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Abstract. In this paper we propose a development of the finite difference method,
called the tailored finite point method, for solving steady magnetohydrodynamic
(MHD) duct flow problems with a high Hartmann number. When the Hartmann num-
ber is large, the MHD duct flow is convection-dominated and thus its solution may ex-
hibit localized phenomena such as the boundary layer. Most conventional numerical
methods can not efficiently solve the layer problem because they are lacking in either
stability or accuracy. However, the proposed tailored finite point method is capable
of resolving high gradients near the layer regions without refining the mesh. Firstly,
we devise the tailored finite point method for the scalar inhomogeneous convection-
diffusion problem, and then extend it to the MHD duct flow which consists of a cou-
pled system of convection-diffusion equations. For each interior grid point of a given
rectangular mesh, we construct a finite-point difference operator at that point with
some nearby grid points, where the coefficients of the difference operator are tailored
to some particular properties of the problem. Numerical examples are provided to
show the high performance of the proposed method.
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1 Introduction

The purpose of this paper is to devise an efficient tailored finite point method for approx-
imating the solution of magnetohydrodynamic (henceforth, MHD) duct flow problems at
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high Hartmann numbers. We study the problem of finding the velocity u and the induced
magnetic field b for a laminar, fully developed flow of an incompressible, viscous, elec-
trically conducting fluid in a straight channel. The channel has a uniform cross-section
Ω which is an open bounded region in R

2 with a Lipschitz boundary ∂Ω. The fluid is
driven by a constant mechanical pressure gradient −dp/dz. The direction of the constant
transverse external magnetic field b0 may be arbitrary to the x-axis, and both the velocity
u and the induced magnetic field b are parallel to the z-axis.

The generalized equations of the MHD duct flow described above with suitable bound-
ary conditions can be posed in dimensionless form as follows [14, 16]:





−ε∆u+a ·∇b= f1, in Ω,

−ε∆b+a ·∇u= f2, in Ω,

u= g1, on ∂Ω,

b= g2, on ΓD,

∇b·n= g3, on ΓN ,

(1.1)

where u = u(x,y) and b = b(x,y) are the velocity and the induced magnetic field in the
z-direction, respectively; ε is the diffusivity coefficient with 0< ε := 1/Ha < 1 and Ha :=
b0l

√
δ/µ is the Hartmann number, b0 is the intensity of the external magnetic field, l is

the characteristic length of the duct, δ and µ are the electric conductivity and coefficient
of viscosity of the fluid respectively; the convection field is given by

a :=(a1,a2)
⊤=(−sinα,−cosα)⊤,

α∈ [0,π/2] is the angle from the positive y-axis to the externally applied magnetic field
b0, measured in the clockwise direction; fi for i = 1,2 are the given source terms and in
most practical MHD applications, we have

f1≡ ε or f1≡0 and f2≡0, in Ω,

gi for i=1,2,3 are prescribed boundary data;

∂Ω=ΓD∪ΓN with ΓD∩ΓN =∅ and |ΓD|>0;

n is the outward unit normal vector to ΓN .
There are many investigations which use various numerical methods such as finite

difference, finite element and boundary element methods to solve the MHD duct flow
problems. We refer the reader to [8,12–14,16–18] and many references cited therein. How-
ever, when the Hartmann number Ha is large, such an MHD duct flow problem consists
of a coupled system of convection-dominated convection-diffusion equations. It is well
known that the solution of convection-dominated problems may exhibit localized phe-
nomena such as boundary or interior layers, i.e., narrow regions where some derivative
of solution rapidly changes. Most conventional numerical methods can not efficiently



P.-W. Hsieh, Y. Shih and S.-Y. Yang / Commun. Comput. Phys., 10 (2011), pp. 161-182 163

solve the layer problems because they are lacking in either stability or accuracy [10, 11].
The common deficiency of the existing numerical methods for the MHD duct flow prob-
lems is that they produce accurate results in several configurations of interest, but the
Hartmann number Ha cannot be increased more than about 102 (cf. [12, 13]). However,
from a practical point of view, the important range of Ha in industrial applications is
from 102 to 106, i.e., the diffusivity coefficient ε varies from 10−6 to 10−2.

