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3 Laboratoire de Mathématiques et de leurs Applications, UMR-CNRS 5142,
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Abstract. In this article, we consider a domain consisting of two cavities linked by a
hole of small size. We derive a numerical method to compute an approximation of the
eigenvalues of an elliptic operator without refining in the neighborhood of the hole.
Several convergence rates are obtained and illustrated by numerical simulations.
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1 Introduction

1.1 Motivation

In a lot of physical problems, the boundary of the computational domain is perforated.
This configuration can lead to numerical difficulties when the diameter of the holes are
really smaller than the other characteristic lengths. Indeed, it can be very costly to com-
pute a sharp numerical approximation of the solution of such problems for two main
reasons: With a standard method like finite elements or finite differences, a refined mesh
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cannot be avoided in the neighborhood of the hole; the mesh generation of a perforated
structure can be a hard task.

Many authors have studied the effect of the perforation of the boundaries both from
the theoretical and the numerical point of views, see for example [13, 16–19]. However,
fewer results have been obtained for the eigenvalue problem in the case of a three dimen-
sional domain.

In [10], Gadyl’shin considered a two dimensional domain consisting of two domains
linked by a small hole. He derived a complete asymptotic expansion of the scattering fre-
quencies of the Laplacian operator equipped with Dirichlet boundary condition. In [2],
these results were extended to the eigenvalues and eigenvectors of an elliptic operator
with varying coefficients. In this paper, we are interested in a three dimensional configu-
ration with varying coefficients and Neumann boundary condition.

1.2 A Neumann eigenvalue problem

1.2.1 The geometry

Let Ωint and Ωext be two open subsets of R
3 with

Ωint∩Ωext=∅ and ∃δ0>0 : [−2δ0,2δ0]
3∩∂Ωint∩∂Ωext=

(
[−2δ0,2δ0]

2×{0}
)
. (1.1)

Let Σ⊂ [−1,1]2 be an open subset of R
2. For δ<δ0, we consider the domain Ωδ, see Fig. 1,

consisting of Ωext and Ωint linked by an iris Σδ=δΣ=
{
(x,y)∈R

2 :
(

x
δ ,

y
δ

)
∈Σ

}

Ωδ :=Ωint∪Ωext∪
(
Σδ×{0}

)
⊂R

3. (1.2)

This domain tends to Ω :=Ωint∪Ωext⊂R
2, when δ→0.

Ωint

Ωext

x

z

y

Σδ

Figure 1: The computational domain Ωδ.
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1.2.2 The original problem

In these domains we consider the eigenvalue problems

find
(
λδ

n,uδ
n

)
∈R×H1(Ωδ) :

{
−∇·

(
a∇uδ

n

)
=λδ

nbuδ
n, in Ωδ,

∂nuδ
n =0, on ∂Ωδ,

(1.3a)

find
(
λn,un

)
∈R×H1(Ω) :

{
−∇·

(
a∇un

)
=λnbun, in Ω,

∂nun =0, on ∂Ω,
(1.3b)

with a∈L∞(Ω) and b∈L∞(Ω) two functions of Ω with infx∈Ω a(x)>0, infx∈Ωb(x)>0 and
whose restrictions to Ωint and Ωext are regular and can be expanded in the neighborhood
of 0 with the form

a|Ωext
(x)= ∑

i,j,k≥0

aext
i,j,kxiyjzk, b|Ωext

(x)= ∑
i,j,k≥0

bext
i,j,kxiyjzk, with aext

i,j,k,bext
i,j,k∈R, (1.4a)

a|Ωint
(x)= ∑

i,j,k≥0

aint
i,j,kxiyjzk, b|Ωint

(x)= ∑
i,j,k≥0

bint
i,j,kxiyjzk, with aint

i,j,k,bint
i,j,k∈R. (1.4b)

In order to shorten the expressions, we adopt the notations a·0 = a·0,0,0 and b·0 = b·0,0,0.

