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Abstract. An isolated cylindrical void is located inside an incompressible nonlinear-
elastic medium whose constitutive behaviour is governed by a neo-Hookean strain en-
ergy function. In-plane hydrostatic pressure is applied in the far-field so that the void
changes its radius and an inhomogeneous region of deformation arises in the vicinity
of the void. We consider scattering from the void in the deformed configuration due
to an incident field (of small amplitude) generated by a horizontally polarized shear
(SH) line source, a distance r0 (R0) away from the centre of the void in the deformed
(undeformed) configuration. We show that the scattering coefficients of this scattered
field are unaffected by the pre-stress (initial deformation). In particular, they depend
not on the deformed void radius a or distance r0, but instead on the original void size
A and original distance R0.
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1 Introduction

The influence of nonlinear pre-stress on subsequent incremental linear wave propaga-
tion in elastic media has been studied in detail over the past few decades using the
so-called theory of small-on-large [9, 15] where a linearization is performed about the
nonlinear equilibrium state in order to determine the wave propagation characteristics
of the pre-stressed medium. To the authors’ knowledge, in the literature interest has
centered exclusively on the influence of homogeneous stretch distributions (and hence in-
duced anisotropy) on subsequent wave propagation, see e.g., [5, 10]. When the medium
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in question is inhomogeneous (for example a fibre-reinforced, or particulate composite ma-
terial, where the host phase is nonlinear-elastic) then pre-stress will almost always lead
to non-homogeneous stretch distributions, except in very special cases (see e.g., [17]).
Degtyar et al. [6] analysed the case of stressed composites where residual stresses occur
in the vicinity of inhomogeneities, in the context of linear elasticity. The interest was to
determine how the presence of linear elastic residual stress affects the subsequent wave
propagation through the inhomogeneous material and hence derive the associated effec-
tive wavenumber in the pre-stressed state. This work utilized the self consistent scatter-
ing formulation of the effective wavenumber derived for a single inclusion by Yang and
Mal [19] which itself is a modification of the Waterman and Truell theory [18]. This mod-
ified formulation of multiple scattering theory was used since the stress distribution in
the neighbourhood of an inhomogeneity was approximated as piecewise constant (i.e.,
a multi-layered cylindrical inclusion). We emphasize that this analysis took place in the
linear elastic (small displacement gradient) regime. Of great interest however is how an
initial nonlinear pre-stress affects subsequent multiple scattered wave fields which propa-
gate through inhomogeneous media. In the low frequency regime this information would
allow us to determine the incremental behaviour of the material and hence the effective
homogenized properties. Recently, the so-called second-order homogenization method
was applied to determine such homogenized behaviour in the static regime for nonlinear
fibre reinforced composites [3]. The composite cylinder assemblage model for nonlin-
ear composites has also been employed in this context [4]. Nonlinear pre-stress can be
extremely useful in practice, allowing us to tune materials in order to permit or restrict
the propagation of waves in specific frequency ranges. This property was described by
Parnell [17] and discussed further in subsequent articles in different contexts [2, 7].

Multiple scattering in the (unstressed) linear elastic quasi-static regime is relatively
well understood [12] and much work has centered on the derivation of the effective wave
number (and resulting effective elastic properties) given a random distribution of inho-
mogeneities. However, if the host medium is nonlinear-elastic (e.g., rubber) and we are
interested in the multiple scattering problem in the pre-stressed configuration, a canon-
ical single scattering problem of central importance, which must be studied before we
can solve the multiple scattering problem, is the following: How does an isolated inclu-
sion embedded in a nonlinear-elastic pre-stressed host medium (where inhomogeneous deforma-
tion or stress is present), scatter incoming elastic waves? To the authors’ knowledge, no such
problems of this type (i.e., incorporating inhomogeneous fields) have been solved be-
fore in the literature. In this article we shall consider the problem of antiplane elastic
or horizontally-polarized shear (SH) wave scattering from a cylindrical void embedded
in an incompressible host medium which is capable of finite deformation and is neo-
Hookean in its constitutive behaviour. This problem in the context of no pre-stress is
discussed on pp. 123 of [12] and pp. 208 of [16]. A related pre-stress problem is studied
in [11]. However, in [11] the pre-stress was assumed to be uniform, i.e., all stretch distri-
butions in the host domain are homogeneous. This is a simpler problem than that to be
discussed in the present article since it changes only the induced anisotropy of the host
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medium. Furthermore such a homogeneous deformation regime would not, in general,
occur in reality, since some traction distribution would usually be applied in the far-field
and the resulting deformation in the neighbourhood of the inhomogeneity would accom-
modate this imposed stress field, thereby setting up an inhomogeneous deformation in
the material, as we show here.