One of the most successful class of numerical methods for treating convection-
dominated problems is the stabilized finite element methods [2]. The subject of stabilized
finite element methods has been intensively studied for more than twenty years, and it is
still attractive today (see the recent review by Franca et al. [3] and many references cited
therein). Moreover, the residual-free bubble method (cf. [1]) which is a stabilized-like
finite element method has been demonstrated to be efficient for convection-dominated
problems. Recently, Nesliturk and Tezer-Sezgin [12, 13] showed that the stabilized fi-
nite element method using the residual-free bubbles seems robust in MHD duct flow
problems at high Hartmann numbers. In our recent work [8], we have devised a novel
least-squares finite element method stabilized with the residual-free bubble functions for
approximating the solution of MHD duct flow problem (1.1), which is reformulated as a
first-order system by introducing two additional variables. One of the most distinguished
features of this bubble-stabilized least-squares approach is that the resulting global lin-
ear system is symmetric and positive definite. However, the numerical results produced
by these two bubble-stabilized methods still exhibit some spurious oscillations near the
boundary layer regions when the Hartmann number Ha is large (cf. [8, 12, 13], see also
Fig. 11 later).

In 2008, Han, Huang and Kellogg [6] proposed a tailored finite point method (hence-
forth, TFPM) for the numerical solution of a kind of homogeneous singular perturbation
problems in unbounded domains. Using the artificial boundary method, the original
problem is approximated by a convection-dominated convection-diffusion problem on a
bounded domain. Then the TFPM uses special solutions of the homogeneous differential
equation to construct an approximating discrete equation. The coefficients of the discrete
equation are tailored to the special solutions of the homogeneous governing equation.
This approach shows remarkable numerical results. Consequently, the Hemker Prize
was awarded to them in the conference BAIL 2008 for their contribution to the goal of
designing the best computational algorithm for the Hemker problem [7]. The TFPM they
provided is well worth further study, both numerically on more complicated problems
and analytically in an error analysis. Since then, the TFPM has been successfully applied
to solve a class of linear singular perturbation problems with variable coefficients [5], the
interface problems [9], and the convection-diffusion-reaction problems with a constant
convection field [15]. More recently, several TFPMs are derived in [4] for solving the
scalar inhomogeneous reaction-diffusion equations.

In this paper, we give a further study of the TFPM for solving steady MHD duct flow
problems with a high Hartmann number. The problem under consideration consists
of a coupled system of convection-dominated convection-diffusion equations. Firstly,
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based on a similar idea to that used in [4] for treating the scalar inhomogeneous reaction-
diffusion equations, we devise a tailored finite point method for the scalar inhomoge-
neous convection-diffusion equation, and then extend it to the MHD duct flow problem.
For each interior grid point of a given rectangular mesh, we construct a finite-point differ-
ence operator at that point with some neighboring grid points, where the coefficients of
the difference operator are tailored to some particular properties of the governing equa-
tions. We perform some numerical experiments on three examples to evaluate the effec-
tiveness of the proposed TFPM. From the numerical results, one can find that the TFPM
achieves very high accuracy with very coarse grid, even for very large Hartmann num-
bers. The theoretical error analysis of our method remains an open problem.

We now close this section with a brief remark. In [15], Shih, Kellogg and Tsai observed
that, for obtaining accurate numerical results, the mesh grid points must be aligned
with the convection field a when the TFPM is applied to solve the scalar convection-
dominated problems with a sufficiently small ε. In this paper, we will give a heuristic
explanation of why it is necessary, and propose a possible remedy to overcome the diffi-
culty arising from this limitation. We also remark that if the diffusivity ε is not too small,
then we do not need to require the grid points to be aligned with the convection field a,
see Example 4.1 in Section 4.

The remainder of this paper is organized as follows. In Section 2, we devise the tai-
lored finite point method for the scalar inhomogeneous convection-diffusion equation,
and then extend the method to the coupled system of convection-diffusion equations
(1.1) in Section 3. In Section 4, several numerical examples are given to demonstrate the
effectiveness of the proposed TFPM. Finally, in Section 5, some conclusions are made.