The discrete sets of eigenmodes (uδ
n,λδ

n)n≥0 (resp. (un,λn)n≥0) can be chosen to be a bi-
orthogonal basis of L2(Ωδ) and H1(Ωδ) (resp. L2(Ω) and H1(Ω)) and to satisfy

0=λδ
0 ≤λδ

1≤λδ
2≤··· and lim

n→+∞
λδ

n =+∞, (1.5)

respectively,

0=λ0=λ1≤λ2≤··· and lim
n→+∞

λn =+∞ and ∀n∈N, un|Ωint
=0 or un|Ωext =0. (1.6)

Some natural questions arise: Does the eigenvalue λδ
n converge to λn? Is it possible to

obtain an asymptotic expansion of λδ
n? With this asymptotic expansion, is it possible to

compute a numerical approximation of λδ
n with a small computation cost?

1.3 Main theorem

The next Theorem gives positive answers to these three questions.

Theorem 1.1. Let n∈N and let α be the positive real defined in Section 3.1.

(i) If λn is a simple eigenvalue of the limit problem, then λδ
n can be expanded as follows

λδ
n =λn+2πα

aint
0 aext

0

aint
0 +aext

0

(
un(0)

)2

∫
Ω

b(un)2
δ+Oδ→0(δ

2 lnδ), (1.7)

with the notation

u(0)=u
∣∣
Ωext

(0) if u|Ωint
=0 and u(0)=u

∣∣
Ωint

(0) if u|Ωext
=0. (1.8)
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(ii) If λn is a double eigenvalue of the limit problem (λn=λn+1), then λδ
n=λn+Oδ→0(δ

2) and
λδ

n+1 can be expanded as follows

λδ
n+1=λn+2πα

aint
0 aext

0

aint
0 +aext

0

( (
un(0)

)2

∫
Ω

(
bun

)2
+

(
un+1(0)

)2

∫
Ω

(
bun+1

)2

)
δ+Oδ→0(δ

2 lnδ). (1.9)

Remark 1.1. Formulas (1.7) and (1.9) involve only quantities which are independent of
δ. Consequently truncating these expressions by eliminating the remainders furnish an
approximation of λδ

n which does not require any mesh refinement.

Remark 1.2. Due to (1.6), one has either un|Ωint
= 0 or un|Ωext

= 0. Consequently, (1.8)
always defines u(0).

1.4 Matched asymptotic expansions

The first order asymptotic expansions of an eigenvalue λδ
n reads

λδ
n =λ0

n+δλ1
n+oδ→0(δ) (1.10)

and has been derived in parallel to the derivation of the first order asymptotic expansion
of the eigenfunction uδ

n. The model (1.3a) involves two characteristic lengths of different
magnitude: the size of the hole δ which is much smaller than the diameter of the cavity.
Multiple scalings should be used to obtain an approximation of the eigenvector uδ

n uni-
formly valid. The first scaling corresponds to the x-variable and takes care of the cavity
phenomena. The second scaling X = x/δ permits to describe the boundary layer phe-
nomenons located in the neighborhood of the hole. Guided by the well known method
of Matching of Asymptotic Expansions, see [11] and [20], we look for the asymptotic ex-
pansions of the two functions δ 7→uδ

n(x) and δ 7→Πδ
n(X) :=uδ

n(δX). At first order, they take
the form

uδ
n(x)=u0

n(x)+δu1
n(x)+oδ→0(δ), (1.11a)

Πδ
n(X) :=uδ

n(δX)=Π0
n(X)+δΠ1,0

n (X)+δlnδΠ1,1
n (X)+oδ→0(δ). (1.11b)

The functions ui
n are defined on the domain Ω and are possibly singular in the neigh-

borhood of the origin. The functions Πi
n are defined on a normalized version of the

neighborhood of the hole

Ω̂ :=R
3\

{
(x,y,0) : (x,y)∈R

2\Σ
}

. (1.12)

These two asymptotic expansions match asymptotically in an intermediate region.