In Section 2 we summarize the results for scattering of a horizontally polarized shear
line source from a cylindrical void in an otherwise uniform and unstressed host phase. In
particular we obtain expressions for the scattering coefficients associated with each mode
of scattering from the void. In Section 3 we begin the study of the influence of pre-stress
on scattering. We derive the governing equilibrium equations for the initial nonlinear
static deformation of a neo-Hookean host phase, given a uniform longitudinal stretch and
hydrostatic pressure at infinity. In Section 4 we derive the incremental equation (Eq. (4.3))
for small-amplitude SH waves superposed on top of the initial nonlinear static deforma-
tion derived in Section 3. We then show in Section 5 that we can solve the problem for the
scattered field in the deformed configuration explicitly given an incident field due to a
line source in the host domain. It transpires that if we maintain the magnitude of the force
of the line source (and thus the coefficient of the line source is modified since this is a force
per unit length in the longitudinal direction) then the resulting scattering coefficients in
the deformed configuration are identical with those for scattering in the initial undeformed
configuration. In particular, they depend not on the deformed void radius a or distance r0

from the center of the void to the source location in the deformed configuration. Instead
the scattering coefficients depend on the original void size A and original distance R0 from
source point to void location. This has implications from a non-destructive testing point
of view since if these scattering coefficients were measured, they would not provide any
information regarding the deformed void radius.

2 Scattering of an antiplane line source by a cylindrical void

In this section, in order to define notation and for later reference, we summarize results
regarding the scattering of antiplane or horizontally polarized shear (SH) waves from a
cylindrical void due to an incident field generated by a line source (cf. the case of acoustic
scattering). This problem is discussed in greater detail in numerous good textbooks on
wave scattering theory (see for example [16]). Let us consider an isolated cylindrical void
of radius A, inside an isotropic homogeneous elastic host region of infinite extent in all
directions. With reference to Fig. 1, we specify a Cartesian coordinate system (X,Y,Z),
with origin at the centre of the void and whose Z axis runs parallel with the axis of the
cylindrical void. Consider the problem of scattering by a time-harmonic line source (of
small-amplitude) which is polarized in the Z direction and located at X = X0, Y = Y0,
which is located at a distance R0 away from the centre of the cylinder and at an angle
Θ0 ∈ [0,2π) subtended from the X-axis (see Fig. 1). This forcing therefore gives rise to
linear elastic waves polarized in the Z direction propagating in the XY plane, i.e., SH
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waves. The displacement field is therefore U′=ℜ[(0,0,W(X,Y))exp(−iωt)], where ω is
the circular frequency and where W(X,Y) is governed by [8]

(µ∇2+ρω2)W=Cδ(X−X0)δ(Y−Y0)=
C

R0
δ(R−R0)δ(Θ−Θ0). (2.1)

Here we have defined the cylindrical polar coordinates R, Θ via the standard relations
X = RcosΘ, Y = RcosΘ and we note that R0 and Θ0 are thus defined by X0 = R0cosΘ0,
Y0=R0cosΘ0. We also point out that C is the force per unit length (in the Z direction) of
the imposed line source and ρ and µ are the mass density and shear modulus of the host
medium. We re-write (2.1) in the form

(∇2+K2)W=
C

µR0
δ(R−R0)δ(Θ−Θ0), (2.2)

where the wavenumber K is defined by K2=ρω2/µ. Using the polar coordinate descrip-
tion, the traction-free boundary condition on the surface of the void at R=A can then be
specified as

µ
∂W

∂R
=0. (2.3)