2 TFPM for the scalar inhomogeneous convection-diffusion

problem

In this section, we derive the TFPM for the scalar inhomogeneous convection-diffusion
equation,

−ε∆u+a ·∇u= f , in Ω, (2.1)

where a = (a1,a2)⊤ with |a| = 1 is a given constant convection field and f is a given
source function. Of course, this equation needs to be supplemented with some appropri-
ate boundary condition.

Let Th be a given rectangular mesh of domain Ω and let p0 =(x0,y0) be an arbitrary
chosen interior grid point. We take a small cell Ωp0 centered at p0 and surrounded by
four nearby grid points {pi =(xi,yi)∈Ω, i=1,2,3,4} (cf. Fig. 1, where the grid points are
marked by the symbol •). Considering (2.1) restricted on the cell Ωp0 and approximating
f (x,y) in Ωp0 by the constant f (x0,y0), we have

−ε∆u+a ·∇u= f (p0), in Ωp0 . (2.2)
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This is a reasonable approximation provided that the cell Ωp0 is sufficiently small, i.e.,
h1 and h2 are small enough (cf. [4]). There are many other choices of approximations of
f (x,y) in Ωp0 such as the average values

1

5

4

∑
i=0

f (pi) or
1

|Ωp0 |
∫

Ωp0

f (x,y)dxdy.

Now it is easy to verify that

ϕp0(x,y) := f (p0)(a1x+a2y) (2.3)

is a solution of the inhomogeneous equation (2.2), namely,

−ε∆ϕp0 +a·∇ϕp0 = f (p0), in Ωp0 . (2.4)

Letting ũ := u−ϕp0 in Ωp0 and subtracting (2.4) from (2.2), we obtain the homogeneous
equation,

−ε∆ũ+a·∇ũ=0, in Ωp0 . (2.5)

We introduce a new variable ṽ by

ũ(x,y) :=exp
[ a1(x−x0)+a2(y−y0)

2ε

]
ṽ(x,y). (2.6)

One can verify that ṽ satisfies

−εexp
[ a1(x−x0)+a2(y−y0)

2ε

]
∆ṽ+

1

4ε
exp

[ a1(x−x0)+a2(y−y0)

2ε

]
ṽ=0, inΩp0 ,

and it leads to
∆ṽ−κ2ṽ=0, in Ωp0 , (2.7)

where κ =1/(2ε). We then convert (2.7) into the following form through the polar coor-
dinate transformations, x= x0+rcosθ and y=y0+rsinθ:

ṽrr +
1

r
ṽr +

1

r2
ṽθθ−κ2ṽ=0. (2.8)

Now the general solution of Eq. (2.8) can be found by using the separation of variables.
Suppose that ṽ(r,θ)= R(r)Q(θ). Substituting it into (2.8), we get

R′′(r)Q(θ)+
1

r
R′(r)Q(θ)+

1

r2
R(r)Q′′(θ)−κ2R(r)Q(θ)=0. (2.9)

By the techniques of separation of variables, we obtain for n=0,1,2,··· ,

Q′′(θ)+n2Q(θ)=0, (2.10)

r2R′′(r)+rR′(r)−(n2+r2)R(r)=0, (2.11)
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where r :=κr. Obviously, the general solution of (2.10) has the form

Q(θ)=C1cos(nθ)+C2sin(nθ),

where C1,C2∈R. On the other hand, Eq. (2.11) is the so-called modified Bessel differential
equation and its solutions are the modified Bessel functions of the first kind, In(κr) for
n=0,1,2,··· . Note that here we exclude the modified Bessel functions of the second kind
Kn(κr), which solve the modified Bessel equation (2.11) as well, because Kn(κr) becomes
infinite as r approaches zero. To sum up, the general solution of (2.8) can be formally
expressed as

ṽ(r,θ)= ξ0 I0(κr)+
∞

∑
n=1

(
ξn In(κr)cos(nθ)+ηn In(κr)sin(nθ)

)
, (2.12)

where ξi,ηi ∈R. According to (2.6), the general solution of (2.5) has the following form:

ũ(r,θ)= eν
{

ξ0 I0(κr)+
∞

∑
n=1

(
ξn In(κr)cos(nθ)+ηn In(κr)sin(nθ)

)}
,

where

ν :=
a1rcosθ+a2rsinθ

2ε
.