Remark 1.3. The presence of poly-logarithmic gauge functions δn lnp δ is rather not clas-
sical for three dimensional problems. They are due to the non constancy of the coefficient
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a. Indeed in the case of a constant a we have Π1,1 =0. Moreover in the case of non con-
stant coefficient, it is possible to show that Logarithms appear also in the eigenvalue and
far-field expansions of second order which take the form

λδ
n =λ0

n+δλ1
n+δ2λ2,0

n +δ2 lnδλ2,1
n +oδ→0(δ

2), (1.13a)

uδ
n(x)=u0

n(x)+δu1
n(x)+δ2u2,0

n (x)+δ2 lnδu2,1
n (x)+oδ→0(δ

2). (1.13b)

1.5 Content

In this paper we will not give the complete proof of Theorem 1.1 which is mainly based
on the third order matched asymptotic expansions, on the min-max principle [14] and on
a quasi-mode approach [8]. A complete proof for a two dimensional Dirichlet-Laplacian
can be found in [3].

This paper will be focused on the description of the coefficients of the asymptotic ex-
pansions (1.10), (1.11a) and (1.11b) and on the question of their existence and uniqueness
in the case of a simple eigenvalue. Moreover, the formulas (1.7) and (1.9) will be shown
to be in good agreement with some direct numerical simulations.

2 Matched asymptotic expansions of simple eigenvalues

In this section, we suppose that λn is a simple eigenvalue. We will only deal with the case
un|Ωext =0. The case un|Ωint

=0 can be deduced by symmetry.

The coefficients of the three asymptotic expansions (1.10), (1.11a) and (1.11b) have
been formally derived using the Van Dyke matching principle [20]. The problems defin-
ing these coefficients will be proved to be well-posed in Section 3.

2.1 The limit coefficients

The far-field and eigenvalue limit coefficients are rather naturally defined by

u0
n=un and λ0

n =λn. (2.1)

Moreover, the near-field limit coefficient Π0
n is defined on Ω̂ by

{
−∇·

(
a0∇Π0

n

)
=0, in Ω̂ and ∂nΠ0

n =0, on ∂Ω̂,

Π0
n|Ω̂int

(X)=u0
n|Ωint

(0)+oR→+∞(1) and Π0
n|Ω̂ext

(X)= oR→+∞(1),
(2.2)

with R=
√

X2+Y2+Z2, Ω̂int the lower half space and Ω̂ext the upper half space. As it will
be proved in Section 3.1, see Remark 3.1 and Lemma 3.1, this coefficient can be expanded
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in the neighborhood of +∞ with the form





Π0
n|Ω̂int

(X)=u0
n|Ωint

(0)− aext
0 α

aint
0 +aext

0

un|Ωint
(0)

1

R
+OR→+∞

( 1

R2

)
,

Π0
n|Ω̂int

(X)=
aint

0 α

aint
0 +aext

0

un|Ωint
(0)

1

R
+OR→+∞

( 1

R2

)
.

(2.3)

2.2 The first order coefficients

The first order asymptotic expansions are given by (1.10), (1.11a) and (1.11b) where the

first order coefficients λ1
n∈R, u1

n :Ω→R, Π
1,0
n :Ω̂→R and Π

1,1
n :Ω̂→R remain to be defined.

The terms u1
n and λ1

n are solutions of the well-posed coupled problem





∇·
(
a∇u1

n

)
+λnbu1

n =−λ1
nbun, in Ω and ∂nu1

n =0, on ∂Ω\{0},

u1
n+

aext
0 α

aint
0 +aext

0

un|Ωint
(0)

1

r
∈H1(Ωint),

u1
n−

aint
0 α

aint
0 +aext

0

un|Ωint
(0)

1

r
∈H1(Ωext),

(2.4)

with r=
√

x2+y2+z2. The coefficient u1
n can then be expanded in the neighborhood of 0

with the help of the Kondratiev’s theory, see [7, 12],





u1
n|Ωint

(x)=− aext
0 α

aint
0 +aext

0

un|Ωint
(0)

1

r
+s

1
n(x)+r

1
n(x),

u1
n|Ωext(x)=

aint
0 α

aint
0 +aext

0

un|Ωint
(0)

