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Abstract. Our aim is to evidence new 3D composite diffractive structures whose ef-
fective permittivity tensor can exhibit very large positive or negative real eigenvalues.
We use a reiterated homogenization procedure in which the first step consists in con-
sidering a bounded obstacle made of periodically disposed parallel high conducting
metallic fibers of finite length and very thin cross section. As shown in [2], the result-
ing constitutive law is non-local. Then by reproducing periodically the same kind of
obstacle at small scale, we obtain a local effective law described by a permittivity ten-
sor that we make explicit as a function of the frequency. Due to internal resonances,
the eigenvalues of this tensor have real part that change of sign and are possibly very
large within some range of frequencies. Numerical simulations are shown.
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1 Introduction

In recent years, the advent of negative index metamaterials and composites has led to
increased interest in effective medium theories. In particular there is presently intense
activity in constructing artificial photonic crystals made of metallo-dielectric inclusions
with the goal of reaching negative bulk electric or magnetic response. An excellent ex-
ample is the wire medium studied by Pendry in 1996 [7] where it is suggested that
high conductivity fibers occupying a very small volume fraction could produce nega-
tive permittivity. A rigorous proof of this based on homogenization techniques appeared
in [8] where, instead of letting the wavelength λ tend to infinity as customary in effective
medium theories, we keep it constant (assuming a time dependence of the electromag-
netic field exp(−iωt)) and let other geometrical parameters (as the period) tend to zero.
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Bourel)

http://www.global-sci.com/ 489 c©2012 Global-Science Press
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The advantage of this approach is that it leaves us the possibility of keeping fixed some of
the geometrical parameters, in particular the subset occupied by the composite obstacle
illuminated by an incident wave of a given frequency ω.

It is important to notice that in [7, 8, 12], the analysis of the wire medium problem
is considerably simplified by assuming infinitely long fibers: the incident wave can be
then decomposed so that reduction to polarized fields is possible and mathematically the
problem is reduced to solving Helmholtz equations in the plane with suitable transmis-
sion conditions on the boundary of the wire cross sections.

In case of an e3-polarized electric field and suitably scaled period, filling ratio of fibers
and conductivity, it is shown in [8] that the medium is characterized in the quasi static
regime (i.e., for d≪λ) by an effective relative permittivity (in the e3-direction) of the form

εeff
33(ω)=1−ω2

c

ω2
, (1.1)

where ωc represents the so called cut-off frequency. Furthermore the asymptotic formula
(1.1) turns out to be very accurate even for small ratio λ/d<10 as shown in Fig. 3.

Although this result pushes towards a mathematical foundation for the realizability
of effective media with a negative bulk permittivity, we have however to be very careful.
As will be seen later the model of a finite metallic wire medium (”bed-of-nails” struc-
ture) is more sophisticated and, unlike common practice in much of the metamaterials
literature, it is not correct to assume that the finite structure behaves like an equivalent
homogeneous medium of the same size characterized by the same constitutive relation
as for the infinite medium, even if additional boundary conditions are imposed in order
to account for the finiteness of the structure. It turns out that the extreme nonlocality of
the initial structure implies automatically that the effective limit law is non local as well.
In [2] the scatter consists of a domain of R3 filled by a periodic array of e3-parallel metallic
fibers of finite length L as depicted in Fig. 1. By using a two-scale renormalization ap-
proach, we have shown that the effective constitutive equation between the displacement
vector D and the electric field E involves a long range interaction kernel:

D(x) := ε0

(

E(x)−2πγe3

∫ L
2

− L
2

g(ω,s,x3)E3(x1,x2,s)ds
)

. (1.2)

The same kind of non local constitutive law arises if we alternatively consider metallic ar-
rays of parallel fibers disposed simultaneously in three orthogonal directions. It becomes
therefore clear that the validity of an effective relation such as in (1.1) cannot be extended
to a full 3D-setting, as far as composite made of metallic inclusions are concerned. Hence
arises naturally the question of realizability of a full 3D local negative effective permittivity
tensor.

In this paper we present a rigorous proof for the realizability at a given frequency
of any real symmetric permittivity tensor (this includes the negative scalar ones). This
result already announced in [3] is to our knowledge the first one obtained in the context
of the diffraction of an electromagnetic wave by a finite obstacle in R3.
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Figure 1: The ”bed-of-nails” metallic wire structure.

The key issue consists in constructing a more complex multiscaled geometry (Fig. 2)
involving the periodic reproduction at a larger scale of the structure shown in Fig. 1. In
other words, the finite wire composite considered before becomes a micro-component of
our metamaterial. In this construction the global volume fraction of metallic fibers is still
vanishing and the length of fibers is infinitesimal with respect to the incident wavelength
but large compared with the initial distance between fibers in each array. Applying a
reiterated homogenization procedure we are led to identify the microscopic electric field
as the solution of an electrostatic problem in which the densities of charges on the lower
and upper base of each fibered component satisfy a spectral equation. Resonance effects
occur at frequencies that are comparable to that of the incident wave (micro- resonator
problem) as it was observed in a different context (artificial magnetism) in the case of
a much simpler geometry (see [6, 9, 10]). As a consequence we obtain an effective per-
mittivity tensor εeff(ω) whose eigenvalues have real part changing of sign and possibly
passing through very large absolute values. By tuning the geometrical parameters of the
structure, a very large class of effective permittivity tensors can then be realized.