We can write the solution of this problem in the form

W=Wi+Ws, (2.4)

where Wi and Ws represent incident (incoming) and scattered (outgoing) fields from the
cylindrical void. In particular, the incident field represents the solution of the inhomoge-
neous problem (2.2) which is outgoing from the source location. This is

Wi =
C

4iµ
H0(KS), (2.5)

where S =
√

(X−X0)2+(Y−Y0)2 and where we have defined H0(KS) = H
(1)
0 (KS) =

J0(KS)+iY0(KS), the Hankel function of the first kind and J0 and Y0 are Bessel’s func-
tions of the first and second kind respectively, of order zero. Together with the time
dependence in the problem, this ensures an outgoing field (from the source). Graf’s ad-
dition theorem allows us to write this field relative to the coordinate system (R,Θ) center
at the origin of the void in the form [12]

Wi =
C

4iµ
H0(KS)=

C

4iµ
×



















∞

∑
n=−∞

Hn(KR0)Jn(KR)ein(Θ−Θ0), R<R0,

∞

∑
n=−∞

Hn(KR)Jn(KR0)e
in(Θ−Θ0), R>R0,

(2.6)

where Hn and Jn are respectively Hankel and Bessel functions of the first kind, and of
order n.
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Upon writing the scattered field in the form

Ws =
∞

∑
n=−∞

(−i)n AnHn(KR)ein(Θ−Θ0) (2.7)

and using this together with the first of (2.6) and (2.4) in (2.3) we find that the scattering
coefficients due to the incident wave from the line source are

An=
C(−1)n

4µin−1

J′n(KA)

H′
n(KA)

Hn(KR0). (2.8)

Let us now consider the limit as R0 →∞ in (2.5) and the first of (2.6). Using the fact that
(pp. 364 of [1])

Hn(KR0)∼ (−i)n

√

2

πKR0
ei(KR0− π

4 ) (2.9)

as R0→∞ and upon setting

C=2iµ
√

2πKR0ei( π
4 −KR0), (2.10)

we find that in this limit,

Wi ∼
∞

∑
n=−∞

inJn(KR)ein(Θ−θinc)= eiK(Xcosθinc+Ysinθinc), (2.11)

which is an incident plane wave, propagating at an angle of incidence θinc = Θ0−π ∈
[−π,π) to the X axis (since Θ0∈ [0,2π)). The scattering coefficients appearing in (2.7) for
this forcing are thus

A
(pw)
n =− J′n(KA)

H′
n(KA)

, (2.12)

where the superscript (pw) indicates a plane-wave forcing. These are the standard scat-
tering coefficients associated with plane wave scattering from a circular cylindrical void
(see e.g., [12], pp. 123, Eq. (4.5)), noting the form of the scattered field in (2.7) with
Θ0= θinc+π.

3 Initial finite static deformation (pre-stress)

Consider an initial pre-stress of the host phase in question. We now assume that this
host phase is isotropic and nonlinear-elastic (e.g., rubber) so that it is capable of fi-
nite deformation. Its constitutive behaviour may be described by a strain energy func-
tion WSEF =WSEF(I1, I2, I3), where Ij are the principal strain invariants of the deforma-
tion [9, 15]. Since the host material is envisaged to be of a rubber type, we assume in-
compressibility as a first approximation. This means that the strain invariant I3 = 1 and



372 W. J. Parnell and I. D. Abrahams / Commun. Comput. Phys., 11 (2012), pp. 367-382

(a) (b)

Figure 1: (a) shows the undeformed cavity, with a line source indicated by crossed lines at the position (R0,Θ0).
In (b) we show how the cavity deforms due to the hydrostatic pressure p∞, successive dotted circles indicating
decreasing strain as we move away from the cavity. Under this deformation the line source moves to the location
(r0,θ0), noting that θ0=Θ0 due to symmetry.

thus WSEF =WSEF(I1, I2). The incompressible limit is discussed on p. 64 of Green and
Zerna [9]. In particular because there is an additional constraint in this case (Eq. (3.4)
here) an additional unknown (the Lagrange multiplier p here) is required in the analy-
sis. This hydrostatic pressure term appears in the Eqs. (3.13a)-(3.13c) below and takes the
form p=2

√
I3∂W/∂I3 in the compressible case. In this incompressible scenario this expres-

sion is, of course, undefined and therefore p becomes an unknown which is determined
via the additional incompressibility constraint.