1

r
+s

1
n(x)+r

1
n(x),

(2.5)

with

s
1
n|Ωint

(x)=
aext

0 α

aint
0 +aext

0

un|Ωint
(0)

2

( aint
1,0,0

aint
0

x

r
+

aint
0,1,0

aint
0

y

r
+

aint
0,0,1

aint
0

(z

r
+ln

r−z

2

))
,

s
1
n|Ωext

(x)=− aint
0 α

aint
0 +aext

0

un|Ωint
(0)

2

( aext
1,0,0

aext
0

x

r
+

aext
0,1,0

aext
0

y

r
+

aext
0,0,1

aext
0

(z

r
−ln

r+z

2

))

and r1
n :Ω→R such that the two restrictions r1

n|Ωint
and r1

n|Ωext are continuous in the neigh-
borhood of 0.

The coefficients Π
1,0
n and Π

1,1
n are defined in the infinite domain Ω̂ by





−∇·
(
a0∇Π

1,0
n

)
=∇·

(
(a1,0,0X+a0,1,0Y+a0,0,1Z)∇Π0

n

)
, in Ω̂,

∂nΠ
1,0
n =0, on ∂Ω̂,

Π
1,0
n |

Ω̂int
(X)=∂xu0

n|Ωint
(0)X+∂yu0

n|Ωint
(0)Y+s

1
n|Ωint

(X)+r
1
n|Ωint

(0)+or→0(1),

Π
1,0
n |

Ω̂ext
(X)= s

1
n|Ωext(X)+r

1
n|Ωext(0)+or→0(1),

(2.6a)
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−∇·
(
a0∇Π

1,1
n

)
=0, in Ω̂ and ∂nΠ

1,1
n =0, on ∂Ω̂,

Π
1,1
n |

Ω̂int
(X)=

un|Ωint
(0)

2

aext
0 α

aint
0 +aext

0

aint
0,0,1

aint
0

+or→0(1),

Π
1,1
n |

Ω̂ext
(X)=

un|Ωint
(0)

2

aint
0 α

aint
0 +aext

0

aext
0,0,1

aext
0

+or→0(1).

(2.6b)

3 Existence of the coefficients of the asymptotic expansions

3.1 Existence and uniqueness of the Πi
n

The question of existence and uniqueness of the Laplacian problems equipped with Neu-
mann boundary condition is a rather well understood topic, see for example [1]. For
F∈L2(Ω̂) compactly supported, let us recall that there exists a unique Π∈H1

loc(Ω̂) satis-
fying

∇·
(

a0∇Π
)
=F, in Ω̂, ∂nΠ=0, on ∂Ω̂, Π= oR→+∞(1). (3.1)

This is mainly due to the Hardy inequality

∃γ>0 : γ
(
‖∇Π‖L2(Ω̂)+

∥∥∥ Π

1+R

∥∥∥
L2(Ω̂)

)
≤‖∇Π‖L2(Ω̂), ∀Π∈K1

0 (3.2)

and to the equivalence of the last problem with the variational formulation

Find Π∈K1
0 :

∫
a0∇Π·∇Π′=

∫

Ω̂
FΠ′, for all Π′∈K1

0 (3.3)

with the Kondratiev’s space

K1
0 :=

{
Π : Ω̂→R :∇Π∈L2

(
Ω̂
)

and
Π

1+R
∈L2

(
Ω̂
)}

. (3.4)

We will now prove the existence and uniqueness of Π0 and Π1,1. Let Ψint and Ψext be
two regular cut-off functions satisfying

{
Ψint(X)=0, in Ω̂ext,

Ψint(X)= ϕ(R), in Ω̂int,
(3.5a)

{
Ψext(X)=0, in Ω̂int,

Ψext(X)= ϕ(R), in Ω̂ext,
(3.5b)

with ϕ(R)=0 for R<1 and ϕ(R)=1 for R>2.