We point out however that our model will not include artificial magnetic activity as
in [4] and [5, 6, 10].

The paper is organized as follows. In Section 2 we report on the non local asymptotic
model for the wire metallic medium following [2]. In Section 3, we apply the reiterated
homogenization procedure to the multiscale structure described in Fig. 2 and prove the
existence of an effective medium. The frequency-dependent effective permittivity is gov-

Ω

Figure 2: A multiscale structure with e3-oriented nanorod arrays.
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erned by a spectral problem on the periodic cell that we solve numerically in Section 4.
Eventually some conclusions are drawn in Section 5.

2 Homogenization of the diffraction by a periodic array of

finite metallic fibers

The structure under study is a square biperiodic array of thin wires of length L as de-
picted in Fig. 1. It is contained in the reference cylinder Ω :=D×(−L/2,L/2) of height L
with upper-lower bases denoted D±

L . The period is represented by the small parameter
η and all other varying parameters will be written with subscript η, namely the radius rη

and conductivity ση of the fibers.

We denote Tη ⊂ Ω the volume occupied by fibers. Its horizontal section x3 = s for
|s|≤L/2 consists of an array of disks of radius rη periodically disposed in D with period
η. We assume that rη ≪ η so that the volume fraction θη :=πr2

η/η2 →0. Although many
variants are possible we assume for simplicity that the fibers made of a unique purely
ohmic metal are immersed in vacuum. The relative permittivity εη is then given by

εη :=

{

1, on R3\Tη ,
1+iση , on Tη,

(2.1)

where the conductivity coefficient ση →∞. The structure is illuminated by a given inci-
dent field (Ei,Hi) (wave number in the vacuum k0=

√
ε0µ0ω). For every value of param-

eter η, the total electromagnetic field (Eη,Hη) is solution of the time harmonic Maxwell
system

{

curlEη = iωµ0Hη ,

curlHη =−iωε0εηEη,
(2.2)

and the diffracted field (Ed
η ,Hd

η) :=(Eη−Ei, Hη−Hi) satisfies Silver and Müller condition:

(Ed
η ,Hd

η)=O
( 1

|x|
)

, ωε0

( x

|x| ∧Ed
η

)

−k0Hd
η = o

( 1

|x|
)

. (2.3)

Scaling assumptions. Our renormalization involves a limiting process governed by three
quantities η, rη , and 1/ση which tend simultaneously to zero. The asymptotic analysis
brings to the fore two quantities:

• the average capacity of fibers per unit of volume 2π(η2 logrη)−1. We will assume
that this quantity remains finite positive:

1

η2 logrη
→γ, where γ is a suitable positive parameter; (2.4)
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• the average conductivity of fibers per unit of volume. It is measured by the con-
ductivity intensity factor κ∈ [0,+∞] where

κ := lim
η→0

κη , κη :=σηθη =ση

πr2
η

η2
. (2.5)

We notice that, due to rη ≪ η, a single fiber rescaled homothetically at the size of the
period shrinks as η→0 to a one dimensional segment S0=

{

(0,0,x3) :−1/2≤x3≤1/2
}

in
the unit cell Y=[−1/2,1/2]3.

Bulk current density. We introduce the rescaled field

Fη =κη
Eη

θη
on Tη , Fη =0 on R

3\Tη , (2.6)

which agrees on fibers with the divergence free εηEη. We rewrite the second equation of
(2.2) as:

curlHη =−iωε0(Eη+iFη). (2.7)

A two-scale analysis enables the substitution Fη ∼ F0(x,x/η) where for all x∈Ω, the Y-
periodic vector field F0(x,·) satisfies divy F0=0 in the distributional sense and is supported
on S0. Therefore, it is e3-parallel and determined up to a scalar intensity factor j(x) ∈
L2(Ω):

F0(x,y)= j(x)e3δS0
(being δS0

the line distribution along S0). (2.8)

The resulting macroscopic field j(x)e3 can be interpreted as a bulk electric polarization
density flowing parallel to e3 in the cylinder Ω. The possibility that j(x) 6=0 indicates that
the effect of fibers remains present although their volume fraction becomes infinitesimal.

Macroscopic relation between j and E. By (2.5), (2.7) and (2.8), passing to the limit in
(2.2) leads to

curlE= iωµ0H, curlH=−iωε0(E+ije3), (2.9)

where the equalities hold in the sense of distributions on all R3 and where by conven-
tion j(x) is extended by zero outside the scatter Ω. To close the system we need to say
precisely how the electric polarization density j is induced by the macroscopic electric
field E. This delicate task has been performed in [2] where it is shown that j satisfies the
following one dimensional boundary value problem:

∂2 j

∂x2
3

+
(

k2
0+

2iπγ

κ

)

j=2iπγ E3 on Ω,
∂j

∂x3
=0 on D±

L . (2.10)

It is worth noticing that the polarization j satisfies Neumann conditions at the upper
and lower interfaces of the slab. It is not in general continuous there because Maxwell’s
equations impose the continuity of the normal component of the displacement field D≡
ε0(E+ije3); consequently, any jump in E must be canceled by an equivalent jump in j.
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Effective medium. The homogenized medium is characterized by the system (2.9) and
(2.10) together with (2.3). Indeed its solution (E,H) turns out to be unique and coincides
with the limit of (Eη,Hη) (see [2] for further details).