In this article we shall restrict attention to an incompressible material whose strain
energy function is of neo-Hookean type, i.e., WSEF = µ(I1−3)/2, where µ is the linear-
elastic shear modulus of the material [15]. We shall impose an initial finite deformation
and consider how this pre-stress affects the subsequent incremental scattering of small-
amplitude SH waves from the void. In particular we wish to focus on the influence of
the pre-stress on the scattering coefficients associated with the scattered field. Since we
are working in cylindrical polar coordinates it will be convenient to employ the tensorial
notation of Green and Zerna [9], in order to firstly determine the equation of static equi-
librium of the finite deformation and then to derive the equation governing the small-
amplitude incremental motions. For ease of reading, some of this analysis will be located
in the Appendix.

As in the previous section we define the cylindrical polar coordinate system (R,Θ,Z)
with origin at the centre of the cylindrical void in the undeformed configuration. Addi-
tionally we define the cylindrical polar coordinate system (r,θ,z) associated with the de-
formed configuration. In the far-field we impose an in-plane hydrostatic pressure σrr=−p∞

(per unit area in the deformed configuration, corresponding to a Cauchy stress) as
r,R → ∞ (uniform in the longitudinal direction), as shown in Fig. 1. The material is
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also held at a fixed stretch L in the longitudinal Z direction. The ensuing deformation
is therefore described by (see pp. 87 of [9])

R= rQ(r), Θ= θ, Z=
z

L
. (3.1)

Note the convention introduced in (3.1) above, i.e., that upper case variables correspond
to the undeformed configuration whilst lower case corresponds to the deformed configu-
ration. The function Q(r) is to be determined from the incompressibility condition and
equilibrium equations. Note that it will be convenient for us to derive equations in terms
of coordinates in the deformed configuration since we linearize about this state when we
consider incremental motions. Cartesian position vectors of a material point in the unde-
formed (upper case) and deformed (lower case) configurations are respectively

X=







RcosΘ

RsinΘ

Z






=







rQ(r)cosθ

rQ(r)sinθ
z
L






, x=







rcosθ

rsinθ

z






. (3.2)

Under the deformation described above, the principal stretches in the radial, azimuthal
and longitudinal directions are therefore given by

λr =
dr

dR
=
(

Q+r
dQ

dr

)−1
, λθ =

r

R
=

1

Q
, λz= L. (3.3)

The condition of incompressibility is (see pp. 64 of [9])

I3=λ2
r λ2

θλ2
z =1, (3.4)

where I3 is the third principal strain invariant. This means that Q(r) must satisfy the
relation

Q
(

Q+r
dQ

dr

)

= L, (3.5)

which can be integrated directly in order to find that

Q2(r)=
L(r2+M)

r2
, (3.6)

where M is a constant to be determined. Since R=rQ(r), we can determine a relationship
between M and the undeformed and deformed cylinder radii A and a respectively, i.e.,

M=
A2

L
−a2, (3.7)

where A is the (specified) initial radius of the cavity and a will be determined from the
resulting equation of equilibrium. Note also that (3.5) means that the principal stretch λr
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in (3.3) can be written simply as λr=Q/L. Since we know the principal stretches, the two
strain invariants I1 and I2 are thus given by (see pp. 57 of [9])

I1=λ2
r +λ2

θ+λ2
z =

Q2

L2
+

1

Q2
+L2, I2=λ2

r λ2
z+λ2

θλ2
z+λ2

r λ2
θ =Q2+

L2

Q2
+

1

L2
. (3.8)

On introducing the notation (Green and Zerna [9]) (θ1,θ2,θ3) = (r,θ,z) for the curvilin-
ear (cylindrical polar) coordinate system in the deformed configuration, we can define
the following covariant basis vectors in the undeformed and deformed configurations
respectively:

Gr =
∂Xs

∂θr
is, gr =

∂xs

∂θr
is, (3.9)

where is are the unit basis vectors in a Cartesian coordinate system, e.g., i1=(1,0,0). Note
here that we have used slightly different notation to that employed by Green and Zerna:
we have employed upper case script for the undeformed configuration and lower case
for the deformed configuration. We feel that this will be notation which the reader is
more familiar with. Also, note the convention introduced here that superscripts denote
contravariant tensors, whilst subscripts denote covariant tensors. We can therefore derive
the covariant metric tensors Gij =Gi.Gj and gij = gi.gj associated with the undeformed
and deformed configurations:

Gij =





L2/Q2 0 0
0 r2Q2 0
0 0 1/L2



, gij =





1 0 0
0 r2 0
0 0 1



, (3.10)

where we have used the incompressibility constraint (3.5), to simplify Gij. Finally, since
these metric tensors are diagonal, we can immediately obtain the contravariant metric
tensors Gij and gij in the form

Gij=





Q2/L2 0 0
0 1/r2Q2 0
0 0 L2



, gij =





1 0 0
0 1/r2 0
0 0 1



. (3.11)

Let us now assume that the constitutive response of the incompressible material is neo-
Hookean, i.e.,

WSEF=
µ

2
(I1−3), (3.12)

where µ is the linear-elastic shear modulus associated with the material. This form of
strain energy function has been utilized with great success in applications of nonlinear
elasticity, especially in the context of rubber at reasonable deformations [13, 14]. Follow-
ing Green and Zerna [9] for a material governed by the strain energy function WSEF in
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(3.12), the non-zero contravariant Cauchy stress tensor components τij are given by

τ11=G11µ+g11 p=
Q2

L2
µ+p=σrr , (3.13a)

r2τ22= r2G22µ+r2g22 p=
1

Q2
µ+p=σθθ , (3.13b)

τ33=G33µ+g33 p= L2µ+p=σzz, (3.13c)

where σij are the physical components of the Cauchy stress tensor and the function p is
the Lagrange multiplier introduced in order to accommodate the incompressibility con-
straint (3.5). Below we show that we can integrate the equations of equilibrium exactly
and therefore determine σrr directly. Therefore, the function p is then determined from
(3.13a).

The equations of equilibrium are given by

τij‖i =τ
ij
,i +Γi

irτ
rj+Γ

j
irτ

ir =0, (3.14)

where ‖i denotes the covariant derivative with respect to the deformed configuration,
f,i denotes differentiation of the quantity f with respect to θi and Γi

jk is the Christoffel

symbol, derived from the metric tensor of the deformed configuration, i.e.,

Γi
jk =gi.gj,k. (3.15)

Note here that gi is the ith contravariant basis vector defined by gi.g
j = δ

j
i , where δ

j
i is the

mixed Kronecker delta tensor. It may be shown that the only non-zero components of Γi
jk

are

Γ1
22=−r, Γ2

12=
1

r
=Γ2

21. (3.16)

Therefore, the azimuthal and longitudinal equilibrium equations reduce to

τ22
,2 =

∂p

∂θ
=0, τ33

,3 =
∂p

∂z
=0, (3.17)

which means that p= p(r). The radial equilibrium equation, in terms of physical stresses
σij is

dσrr

dr
+

1

r

(

σrr−σθθ
)

=0, (3.18)

which, on using (3.13a) and (3.13b) can be directly integrated for σrr, i.e.,

σrr(r)=−µ
∫ r

a

(Q2(r′)
L2

− 1

Q2(r′)

)dr′

r′
, (3.19)
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Figure 2: Plot of the deformed to undeformed radius ratio a/A as a function of p∞/µ for the three prescribed
values of axial stretch L=0.7, 1, 1.3.

where we have imposed σrr(r= a)=0. With Q2 given by (3.6), (3.19) becomes

σrr(r)

µ
=

1

2L

[

M
( 1

r2
− 1

a2

)

−log
( r2

a2

)

+log
( r2+M

a2+M

)]

, (3.20)

where M was defined in (3.7). When r→∞ in (3.20), given that σrr →−p∞, we find that

p∞

µ
=

1

2L

[ A2

La2
−1+log

( A2

La2

)]

, (3.21)

and we see therefore that this is a (nonlinear) equation for the determination of the de-
formed to undeformed radius ratio a/A as a function of the ratio p∞/µ and the stretch L,
both of which are assumed specified. Note that M=0 if and only if p∞ =0. We plot a/A
as a function of p∞/µ for three different prescribed values of L=0.7, 1, 1.3 in Fig. 2. The
exhibited behaviour is as one would expect. Note that we can also use (3.20) to determine
the function p(r) from (3.13a).