Theorem 3.1. For all reals A and B, there exists a unique ΠA,B∈H1
loc(Ω̂) satisfying

{
−∇·

(
a0∇ΠA,B

)
=0, in Ω̂ and ∂nΠA,B=0, on ∂Ω̂,

ΠA,B|Ω̂int
(X)=A+oR→+∞(1) and ΠA,B|Ω̂ext

(X)=B+oR→+∞(1).
(3.6)
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Proof. We consider the function Π(X) = ΠA,B(X)−Ψint(X)A−Ψext(X)B which satisfies
(3.1) with

F(X)=−∇·
(
a0(A∇Ψint(X)+B∇Ψext(X))

)
. (3.7)

Since the function F is compactly supported, the problem (3.6) is well posed.

Remark 3.1. The coefficients Π0
n and Π

1,1
n , defined by (2.2) and (2.6a), can be expressed

as

Π0
n =ΠA,B with A=un|Ωint

(0) and B=0,

Π1,1
n =ΠA,B with A=

1

2

aext
0 α

aint
0 +aext

0

aint
0,0,1

aint
0

un|Ωint
(0) and B=

1

2

aint
0 α

aint
0 +aext

0

aext
0,0,1

aext
0

un|Ωint
(0).

Remark 3.2. The existence and uniqueness of Π1,0 can be as well demonstrated. This
requires extra arguments that are not central in our study. We have chosen not to give the
details in this article.

Now we will be interested in the obtention of the asymptotic expansion of ΠA,B in the
neighborhood of R=+∞. Let us introduce the function Π⋆∈H1

loc(Ω̂) satisfying

{
∇·

(
a0∇Π⋆

)
=0, in Ω̂ and ∂nΠ⋆=0, on ∂Ω̂,

Π⋆|Ω̂int
=1+oR→+∞(1) and Π⋆|Ω̂ext

= oR→+∞(1).
(3.8)

The function Π⋆ is related to ΠA,B by ΠA,B=B+(A−B)Π⋆. In order to solve this problem,
we will use a simple layer formulation based on the operator S

S : (H
1
2 (Σ)

)⋆ 7→H
1
2 (Σ), λ 7→Sλ(X)=

1

4π

∫

Σ

λ(X′)
‖X−X′‖dX′. (3.9)

Taking into account the two transmission conditions Π⋆|Σint
=Π⋆|Σext and aint

0 ∂zΠ⋆|Σint
=

aext
0 ∂zΠ⋆|Σext and the representation formulas, see [9],

Π⋆|Σint
=1+2S∂zΠ⋆|Σint

and Π⋆|Σext =−2S∂zΠ⋆|Σext , (3.10)

we get the formulation

Find λ⋆∈
(

H
1
2 (Σ)

)⋆
such that Sλ⋆=1, on Σ, (3.11)

with λ∗ related to the two normal derivatives by

∂zΠ⋆|Σint
=− aext

0

aext
0 +aint

0

λ⋆

2
and ∂zΠ⋆|Σext =− aint

0

aint
0 +aext

0

λ⋆

2
. (3.12)
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Then, the restrictions of Π∗ to Ω̂int and Ω̂ext are given by the representation formula

Π⋆=





1− aext
0

aext
0 +aint

0

( 1

4π

∫

Σ

λ⋆(X′)
‖X−X′‖dX′

)
, in Ω̂int,

+
aint

0

aext
0 +aint

0

( 1

4π

∫

Σ

λ⋆(X′)
‖X−X′‖dX′

)
, in Ω̂ext.

(3.13)

Expanding (3.13), the first order asymptotic expansion of Π⋆ for R=‖X‖→+∞ reads

Π⋆=





1− aext
0

aext
0 +aint

0

α

R
+OR→+∞

( 1

R2

)
, in Ω̂int,

+
aint

0

aext
0 +aint

0

α

R
+OR→+∞

( 1

R2

)
, in Ω̂ext,

(3.14)

where α=(4π)−1
∫

Σ
λ⋆(X′)dX′ with λ⋆ defined by (3.11). The next Lemma follows.