Now it is possible to express j in terms of E3 by solving (2.10) and the second equation
in (2.9) becomes curlH=−iωD with D given by (1.2) with the Neumann kernel

g(ω,s,t)=
1

ksin(kL)
cos

[

k
(

s∧t+
L

2

)]

cos
[

k
(

s∨t− L

2

)]

, where k2 := ε0µ0ω2+
2iπγ

κ
.

The effective associated law is therefore spatially non local.

Case of infinitely long wires. The case of infinitely long wires (L=+∞) can be easily
handled by decomposing the incident wave by means of a Fourier transform in x3. We
are then reduced to look for solutions (E,H, j) of (2.9) and (2.10) having a multiplicative
x3-dependence exp(iβx3). The solution j reads as

j=
2iπγ

k2
0−β2+ 2iπγ

κ

E·e3.

Thus, after plugging in (2.9), we obtain the same response as a medium with diagonal
permittivity tensor εeff given by:

εeff
1,1= εeff

2,2=1, εeff
3,3=1− 2πγ

k2
0

[ k2
0−β2

k2
0−β2+ 2iπγ

κ

]

. (2.11)

The dependence of εeff(β) with respect to β confirms that the limit behavior is nonlocal (it
involves a convolution with respect to the inverse Fourier transform of εeff as a function
of β). However, for κ =+∞, this effect disappears and we recover (1.1) with the cut-off
frequency ωc=

√

2πγ/ε0µ0.

Domain of validity. The accuracy of the formula (2.11) has been checked in [2] where
a stack of parallel diffraction gratings infinite in extent in the horizontal direction was
considered. In this numerical test, the fibers are infinitely long and infinitely conductings
(κ =+∞) and the period d is chosen equal to the distance between each grating. The
radius of the fibers is r= d/200 so that the theoretical coefficient given in (2.4) is γ∼0.2.
Actually the value of γ can be optimized more precisely by studying correctors [12]. The
numerical test depicted in Fig. 3 was done for γ = 0.25 and describes the transmitted
energy obtained when the structure is illuminated by a plane wave with wavelength λ
under normal incidence (dashed line). It is compared with the transmitted energy for a
homogeneous slab of height 10d with permittivity εeff (solid line). We found an excellent
fit between the two curves which almost coincide for values of the wavelength that are
not very high, i.e., for λ/d>4.
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Figure 3: Transmitted energy through the real structure (dashed line) and the homogenized structure (solid
line).

3 Reiterated homogenization, band gaps and resonances

As sketched in the introduction, we consider in this second step a periodic structure Ση

disposed in a finite domain Ω and whose electromagnetic properties are characterized
by the system of Eqs. (2.9) and (2.10). In other words, we use the first homogenization
process depicted in Section 2 in order to build a metamaterial with non local macroscopic
law. Then we create a second kind of device by placing it periodically with a small pe-
riod η. Alternatively we may complete both operations simultaneously by using two
different scales as shown in Fig. 2. The common issue falls in the theory of reiterated
homogenization [13].

For simplicity we will focus only on the case where initial metallic fibers are all dis-
posed in the x3-direction. The periodic obstacle Ση represented in Fig. 4 is given by

Ση =Ω∩
(

⋃

i∈Z3

η(i+Σ)
)

, (3.1)

where Σ=D×(−h/2,h/2) is a cylinder strictly contained in the unit cell Y. Here D is a
connected subdomain of (−1/2,1/2)2 and h<1 denotes the height. The upper and lower
basis of Σ are denoted D±. Their rescaled periodic counterparts are

D±
η =Ω∩

(

⋃

i∈Z3

η(i+D±)
)

. (3.2)

Plugging the system of effective equations (2.9) and (2.10) (once Ω is substituted with Ση

and D±
L with D±

η ), we obtain a global diffraction problem described by a triple (Eη,Hη , jη)
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Figure 4: The unit cell in the reiterated process.

in L2
loc such that:















































curlEη = iωµ0Hη , on R3,

curlHη =−iωε0(Eη+ijηe3), on R3,

∂2 jη

∂x2
3

+
(

k2
0+

2iπγ

κ

)

jη =2iπγEη ·e3, on Ση ,

∂jη

∂x3
=0, on D±

η ,

(Eη−Ei,Hη−Hi) satisfies the radiation condition (2.3),

(3.3)

where the scalar function jη has been extended by setting jη =0 on R3\Ση .

Estimates in L2
loc and two-scale convergence. In the perspective of passing to the limit as

η→0, we consider a reference ball B= {x∈R3 : |x|<R} such that Ω⊂B and we assume
in a first step that

sup
η

∫

B
|Eη |2+|Hη |2<+∞. (3.4)

Then, up to subsequences, (Eη(x),Hη(x)) converges weakly in L2(B) to some limit elec-
tromagnetic field (E(x),H(x)). We denote by Pη, P the outgoing flux of the Poynting
vector through ∂B orientated by its exterior normal n(x) :

Pη :=
∫

∂B
(Eη∧Hη)·n(x)dσ, P :=

∫

∂B
(E∧H)·n(x)dσ. (3.5)

Since jη = 0 in the complementary of Ω, we infer from (3.3) that all the components of

the fields Eη and Hη satisfy the Helmholtz equation ∆u+k2
0u= 0 on the open set R3\Ω.

Therefore the convergence of (Eη(x),Hη(x)) on the whole R3\B can be established thanks
to the following Lemma (see for instance [2] for a detailed proof).