4 Incremental deformations

In order to model scattering from the void in the deformed configuration, we now con-
sider the propagation of small-amplitude time-harmonic waves through the pre-stressed
medium. We use the theory of small-on-large, i.e., linearization about a nonlinear defor-
mation state [9]. The total displacement field may therefore be represented by

û=u+ηu′, (4.1)

where u= uigi = uig
i is the displacement field derived from the finite deformation (3.1)

and η ≪ 1 is a small parameter associated with the magnitude of the incremental dis-
placement. Let us assume that the incremental displacement is of an antiplane nature,
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i.e., of the form

u′=u′
3g3=u3 ′g3=ℜ

[

w(r,θ)exp(−iωt)
]

g3, (4.2)

so that the time-harmonic wave is a SH wave, polarized in the z direction and propagat-
ing in the rθ plane. The initial finite deformation leads to a modified wave equation for
w, as we now show.

In the Appendix, we show, using the theory of small-on-large (i.e., linearizing about
the nonlinear deformation) that the incremental equation governing w is

1

r

∂

∂r

[(

r+
M

r

)∂w

∂r

]

+
1

(r2+M)

∂2w

∂θ2
+k2w=0, (4.3)

where we remind the reader that M=A2/L−a2. Furthermore we have defined the modi-
fied wavenumber k at infinity by k2=LK2, where K=ω

√

ρ/µ as introduced in Section 2 is
the wavenumber of the host material in the undeformed configuration. Note the special
case when L= 1, corresponding to no longitudinal stretch, when k2 =K2. Note also the
special case A2=La2 leading to M=0 (this only occurs when p∞=0), when the modified
wave equation (4.3) becomes the standard wave equation in cylindrical polar coordinates
with the modified wavenumber k=

√
LK. As stated earlier, Eq. (3.21) reveals that M 6=0

for any non-zero hydrostatic pressure p∞. Thus for any L, the pre-stress always has an
influence on the wave field close to the void.

At this point we also note that Eq. (4.3) is equivalent to the following:

1

r

∂

∂r

[

rµr(r)
∂w

∂r

]

+
µθ(r)

r2

∂2w

∂θ2
+ρω2w=0, (4.4)

where we have defined the anisotropic (and spatially varying) shear moduli as

µr(r)=
µ

L

( r2+M

r2

)

, µθ(r)=
µ

L

( r2

r2+M

)

. (4.5)

This can be derived from the appropriate equation of equilibrium in cylindrical polar
coordinates for an anisotropic material, i.e.,

∂σ′
rz

∂r
+

1

r

∂σ′
θz

∂θ
+

1

r
σ′

rz+ρω2w=0 (4.6)

with the incremental stresses σ′
rz and σ′

θz defined as

σ′
rz =µr(r)

∂w

∂r
, σ′

θz =µθ(r)
∂w

∂θ
. (4.7)

We therefore recognize that the deformed medium is equivalent to a material possessing
curvilinear (cylindrical) anisotropy and inhomogeneous elastic moduli. Also note that as
r→∞, (4.3) reduces to

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
+k2w=0, (4.8)
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i.e., the standard wave equation for horizontally-polarized shear waves with a modified
wavenumber due to the pre-stress, noting that when L=1, k=K, the shear wavenumber
in the undeformed material.