Lemma 3.1. ΠA,B can be expanded with the form





ΠA,B|Ω̂int
(X)=A+(B−A)

aext
0

aint
0 +aext

0

α

R
+OR→+∞

( 1

R2

)
,

ΠA,B|Ω̂ext
(X)=B+(A−B)

aint
0

aint
0 +aext

0

α

R
+OR→+∞

( 1

R2

)
.

(3.15)

Remark 3.3. The coefficient α depends on the shape of Σ but is independent of the value
of aint

0 and aext
0 . This quantity is related to the so called acoustic conductivity of the hole

c and to the effective size of the hole s by s = c/π = αδ, see [19]. It can be numerically
computed for every Σ, see Section 4. Moreover it has been analytically computed for
some simple Σ with area A, see [15]

• α= 2ρ
π = 2

π

√
A
π for Σ a circle with radius ρ;

• α= 2
π

√
A
π

(π/2)
√

b/a
K(1−b2/a2)

for Σ an ellipse with minor axes a and b. The function K denotes

the complete elliptic integral of first kind.

The coefficient α can be rather easily approximated by the coefficient α of the circle with
same area

αapp=
2

π

√
A
π

. (3.16)

This approximation does not require any numerical computation and is rather accurate
for not too elongated holes. In Fig. 2 we illustrate the accuracy of this approximation in
the case of an ellipse of minor axes a and b and a rectangle [0,a]×[0,b]. The relative error
is less than 5% for 0.4<b/a<1.



A. Bendali, M. Fares, A. Tizaoui and S. Tordeux / Commun. Comput. Phys., 11 (2012), pp. 456-471 465

0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8 1.0

α−αapp

αapp

b/a
0.05

0.10

0.15

0.20

0.25

0.2 0.4 0.6 0.8 1.0

α−αapp

αapp

b/a

Figure 2: Efficiency of the approximation of α by αapp=
π
2

√
A
π for ellipses (left) and for rectangles (right).

3.2 Existence and uniqueness of u1
n and λ1

n

The two coefficients u1
n and λ1

n do have to solve the problem (2.4). The following Lemma
ensures the existence and uniqueness of u1

n and λ1
n up to the knowledge of the un-

component of u1
n. This component can be chosen arbitrarily.

Lemma 3.2. Problem (2.4) has solutions. Moreover if (u1
n,λ1

n) and (u1
n,∗,λ1

n,∗) are solutions, one
has λ1

n =λ1
n,∗ and

λ1
n =2πα

aint
0 aext

0

aint
0 +aext

0

(
un

∣∣
Ωint

(0)
)2

∫
Ωint

b
(
un

)2
and ∃γ∈R : u1

n,∗−u1
n =γun. (3.17)

Proof. The function u1
n does not belong to H1(Ω). Consequently, the Fredholm alternative

cannot be directly applied. For this reason, we introduce the auxiliary function ω1
n ∈

H1
(
Ω
)





ω1
n|Ωint

(x)=u1
n(x)+χ(r)un|Ωint

(0)
aext

0

aint
0 +aext

0

α

r
,

ω1
n|Ωext(x)=u1

n(x)−χ(r)un|Ωint
(0)

aint
0

aint
0 +aext

0

α

r
,

(3.18)

with χ a regular cut-off function satisfying (see (1.1))

χ(z)=1, if z≤δ0 and χ(z)=0, if z≥2δ0. (3.19)

Using (2.4), ω1
n belongs to H1(Ω) and satisfies

∇·
(

a∇ω1
n

)
+λnbω1

n =F1
n , in Ω and ∂nω1

n=0, on ∂Ω, (3.20)

with F1
n ∈

(
H1(Ω)

)⋆
defined by





F1
n |Ωint

(x)=−λ1
nbun(x)+

(
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(
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+λnb

)(
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(0)
aext

0

aint
0 +aext

0
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,

F1
n |Ωext(x)=−

(
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)(
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(0)
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0

aint
0 +aext

0

α

r

)
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Since λ0
n is a simple eigenvalue of the elliptic operator on Ωint, the problem (3.20) defining

ω1
n has solutions if and only if ∫

Ωint

F1
n un =0. (3.21)

