kl =0.175, kD =0.01. (5.4)

The tolerance δ was set to δ=0.25 in the current optimization example. At this point, the
implementation does not support adaptive time stepping if en ≥ δ. However, the imple-
mentation of advanced adaptive higher-order time-stepping methods is in progress. The
calculated en

c and en
ϕ are shown in Fig. 20. The HP ANISO problem size and computing

time with and without time step control are shown in Figs. 21 and 22. The reader can
notice that the computing time was reduced more than two times when the time step
control was employed.

5.5 HP ANISO adaptivity with physically more realistic boundary conditions

In real physics calculations, the applied voltage on boundary ∂Ω1 is not constant. This
can be, for instance, due to the high resistance of the electrodes as explained in [6]. To see
how the HP ANISO adaptivity works for such situations, the voltage on the boundary
was applied as follows:

φΩ1
(x)=0.5[V]

x[m]

widthΩ1
[m]

+0.5[V], (5.5)
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Figure 21: Number of DOF as a function of physical time for HP ANISO with and without time step adaptivity.
The markers on the graphs indicate the time steps.
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Figure 22: Cumulative CPU times as a function of physical time for HP ANISO with and without time step
adaptivity. The markers on the graphs indicate the time steps.

where widthΩ1
is the width of the boundary. The given boundary is effectively a lin-

ear increase of the voltage from φΩ1
(x = 0) = 0.5V to φΩ1

(x = widthΩ1
) = 1.0V. Now the

concentration gradient ∇c and the voltage gradient ∇ϕ are no longer effectively in 1D.

The calculated scaled values c and ϕ in Ω and corresponding meshes and polynomial
degrees of the elements at t=0.1s are shown in Fig. 23. Notice that the solution is different
to the one in Fig. 7. The HP ANISO adaptivity algorithm has particularly increased the
polynomial degree and refined the mesh near Ω1 where a sharp concentration peak exists
(compare to Fig. 13). At t = 3.0s, the shape of the solutions c and ϕ are similar to the
one in Fig. 8 and therefore the polynomial space and mesh gets adapted accordingly.
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Figure 23: Solutions c and ϕ and corresponding polynomial degrees of the elements at t = 0.1s. HP ANISO
refinement mode was used. The height in the solution graphs indicates the value.

This example clearly illustrates how the solution of PNP with non-uniform boundary
conditions is very dynamic in time and how the HP ANISO time dependent adaptivity
finds an optimal mesh and polynomial space to adapt to the dynamics of the problem.

5.6 Length scale analysis

The Debye length λD is the screening length in the electrolyte solutions. Its numerical
value shows the thickness of the charged layer in the vicinity of the boundaries ∂Ω1 and
∂Ω2. In all the previous simulations, the Debye screening length was determined by
the constants in Table 1 and Eq. (3.5): λD = 1.7 µm. It is known that computation gets
increasingly difficult when reducing the value of λD. It was our interest to see how small
screening lengths can Hermes HP ANISO automatic adaptivity handle. The parameter ε
was varied as follows:

εn = ε×0.5n,

where ε is taken from Table 1. The simulations were run for each εn and corresponding
λD value and maximum number of degrees of freedom and cumulative CPU time were
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Figure 24: Problem size depending on the Debye length. Initially the coarse mesh (shown in Fig. 6(a)) was
used. It was necessary to use the fine mesh (see Fig. 6(c)) for smaller λD values.
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Figure 25: CPU time depending on the Debye length. Initially the coarse mesh (shown in Fig. 6(a)) was used.
It was necessary to use the fine mesh (see Fig. 6(c)) for smaller λD values.

recorded. The simulation time t for each λD was chosen to be τ-the characteristic time
scale-and each simulation was divided equally into fifteen time steps. The PID controller
was not used. Fig. 24 shows the maximum and average number of degrees of freedom
during calculation as a function of the Debye length and Fig. 25 shows cumulative CPU
time as a function of the Debye length. The simulations up to 0.52nm screening length
were carried out on the initial coarse mesh. However, from λD >0.52nm, the finer initial
mesh had to be used so the existence of the large gradients of the physical fields c and ϕ
near the boundaries could be captured in the first place.

The fine mesh allowed simulations with the Debye length down to 0.40nm. The cal-
culated c and ϕ at t=τ for λD =0.40nm are shown in Fig. 26. It appears that when using
even finer initial mesh and higher initial polynomial degrees, even smaller Debye lengths
could be used when necessary. The polynomial space of c had consistently higher max-
imum polynomial degree than that of ϕ, however, the difference was less noticeable for
smaller Debye lengths.

6 Conclusions and outlook

In this work the system of Nernst-Planck-Poisson equations was solved using hp-finite
element method with adaptive multi-mesh configuration. The weak form, residuals and
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Figure 26: Calculated fields c and ϕ at t=τ =0.81ms for λD =0.4nm.

the Jacobian matrix of the system were explicitly derived and implemented in Hermes hp-
FEM time dependent adaptive solver. The solution for Nernst-Planck-Poisson problem
with two field variables C and φ results in very different field gradients in the space
and time. When using a conventional low order FEM, finding an optimal mesh for this
type of problem such that both the error of the solution and problem size remain small
throughout the time dependent solving process is difficult.

In the current work we showed that using the time dependent adaptivity, multi-
mesh configuration, and anisotropic hp refinements, the problem size remains very small
throughout the solving process while maintaining a pre-set relative error of the solution.
Namely, Hermes refinement mode HP ANISO resulted in the smallest and fastest prob-
lem solution. Furthermore, using the multi-mesh configuration for the physical fields c
and ϕ-scaled variables for C and φ, respectively- was justified. The adaptivity algorithm
refined the meshes of ϕ and c and increased the polynomial degrees of the correspond-
ing spaces differently. The mesh was significantly refined for c and also the maximum
polynomial degree was varied in the range of 2,··· ,9 whereas for ϕ, the maximum poly-
nomial degree remained lower. So it is efficient to use multi-mesh in terms of the number
of degrees of freedom.

Conclusively, by using hp-FEM with adaptive multi-mesh configuration we can pos-
sibly reduce the problem size of the Nernst-Planck-Poisson equation system significantly
while still maintaining prescribed precision of the solution. We believe, and this is yet to
be demonstrated, that this is especially important when dealing with 3D problems in a
large physical domain with non-uniform boundary conditions.
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