5 The influence of pre-stress on scattering of a line source by

a cylindrical void

We wish to assess how the scattering coefficients An as derived in (2.8) (associated with
an incoming wave from a line source) or (2.12) (associated with an incoming plane wave,
derived from the limiting case of a line source as its distance from the void tends to
infinity), become modified due to the pre-stress. We note that an incident plane-wave
must be addressed in this manner (i.e., as the limit of a line source moving to infinity).
If one attempts to impose a plane-wave forcing from the outset, this will not satisfy the
governing incremental equation (4.3) in the pre-stressed state and hence gives rise to var-
ious difficulties, including additional forcing terms in this governing equation. All of
these difficulties are avoided by considering a line source forcing and moreover this case
is more physically meaningful. As such, let us consider a line source in the deformed
configuration located at (x0,y0) (equivalently at (r0,θ0)), which in the undeformed con-
figuration was in the position (X0,Y0). The coefficient C associated with this line source
(i.e., the coefficient on the right-hand-side of (2.1) in the undeformed configuration) is
a force per unit length, C= F/L0 say where F is the force and L0 is a unit length in the
undeformed configuration. Let us associate the coefficient c with the line source in the
deformed configuration. We wish to ensure that the magnitude of the force F of the line
source remains unchanged (so that we can assess the effects of pre-stress alone on scat-
tering) and therefore c= F/L1 where L1 is a unit length in the deformed configuration.
From the pre-stress it is evident that L1/L0=L, the longitudinal stretch, and therefore we
must have c=C/L for F to remain unchanged.

We now consider the analogous problem to (2.1) in the deformed configuration. Hence
take a line source on the right hand side of (4.4) with magnitude c=C/L, i.e.,

µ

L

[1

r

∂

∂r

((

r+
M

r

)∂w

∂r

)

+
1

(r2+M)

∂2w

∂θ2

]

+ρω2w=
C

Lr0
δ(r−r0)δ(θ−θ0). (5.1)

In order to proceed we introduce the mapping

R2= L(r2+M), Θ= θ, (5.2)

which is, in fact, the mapping corresponding to the initial finite deformation (3.1) and
(3.6). Defining W(R,Θ)=w(r(R),θ(Θ)), we find that

∂2W

∂R2
+

1

R

∂W

∂R
+

1

R2

∂2W

∂Θ2
+K2W=

C

Lµ

1

r0
δ(r−r0)δ(Θ−Θ0) (5.3)
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and K=ρω2/µ is the wavenumber associated with the undeformed material.
It is straightforward to show that

1

r0
δ(r−r0)=

L

R0
δ(R−R0) (5.4)

and hence (5.3) becomes

∇2W+K2W=
C

µ

1

R0
δ(R−R0)δ(Θ−Θ0), (5.5)

where we note that, importantly, the factors of L have cancelled on the right-hand-side.
Therefore, the solution of (5.5) is entirely equivalent to the solution of (2.2) obtained in
Section 2. The scattered field associated with (5.5) is thus (cf. (2.7))

Ws(R)=
∞

∑
n=−∞

(−i)nanHn(KR)ein(Θ−Θ0), (5.6)

where

an =An =
C(−1)n

4µin−1

J′n(KA)

H′
n(KA)

Hn(KR0). (5.7)

Mapping back to the deformed configuration, using (5.2) in (5.6), the scattered field in
the deformed configuration may therefore be written as

ws(r)=
∞

∑
n=−∞

(−i)nanHn

(

k
√

r2+M
)

ein(θ−θ0), (5.8)

where we note that the scattering coefficients an depend on the initial distance R0 between
the centre of the void and the source location, and the undeformed void radius A. They
are completely unchanged from those in the undeformed configuration (i.e., an = An). In
particular the scattering coefficients an are completely unaffected by both the change in void
radius and the change in the distance between the centre of the void and the source location. The
wave field in the vicinity of the void is significantly affected by the pre-stress (and change
in radius of the void) due to the argument of the Hankel functions in (5.8) but this does
not affect what is seen in the far-field, i.e., the scattering coefficients an.

Note that taking the limit R0 →∞ in (5.7) with C as defined in (2.10) simulates plane
wave incidence in this problem. As described above we do not assume an incident plane
wave from the outset since this induces numerous unnecessary difficulties, and moreover
the line source problem is more physically meaningful.

To conclude, we note that in general (i.e., for more complicated strain energy func-
tions) mappings of the type specified in (5.2) do not reduce the problem to Helmholtz’
equation in the mapped variables, although often the governing equation does have more
simple form. This means that the scattering coefficients in these more general problems
will be modified by the pre-stress.
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6 Conclusions

In this article we have studied the problem of horizontally-polarized shear wave scatter-
ing from a cylindrical void in a pre-stressed incompressible neo-Hookean material. The
pre-stress consists of a uniform longitudinal stretch and an in-plane hydrostatic pressure
imposed in the far-field, thus altering the size of the void radius. Importantly, this pre-
stress generates an inhomogeneous deformation in the host domain. Scattering is due to
an incident field from a line source a distance R0 (r0) away from the centre of the void in
the undeformed (deformed) configuration respectively.