Lemma 3.1. Let (Eη ,Hη, jη) be a solution of (3.3) such that (Eη,Hη)⇀(E,H) weakly in L2(B)
and assume that (Eη−Ei

η,Hη−Hi
η) satisfies the outgoing wave condition (2.3) for a suitable

sequence of incident waves (Ei
η,Hi

η) converging uniformly to (Ei,Hi). Then the convergence
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of (Eη,Hη) holds in C∞(K) for every compact subset K ⊂R3\Ω. The limit field (E,H) solves

the Helmoltz equation ∆u+k2
0u = 0 in R3\Ω and is such that (E−Ei,H−Hi) satisfies (2.3).

Furthermore we have the convergence Pη →P .

As a consequence of the boundedness of the energy flux Pη defined in (3.5) we deduce

Lemma 3.2. Under the conditions of Lemma 3.1, the sequences {jη} and {Hη} are bounded
respectively in L2(B) and in W1,2(B). In particular Hη → H strongly in L2(B). In addition, if
E=0 on B, then limη→0

∫

B |Eη |2=0.

Proof. By Lemma 3.1, the field (Eη,Hη) is smooth on ∂B. We may integrate by parts and
by using (3.3), we obtain

Pη =
∫

B

(

curlEη ·Hη−curlHη ·Eη

)

dx= iω
∫

B

(

µ0|Hη |2−ε0|Eη |2
)

−ωε0

∫

Ω
jηEη ·e3dx. (3.6)

Now, by using the propagation equation for jη in (3.3) together with the Neumann bound-
ary condition and after integrating by parts with respect to x3 on [−h/2,h/2], we are led
to

−
∫

Ση

∣

∣

∣

∂jη

∂x3

∣

∣

∣

2
dx+

∫

Ση

(

k2
0+

2iπγ

κ

)

|jη |2dx=
∫

Ση

2iπγ Eη ·e3 jηdx. (3.7)

Thus by equating the imaginary parts in (3.6) and the real parts in (3.7), we are lead to
the following energy estimate (which corresponds to the dissipation by Joule’s effect)

ℜ(Pη)=ωε0ℜ
(

∫

Ω
Eη ·e3 jηdx

)

=
ωε0

κ

∫

Ω
|jη |2dx. (3.8)

Here we used that jη = 0 on R3\Ση . Thus the sequence {jη} is bounded in L2(B). By
the second equation in (3.3), the divergence free field Hη is such that curlHη remains
uniformly bounded in L2(B). It follows from the C∞ convergence on a neighborhood
of ∂B (see Lemma 3.1) that {Hη} remain bounded in the Sobolev space W1,2(B), thus
converges strongly in L2(B) by Rellich’s Theorem.

Let us prove the last statement. If E=0 on B, then limηPη =P=0 and by (3.8) jη →0
strongly in L2(B). By applying the divergence operator to both sides of Eq. (3.3), we
derive that divEη =−iωε0∂jη/∂x3 converges strongly to zero in the norm of W−1,2(B).
On the same way as Hη → 0 in L2(B), by the first Maxwell equation in (2.2), we have
curlEη→0 strongly in W−1,2(B). We may therefore apply the div-curl Lemma (see [16]) to
the sequence (Eη ,Eη). Thus, for every ϕ∈C∞

c (B;[0,1]), there holds limη→0

∫

B ϕ|Eη|2dx=0.
Taking ϕ=1 on a smaller ball B′ such that Ω⊂B′⊂B and as, by Lemma 3.1, the conver-
gence of Eη to 0 is uniform on B\B′, we immediately derive that also limη→0

∫

B
|Eη |2dx=0.

The proof is finished.

By Lemma 3.2, the sequence {jη} is bounded in L2(B). In contrast with the magnetic
field Hη , it turns out that jη and Eη are not strongly relatively compact in L2(Ω). They
show oscillations at scale η that we will describe by identifying their two scale limits
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(E0(x,y), j0(x,y)), which are nothing else but the zero order term in the formal two-scale
expansions

Eη =E0

(

x,
x

η

)

+ηE1

(

x,
x

η

)

+··· , jη = j0

(

x,
x

η

)

+η j1

(

x,
x

η

)

+··· .

We refer to [1,11] for the definition of the two-scale convergence and its main properties.
The macroscopic limit field (E, j) on Ω (i.e., the weak limit of (Eη, jη) in L2(Ω) can be
recast simply as

E(x)=
∫

Y
E0(x,y)dy, j(x)=

∫

Y
j0(x,y)dy. (3.9)

Electrostatic problem on the unit periodic cell. The unit cell is Y = [−1/2,1/2]3 and
T :=R3\Z3 denotes the three dimensional torus. Thanks to the above L2(B) bounds, we
may assume, possibly after extracting a subsequence, that the sequence (Eη, jη) two-scale
converges to (E0, j0) whose components are elements of L2(B×T). As Eη →E uniformly
on compact subsets of R3\Ω where jη = 0, we have of course E0(x,·) = E(x), j0(x,·) =
j(x)=0 for a.e. x∈B\Ω.