Moreover this solution is determined up to its un-component, i.e., if ω1
n and ω1,∗

n are two
solutions of (3.20) then

∃γ∈R : ω1
n=ω1,∗

n +γun. (3.22)

The necessary and sufficient condition (3.21) for existence of u1
n will now be made

explicit. Since un=0, in Ωext and ∇·
(
a∇un

)
+λnbun =0, in Ωint, (3.21) takes the form

λ1
n

∫

Ωint

b
(
un

)2
=
∫

Ωint

∇·
(

a∇
(

χ(r)un|Ωint
(0)

aext
0

aint
0 +aext

0

α

r

))
un

−
∫

Ωint

χ(r)un|Ωint
(0)

aext
0

aint
0 +aext

0

α

r

(
∇·

(
a∇un

))
. (3.23)

Let us denote by Bη the ball of center 0 and of radius η. Since the domain Ωint\Bη tends
to Ωint when η→0, we have due to Lebesgues Theorem

λ1
n

∫

Ωint

b
(
un

)2
= lim

η→0+

[∫

Ωint\Bη

∇·
(

a∇
(

χ(r)un|Ωint
(0)

aext
0
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0
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))
un

−
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χ(r)un|Ωint
(0)
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0
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0

α

r

(
∇·

(
a∇un

))]
. (3.24)

Two Green formulas lead to

∫

Ωint\Bη

∇·
(

a∇
(

χ(r)un|Ωint
(0)

aext
0

aint
0 +aext

0
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))
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]
(r=η)

−
∫
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(
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(0)
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0
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r

)
∇unr2sin(θ)drdθdϕ, (3.25a)

∫
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0
aχ(r)un|Ωint

(0)
aext

0

aint
0 +aext

0

α

r
∂runr2sin(θ)dθdϕ
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−
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χ(r)un|Ωint
(0)

aext
0

aint
0 +aext

0

α

r

)
∇unr2sin(θ)drdθdϕ, (3.25b)

with the spherical coordinates (r,θ,ϕ) defined by x=rsin(θ)cos(ϕ), y=rsin(θ)sin(ϕ) and
z=rcos(θ). Inserting (3.25a), and (3.25b) in (3.24), we obtain (χ(η)=1 and ∂rχ(η)=0, for
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small η)

λ1
n

∫

Ωint

b
(
un

)2
=− lim

η→0

{∫ π

π
2

∫ 2π

0
a(x)∂r

(
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(0)
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0 +aext
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2 sin(θ)dθ dϕ

−
∫ π
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a(x)un|Ωint

(0)
aext

0

aint
0 +aext

0

α

r
∂run(x)r

2 sin(θ)dθdϕ

}
(r=η). (3.26)

Using the first order Taylor expansions of un, ∂run in Ωint and (1.4b), we obtain

un(x)=un|Ωint
(0)+Or→0(r), ∂run(x)=Or→0(1) and a(x)= aint

0 +Or→0(r). (3.27)

Inserting (3.27) in (3.26), we have

λ1
n

∫

Ωint

b
(
un

)2
= lim

η→0

{
aint

0

∫ π

π
2

∫ 2π

0

(
un|Ωint

(0)
)2 aext

0

aint
0 +aext

0

αsin(θ)dθdϕ+Oη→0(η)

}
. (3.28)

Taking the limit, get (3.17).

4 Numerical simulations

In this section, we will present two series of numeral experiments illustrating Theorem
1.1. The numerical computations are based on the parallel version of the CESC library of
CERFACS (boundary element and finite element code) and of the ARPACK library (large
scale eigenvalue problems solver).