The theory of small-on-large was used to derive the incremental equation in the pre-
stressed configuration. By mapping back to the undeformed configuration, we have
shown that the scattering coefficients an in the deformed configuration are completely
unchanged if the magnitude of the force associated with the line source remains un-
changed (this means that the coefficient of the line source is modified, since this is a
force per unit length). In particular it is important to note that an are independent of the
deformed void radius a and the distance r0 between the centre of the void and the line
source. It is important to stress that this is a rather special result, dependent on the neo-
Hookean form of the strain energy function. Mappings such as (5.2) do not give the same
result for more general strain energy functions. Indeed we shall show in a forthcoming
article that the more general incompressible Mooney-Rivlin material leads to modified
scattering coefficients an which do depend on a and r0 in general.

The above information is important from a non-destructive testing viewpoint. It ap-
pears that for an incompressible neo-Hookean material no conclusions can be drawn
regarding the size of the deformed radius of the void by analyzing scattering coefficients
associated with incident SH waves.

Appendix

We shall use the theory of small-on-large as developed and presented for general curvilin-
ear coordinates by Green and Zerna [9]. We shall continue to use the lower case notation
for variables in the deformed configuration. This is at odds with the notation used by
Green and Zerna but it makes more sense in our current setting. Note that Green and
Zerna did not consider the specific small-on-large application considered here.

Given the perturbed displacement field (4.1), the modified covariant base vectors are
written as

ĝi=gi+ηg′
i, (A.1)

where g′
i = u′

,i. The covariant derivative with respect to the deformed configuration is
defined as

u′
i‖j =u′

i,j−Γk
iju

′
k, (A.2)
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where Γk
ij was introduced in (3.16). With the assumption of the perturbed field in the

form in (4.2), the perturbed metric tensor becomes gij+ηg′ij, where (A.2) can be used to

show that the only non-zero components of the incremental covariant metric tensor g′ij
are

g′13= g′31 =
∂u′

3

∂r
, g′23 = g′32=

∂u′
3

∂θ
. (A.3)

Similarly it may be shown that the only non-zero components of the incremental con-
travariant metric tensor are

g13′ = g31′ =−∂u′
3

∂r
, g23′ = g32′ =− 1

r2

∂u′
3

∂θ
. (A.4)

It transpires that the incremental stress tensor is simply

τij ′= gij ′p, (A.5)

where p is defined by (3.13a) with (3.20). Its only non-zero components are thus

τ13′=τ31 ′=−p
∂u′

3

∂r
, τ23 ′=τ32′=− p

r2

∂u′
3

∂θ
. (A.6)

The incremental equation of motion is therefore given by

Ti3‖i =
∂T13

∂r
+

∂T23

∂θ
+

1

r
T13=ρ

∂2u′
3

∂t2
, (A.7)

where

Ti3=τi3′+τi1 ∂u′
3

∂r
+τi2 ∂u′

3

∂θ
. (A.8)

Therefore

∂

∂r

[

τ13′+τ11 ∂u′
3

∂r

]

+
∂

∂θ

[

τ23′+τ22 ∂u′
3

∂θ

]

+
1

r

[

τ13′+τ11 ∂u′
3

∂r

]

=ρ
∂2u′

3

∂t2
, (A.9)

which on using (A.6), (3.13a), (3.13b) and (4.2) becomes

(

1+
M

r2

)∂2w

∂r2
+

1

r

(

1− M

r2

)∂w

∂r
+

1

(r2+M)

∂2w

∂θ2
+k2w=0, (A.10)

where k2= Lρω2/µ= LK2. This can be written in the neater form

1

r

∂

∂r

[(

r+
M

r

)∂w

∂r

]

+
1

(r2+M)

∂2w

∂θ2
+k2w=0. (A.11)
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