Lemma 3.3. For a.e. x∈Ω, the Y-periodic fields E0(x,·), j0(x,·) satisfy

curly E0(x,·)=0 on Y, divy

(

E0(x,·)+ij0(x,·)e3

)

=0 on Y, (3.10a)

j0(x,·)=0 on Y\Σ,
∂j0
∂y3

(x,·)=0 on Σ, (3.10b)

j0(x,y)= j0(x,y1,y2)=
2iπγ

k2
0+

2iπγ
κ

〈E0〉h(x,y1,y2), for y∈Σ, (3.10c)

where 〈E0〉h(x,y1,y2):=
1
h

∫ h/2
−h/2 E0(x,y1,y2,s)·e3ds (normalized circulation of E0(x,·) along ver-

tical lines joining the bases D±
h of the cylinder Σ).

Proof. i) By the first equation in (3.3), curlEη is bounded in L2(Ω;C3), whereas, by the
second equation, Fη :=Eη+ijηe3 is divergence free and two-scale converges to F0 :=E0+
ij0e3. It is then standard (see [1]) that curly E0(x,·)=0 and divy F0(x,·)=0 holds for a.e. x,
which gives precisely (3.10a).

ii) The first assertion in (3.10b) is obtained by applying the two-scale convergence of
jη to j0 for test functions of the kind ϕ(x,y)= θ(x)φ(y), where θ∈C∞

c (Ω) and φ∈C∞(T)
vanishing on Σ (thus jη ϕ(x,x/η)=0).

To prove that
∂j0
∂y3

(x,·)=0 in Σ, we simply take the previous φ compactly supported in

Σ and exploit the fact that, by (3.7), the function ∂jη/∂x3 is uniformly bounded in L2(Ση).
Therefore, integrating by parts in x3, we obtain

0= lim
η

∫

Ση

η
∂jη

∂x3
ϕ
(

x,
x

η

)

=−lim
η

∫

Ω
jη

(

θ(x)
∂φ

∂y3

( x

η

)

+η
∂θ

∂x3
φ
( x

η

))

=−
∫

Ω×Y
θ(x)j0(x,y)

∂φ

∂y3
.
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Localizing with respect to the x variable, we deduce that
∫

Y j0(x,y) ∂φ
∂y3

dy vanishes for a.e.

x∈Ω. Therefore, j0(x,y)= j0(x,y1,y2) on Ω×Σ.

iii) To show (3.10c), we chose

ϕ(x,y)= θ(x)φ(y′)1{|y3|< h
2

},

where we denote y′=(y1,y2) and θ(x), φ(y′) are smooth compactly supported in Ω and
D respectively. Then we multiply the third equation in (3.3) by ϕ(x,x/η) and integrate
over Ω. Exploiting (3.10b), the homogeneous Neumann condition on D±

η , we obtain after
passing to the limit η→0

(

k2
0+

2iπγ

κ

)

∫

Ω

∫

D
θ(x)hj0(x,y′)φ(y′)dxdy′=2iπγ

∫

Ω

∫

Σ
θ(x)E0(x,y)·e3dxdy,

hence the conclusion, as
∫

Σ
E0(x,y)·e3dy=h

∫

D〈E0〉h(x,y′)dy′.

Micro-resonator problem. By (3.10a), we can write E0(x,·) in term of a suitable periodic
scalar potential Φ(x,·):

E0(x,y)=E(x)+∇yΦ(x,y).

By (3.10a), (3.10b) and (3.10c), Φ satisfies

∆yΦ= ij0(δD+−δD−), j0=
2iπγ

k2
0+

2iπγ
κ

(E3+[Φ]h), (3.11)

where

[Φ]h(x,y1,y2) :=
1

h

(

Φ
(

x,y1,y2,
h

2

)

−Φ
(

x,y1,y2,−h

2

))

.

We introduce the operator Bh :w∈L2(D) 7→ [ϕ]h(y1,y2) where ϕ is the unique solution
in H1(T) of the equation −∆ϕ=w(δD+−δD−).

Lemma 3.4. The linear operator Bh is positive compact self-adjoint. Let ν2
0 >ν2

1 ≥ν2
2 ···≥ν2

n≥···
be its real positive eigenvalues (ν2

n →0 as n→∞). Then the fundamental eigenvalue ν2
0 is simple

and satisfies the inequality

|D|(1−h)≤ν2
0 ≤1. (3.12)

Proof. By integration by parts, for every (v,w) in (L2(D))2, there holds

(Bhv,w)=
1

h

∫

Y
∇ϕv ·∇ϕwdx.

Thus Bh is non negative self-adjoint. It is compact as the composition of the continuous
map v∈L2(D) 7→ϕv∈H1(T) by the compact map ϕ∈H1(T) 7→ [ϕ]h∈L2(D) (here we used
the compact embedding of the trace space H1/2(D) into L2(D)). Next we use, for every
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w∈ L2(D), the following variational characterizations of (Bh(w)|w) (in primal and dual
form)

(Bhw|w)=sup
{

2
∫

D
w[ϕ]h−

1

h

∫

Y
|∇ϕ|2 : ϕ∈H1(T)

}

(3.13)

=inf
{1

h

∫

Y
|σ|2 : σ∈ (L2(T))3, −divσ=w(δD+−δD−)

}

, (3.14)

where in the last equality the divergence is taken in the sense of distributions on the
torus (in particular admissible σ have normal traces changing of sign on opposite faces of
∂Y). Furthermore, Bhw coincides with [ϕw]h being ϕw the unique maximizer in (3.13). By
exploiting the symmetry with respect to y3, it is easy to see that ϕw(y′,−y3)=−ϕw(y′,y3)
so that, setting Y+ :=Y∩{y3 >0}

h

2

(

Bhw|w
)

=sup
{

2
∫

D
w(y′)ϕ

(

y′,
h

2

)

dy′−
∫

Y+
|∇ϕ|2dx

}

, (3.15)

where the supremum is taken with respect to functions ϕ(y′,y3) ∈ H1(Y+) which are
periodic in y′ and whose trace vanishes on y3∈{0,1/2}.