For both series of experiments, λδ
n, λn and un are evaluated with a P1-continuous

(piecewise linear continuous approximation on a tetrahedral mesh) finite element ap-
proximation. The parameter δ takes 11 values going from 1 to 10−2: δ = 10−k/5 with
0 ≤ k ≤ 10. The coefficient α = (4π)−1

∫
Σ

λ⋆(X′)dX′ is either numerically computed by

solving (3.11) or approximated by αapp = (2/π)
√
A/π. The numerical computation of

α relies on P1-continuous (piecewise linear continuous approximation on a triangular
mesh) boundary element approximation. The computation of λδ

n requires a refined mesh
in the neighborhood of the hole. Even if the geometry is simple, 2.5 million degrees of
freedom are required for the smallest δ. The computation of un and λn is achieved on a
coarse mesh and is therefore less costly and easier to handle (one does not have to face
some errors of the mesher: For very small mesh step our mesher was simply not able to
generate a regular mesh without dividing the computational domain in many regions).

We report in Figs. 5, 6, 7 and 8 the results of our simulations for n=1 to 4. For n=0,
we do not show the results since λδ

0=λ0=λ1
0=0.

During all the computations, we have tried to diminish as much as possible our
numerical errors. For the smallest values of δ the encountered linear systems become
rather large (millions of unknowns) and the errors committed by the eigenvalue solver
ARPACK cannot be completely neglected.
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Figure 3: The geometry for both experiments.

Figure 4: The shape of the holes Σ for both experiments.

4.1 First experiment

Let ℓint
x =0.6, ℓext

x =1.0, ℓy=0.8, ℓz =0.3. The two cavities, see Fig. 3, are defined by

Ωint=
[
− ℓint

x

2
,
ℓint

x

2

]
×
[
− ℓy

3
,
2ℓy

3

]
×[−ℓz,0],

Ωext=
[
− ℓext

x

4
,
3ℓext

x

4

]
×
[
− ℓy

3
,
2ℓy

3

]
×[0,ℓz].

The shape of the hole Σ, see Fig. 4 is a polygon with vertexes A = (0,0), B = (0.1,0),
C=(0.1,−0.08), D=(−0.08,−0.08), E=(−0.08,0.1) and F=(0,0.1) with

α=0.0578··· and αapp=0.0538···. (4.1)

The coefficient functions a and b are constant and equal to 1.

4.2 Second experiment

Let ℓx =1.0, ℓy =0.8 and ℓz =0.3. The interior cavity is

Ωint=
[
− ℓx

2
,
ℓx

2

]
×
[
− ℓy

3
,
2ℓy

3

]
×[−ℓz,0].

The exterior cavity is a pyramid with basis the polygon linking (0.2,−0.4,0),
(−0.7,−0.4,0), (−0.5,0.2,0) and (0.2,0.2) and with upper vertex (0.1,0.1,0.7). The shape
of the hole is a centered circle of radius 0.1. It corresponds to

α=αapp=0.0637··· . (4.2)
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Figure 5: Error λδ
n−(λn+δλn

1) in log-log scale for the first experiment.
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1 ) in log-log scale for the first experiment with α replaced by αapp.
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1 ) in log-log scale for the second experiment.

Table 1: The values of λn and λ1
n (see (1.10)).

1st experiment 2nd experiment

n λn λ1
n λn λ1

n

0 0 0 0 0
1 0 2.02 0 2.17
2 9.87 0.757 9.24 0.426
3 15.42 0 16.7 0.251
4 15.42 1.01 19.7 1.11

The functions a and b are piecewise constant and given by

a|Ωint
=2, a|Ωext

=1, b|Ωint
=1, b|Ωext

=2. (4.3)
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Figure 8: The eigenvalue λδ
n, its limit λn and its approximation λn+δλ1

n with respect to δ.

5 Conclusions

In this article we derived the first order asymptotic expansion of the eigenvalues and
eigenvectors of a three dimensional elliptic operator equipped with Neumann boundary
condition. This expansion allows to compute with a small computation cost a numerical
approximation of these eigenvalues.

The reader can also remark that this work can easily be adapted to deal with a
multiperforated straight structure if one can manage the boundary homogenisation,
see [6, 17, 19]. It would be of interest to see the impact of varying coefficients on the
blockage coefficient C which measures the permeability of the wall and is related to the
effective size of the hole s=αδ of Remark 3.3 and to the area A of the cell containing one
hole by

C=
A

2πs
.
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