We claim that Bhw≥ 0 whenever w≥ 0. Indeed, in that case, the right hand member
of (3.15) increases while substituting ϕ with ϕ+. By the uniqueness of the maximizer,
it follows that ϕw is non negative for y3 > 0, thus in particular on D+

h and the claim.
As a consequence, by Krein-Rutman criterium, Bh admits a unique positive eigenvector
associated with ν2

0 which is simple.

Eventually, we establish (3.12). For every w∈L2(D), the vector field defined by σ(y)=
w(y′)e3 on Σ and extended by zero outside is admissible for (3.14). Therefore Bh(w,w)≤
∫

D |w|2dy′ thus ν2
0 ≤ 1. Conversely, by taking w= 1 and ϕ= ϕ(y3) in (3.13), where ϕ is a

odd function in H1
0(−1/2,1/2), we obtain

|D|ν2
0 ≥ (Bh(1)|1)≥

1

h
sup

{

4|D|ϕ
( h

2

)

−2
∫ 1

2

0
ϕ′2ds, ϕ(0)= ϕ

(1

2

)

=0
}

.

The optimum in the right hand side is obtained for ϕ such that ϕ′=|D|(1−h) for |s|<h/2
and ϕ′=−|D|h otherwise and we get: ν2

0 ≥|D|(1−h).

Coming back to (3.11), we see that j0(x,·) satisfies a spectral equation of Freedholm
type:

Bh(j0)−
( k2

0

2πγ
+

i

κ

)

j0=−iE3(x). (3.16)

Let {ϕn :n∈N} be an orthonormal basis of L2(D) such that Bh ϕn=ν2
n ϕn. Then the solution

of (3.16) is given by

j0(x,y1,y2)= iE3(x)χ(ω,y1,y2), (3.17)
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where

χ(ω,y1,y2) :=∑
n

cn ϕn, cn =

∫

D ϕn

k2
0

2πγ −ν2
n+

i
κ

.

Effective permittivity. Recalling the relation k2
0 =ω2ε0µ0, we introduce

Λ(κ,γ,ω) :=
∫

D
χ(ω,y1,y2)dy1dy2 =∑

n

(
∫

D ϕn)2

k2
0

2πγ −ν2
n+

i
κ

. (3.18)

Then exploiting (3.17) and (3.18), the weak limit j of {jη} in L2(Ω) can be computed
thanks to (3.9):

j(x)=
∫

Σ
j0(x,y)dy= ihΛ(κ,γ,ω)E3(x). (3.19)

Accordingly the displacement field Dη(x) := ε0(Eη+ijηe3), which appears in the right
hand member of the second equation in (3.3) converges weakly on Ω to D(x) :=E(x)+
ij(x)e3=εe f f E(x), where the diagonal tensor εe f f , given below, represents the local effective
permittivity law on Ω.

ε
e f f
11 = ε

e f f
22 =1, ε

e f f
33 =1−hΛ(κ,γ,ω). (3.20)

Its third component ε
e f f
33 depends on the frequency and has a strictly positive imaginary

part. Its real part changes sign when k2
0(ω) = ε0µ0ω2 passes through the eigenvalues

(resonances) and becomes very large if κ≫1.

Theorem 3.1 (Homogenization). Let (Ei,Hi) be an incident wave and let (Eη,Hη) be the
unique solution of (3.3). Assume that κ,γ>0 and set

ε̂(x)=

{

εe f f , if x∈Ω,

1, if x∈R3\Ω,
εe f f defined by (3.20).

Then (Eη,Hη)→ (E,H) in L2
loc(R

3) where (E,H) is the unique solution of the following diffrac-
tion problem:











curlE= iωµ0H, on R3,

curlH=−iωε0 ε̂(x)E, on R3,

(E−Ei,H−Hi) satisfies the outgoing wave condition (2.3).

(3.21)

Proof. As a preliminary step, we show that the solution of the limit problem is unique. By
linearity, this reduces to check that (E,H) vanishes whenever it solves (3.21) and satisfy
(2.3) for (Ei,Hi) = (0,0). As ε̂ = 1 outside Ω, the real part of the outgoing flux of the
Poynting vector through the boundary of a ball BR satisfies

ℜ
(

∫

∂BR

(E∧H̄)·n(x)
)

= lim
R→∞

ℜ
(

∫

∂BR

(E∧H̄)·n(x)
)

=0.
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On the other hand, by exploiting (3.21) and integrating by parts over BR

0=ℜ
(

∫

∂BR

(E∧H̄)·n(x)
)

=ℜ
(

∫

BR

curlE·H−curlH ·E
)

=ωℑ
(

∫

BR

{

−µ0|H|2+ε0 ε̂(x)E·E
})

=−ωε0

∫

Ω
ℑ(εeff

33)|E3|2.

Thus E3 vanishes on Ω. It follows that (E,H) satisfies Maxwell equations in the vacuum
in all R3 without incident wave. It is then standard to deduce that (E,H) vanishes in all
R3.

In a second step, we prove Theorem 3.1 assuming the energy bound (3.4). By Lemma
3.2, possibly after extracting a subsequence, the triple (Eη,Hη, jη) converges weakly in
L2(B) so some triple (E,H, j). By Lemma 3.1, the convergence of (Eη ,Hη) can be improved

and extended to all R3\Ω so that (E,H) satisfies Helmholtz equation in the vacuum and
satisfies the radiation condition (2.3). By passing to the limit in (3.3) we are led to the
system of equations

curlE= iωµ0H, curlH=−iωε0(E+ije3)

holding in the distributional sense on R3. By inserting the expression of j given in (3.19),
we derive that (E,H) solves (3.21). The uniqueness of the solution implies that the whole
sequence (Eη,Hη) does converge to (E,H).

In a last step, we establish the energy bound (3.4) by using a contradiction argument.
Assume that the sequence (Eη ,Hη) is not bounded in L2(B). Then possibly after extract-
ing a subsequence, we may assume that

tη :=
(

∫

B
|Eη |2+|Hη |2

)
1
2 →∞.

We normalize the fields and define

Ẽη :=
1

tη
Eη, H̃η :=

1

tη
Hη , with

∫

B
|Ẽη |2+|H̃η |2=1. (3.22)

Then, by applying the previous step, substituting (Ei,Hi) with (Ei/tη ,Hi/tη), we obtain
that (Ẽη,H̃η) converges to the unique solution (Ẽ,H̃) of the effective diffraction problem
(3.21) in which the radiation condition (2.3) holds with (Ei,Hi)=0. Therefore Ẽ= H̃=0.
In addition, by Lemma 3.2, the convergence of (Ẽη ,H̃η) is strong in L2(B). This is in
contradiction with the normalization condition in (3.22).

We finish this Section by two remarks related to some straightforward variants of the
main result.
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Ω

Figure 5: A multiscale structure with multi-oriented nanorods arrays.

Remark 3.1. [Infinitely conducting case] For κ=+∞ (fibers of infinite conductivity), the

function Λ in (3.18) becomes real and ε
e f f
33 (ω) is real as well and satisfies, for every n,

ε
e f f
33 (ωn±0)=∓∞, where ωn :=νn

√

2πγ/ε0µ0.
Accordingly the associated diffraction problem is characterized by infinitely many

band gaps of frequencies (accumulating at zero) where ε
e f f
33 is negative. An important

feature of the limiting case κ=+∞ is that the metamaterial we obtain is non-dissipative.

Remark 3.2. [Variant with three directions of fibers] We may construct a metamaterial by
mixing three families of metallic fibers components each of them being disposed alter-
natively in the three directions of axis as depicted in Fig. 5. That way we will reach all
effective diagonal tensors of the kind

εeff(ω)=diag
(

1−h1Λ1(ω),1−h2Λ2(ω),1−h3Λ3(ω)
)

. (3.23)

Here the parameters hl and functions Λl = Λl(κl ,γl,ω) can be tuned playing with the
particular geometry and electromagnetic properties of each family of inclusions.

This is a very useful variant of Theorem 3.1 that we do not develop in details in order
to avoid a too lengthy paper. However the proof follows exactly the same scheme with
straightforward modifications that we sketch hereafter. The periodic obstacle Ση is given

by (3.1) where Σ is now the union of three disjoint cylinders Σ(l), l∈{1,2,3}, each having
cross section Dl, height hl and direction el. Accordingly the wire components structure

Ση is split in three subfamilies Σ
(l)
η . The system (3.3) has to be written with a three compo-

nents electric polarization vector Jη=(j
(1)
η , j

(2)
η , j

(3)
η ). The second equation in (3.3) becomes

curlHη =−iωε0(Eη+iJη) and the third and fourth equations are substituted with their
counterparts (l∈{1,2,3}):

∂2 j
(l)
η

∂x2
l

+
(

k2
0+

2iπγ(l)

κ(l)

)

j
(l)
η =2iπγ(l)Eη ·el on Σ

(l)
η ,

∂j
(l)
η

∂xl
=0 on D±

l,η.

The two-scale limit (E0, J0) (J0 =(j
(l)
0 )) of (Eη , Jη) is then characterized in term of a scalar

periodic potential Φ(x,·) such that

E0(x,y)=E(x)+∇yΦ(x,y), ∆yΦ= i
l=3

∑
l=1

jl(δD+
l
−δD−

l
), j

(l)
0 =

2iπγl

k2
0+

2iπγl
κl

(El+[Φ]
(l)
hl
),
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where [Φ]
(l)
hl

, as a function on Dl denotes the difference of the values taken by potential φ

between D+
l and D−

l (up to multiplicative factor h−1
l ). By linearity it is easy to check that

these equations lead to the analogous of (3.19) and it holds

J(x)=
∫

Σ
J0(x,y)dy= i

l=3

∑
l=1

hlΛl(κl ,γl,ω)El(x)el,

from which follows the constitutive relation

D(x)= ε0(E(x)+iJ(x))= εeff(ω)E(x)

with εeff(ω) given by (3.23).

4 Numerical analysis and results

The effective permittivity is computed numerically in the case of inclusions with a rect-
angular section D = [−l1/2;l1/2]×[−l2/2;l2/2]. In view of (3.18), (3.20), we need only
to determine the eigenvalues and eigenvectors of the operator involved in the micro-
resonator problem (3.16). To that aim we express Bh as an integral operator on L2(D) by
means of the 3D-periodic Green kernel of the Laplace operator:

K(x;y)=
1

4π ∑
(i,j,k)∈Z3

erfc
(‖x−y+(i, j,k)‖

2
√

β

)

(

‖x−y+(i, j,k)‖
)−1

−β+8
+∞

∑
i=0

+∞

∑
j=0

+∞

∑
k=0

γijk
e−4βπ2‖(i,j,k)‖2

4π2‖(i, j,k)‖2

×cos
(

2iπ(x1−y1)
)

cos
(

2jπ(x2−y2)
)

cos
(

2kπ(x3−y3)
)

, (4.1)

where for all (i, j,k)∈ (Z\{0})3 we have set:

γ000=0, γi00=γ0j0=γ00k=
1

4
, γij0=γi0k=γ0jk =

1

2
, γijk =1.

It turns out that the latter expression does not depend of parameter β. The value of β
is set in order to improve the speed of convergence of the series (we took β = 0.072 as
in [15]). The unique periodic solution of −∆ϕ=w(δD+−δD−) reads

ϕ(y)=
∫

D
w(z′)

(

K
(

y;z′,
h

2

)

−K
(

y;z′,
−h

2

))

dz′ .

Since such a solution is odd in y3, we have

[ϕ]h(y
′)=

2

h
ϕ
(

y′,
h

2

)

,
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Figure 6: εe f f for κ=100.

thus

Bhw(y′)=
2

h

∫

D
w(z′)

(

K(y′,0;z′,0)−K(y′,h;z′ ,0)
)

dz′. (4.2)

Recall that it is a compact and self adjoint operator. We consider a Galerkin approxima-

tion by considering a partition {CN
i } of D made of N2 rectangles of dimension l1

N × l2
N and

the associated orthonormal basis. Set

eN
i =

1

|CN
i | 1

2

1CN
i

, VN =vect{eN
i : 1≤ i≤N2},

where 1CN
i

denotes the characteristic function of the set CN
i .

Then an approximation of finite rank of Bh is given by BN
h :=PN◦Bh◦PN , where PN de-

notes the orthogonal projection on VN. As Bh is compact while PN is uniformly bounded
and pointwise convergent to the identity, we clearly have that BN

h is uniformly compact
and converges strongly to Bh. The convergence of eigenvalues and eigenvectors of BN

h to
that of Bh is then standard (see for instance [14]). An approximation of ν2

n and (1|ϕn) in
the expression (3.18) is then determined by searching the eigenvalues and eigenvectors
of the matrix AN whose N4 entries are given by:

AN
ij = 〈BheN

i ,eN
j 〉=

2N2

hl1l2

∫ ∫

CN
i ×CN

j

(

K(y,0;z,0)−K(y,h;z,0)
)

dydz. (4.3)

The computation of AN
ij requires some attention due to the singularity of the term cor-

responding to i= j= k= 0 in the expansion (4.1). To that aim, we decompose K=Kr+S
where

S(x,y)=
1

4π

1

|x−y|erfc
( |x−y|

2
√

β

)

, Kr(x,y)=K(x,y)−S(x,y).
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Figure 7: εe f f for κ=1000.

For CN
i close to CN

j , the double integration of S on CN
i ×CN

j in (4.3) is evaluated as

∫

CN
i ×CN

j

S(y,z)dydz≃|CN
j |

∫

CN
i −yN

j

1

|z′|erfc
( |z′|

2
√

β

)

dz′dx

being yN
j the center of CN

j .

The numerical tests presented in Fig. 6 and Fig. 7 have been performed for N=50. We

draw the real and imaginary parts of the function ε
e f f
33 as functions of d/λ (period over

wavelength) choosing successively conductivity parameter κ to be 100 and 1000. The
resonant effect shows up with an important enhancement around the highest eigenvalue
ν2

0 (for which the eigenvector has constant positive sign). The dissipation (imaginary
part) is concentrated in a frequency window which becomes very small when κ increases.

5 Conclusions

We have demonstrated in a full 3D setting that metamaterials with negative permittivity
can be constructed by placing an assembly of periodically disposed metallic wire com-
ponents (”bed-of-nails” structures). The volume fraction of metallic wires has to be kept
very small.

In a first step we consider a single ”bed-of-nails” structure made of an array of par-
allel nanorods with finite length but however large with respect to the period a. Such
a structure is shown to be described asymptotically by a non-local permittivity law: the
polarization current density depends on the electric field over a region of finite size.

In a second step which to our knowledge is completely new, we consider a slightly
more complex structure consisting of periodically disposed (period η) systems of small
arrays (period a≪ η) of parallel nanorods of length l ∼ η. Surprisingly such a metama-
terial evidences micro-resonances effects and can be characterized by a local effective
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permittivity tensor with possibly real negative eigenvalues (band gaps of frequencies).
By exploiting an effective relation in closed form (see (3.23) and (3.18)) and by tuning

the geometrical parameters of the nanorods (filling ratio, conductivity), we can reach the-
oretically a wide range of metamaterials including any one characterized by an arbitrary
real symmetric permittivity tensor.
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[2] G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: the case of small
volume fraction, SIAM J. Appl. Math., 66 (2006), 2061.
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