Besides, one can easily find that every constant function ũ = C is also a solution of (2.5),
and these constant solutions may be represented by the above infinite series with some
specific coefficients. Thus, for later use, we rewrite the general form of ũ(r,θ) as

ũ(r,θ)=η0+eν
{

ξ0 I0(κr)+
∞

∑
n=1

(
ξn In(κr)cos(nθ)+ηn In(κr)sin(nθ)

)}
, (2.13)

where ξi,ηi ∈R.
We now introduce a tailored five-point method to approximate ũ(r,θ). Firstly we

define

Φ1(r,θ)=1, Φ2(r,θ)= eν I0(κr),

Φ3(r,θ)= eν I1(κr)cosθ, Φ4(r,θ)= eν I1(κr)sinθ,

and then construct the following 4-dimensional function space

W :=span{Φ1,Φ2,Φ3,Φ4}.

One can easily check that these functions Φi are solutions of (2.5). Let

ũi :=ui−ϕp0(pi)

denote the approximation of

ũ(pi)=u(pi)−ϕp0(pi).
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Then the tailored five-point approximations to (2.5), or equivalently (2.2), at the center
p0 =(x0,y0) are given by

α0ũ0+α1ũ1+α2ũ2+α3ũ3+α4ũ4 =0. (2.14)

That is, we have

α0(u0−ϕp0(p0))+α1(u1−ϕp0(p1))+α2(u2−ϕp0(p2))

+α3(u3−ϕp0(p3))+α4(u4−ϕp0(p4))=0,

or written in the compact form

4

∑
i=0

αiui =
4

∑
i=0

αi ϕp0(pi), (2.15)

where the coefficients αi (i=0,1,2,3,4) are obtained by solving the following underdeter-
mined linear system

α0Φj(p0)+α1Φj(p1)+α2Φj(p2)+α3Φj(p3)+α4Φj(p4)=0, (2.16)

for j=1,2,3,4.
Later we will explain how to solve the linear system (2.16) for the unknowns αi with

two different types of five-point stencil. By applying the tailored five-point formula (2.15)
to each interior grid point in the given rectangular mesh Th, we obtain a global linear
system of equations, where the boundary conditions are imposed as in the conventional
finite difference schemes. Solving this global linear system will give us ui’s, which are
the approximations to the exact values of the solution u of (2.1) at the grid points.

Now let us return to solve the algebraic system (2.16) for αi’s. Firstly we recall that
the convection field is given by

a :=(a1,a2)
⊤, with a2

1+a2
2 =1.

We define the so-called flow angle Θ of the convection field a by the angle between the
vector a and the positive x-axis measured in counterclockwise direction. Thus, we always
have 0≤Θ < 2π. It has been suggested in [15] that in order to obtain accurate numeri-
cal solutions to convection-dominated convection-diffusion problems with a sufficiently
small ε by using the TFPM, the mesh grid points must be aligned with the convection
field a. We will give a heuristic explanation of why it is necessary, and propose a pos-
sible remedy to overcome the difficulty arising from this limitation of the TFPM later in
Remark 2.1.

We consider two five-point stencils depicted in Fig. 1. If we have a scalar convection-
diffusion problem with a flow angle

Θ∈
{

0,
π

2
,π,

3π

2

}
,
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Figure 1: Five-point stencils of the TFPM: (left) type I; (right) type II.

then we should adopt a rectangular mesh with the five-point stencil of type I (this is what
we mean ” the grid points aligned with the convection field a”); otherwise, we should
use a mesh with the five-point stencil of type II, where the mesh sizes h1 and h2 are chosen
so that the grid points aligned with the convection field a.

2.1 The five-point stencil of type I

For convenience’s sake, we define some notations as follows:

ν1 =
a1h1

2ε
, ν2 =

a2h2

2ε
, τ1 =

h1

2ε
and τ2 =

h2

2ε
.

By using type I stencil, the system of Eq. (2.16) can be expressed as





α1+α2+α3+α4 =−α0,

eν1 I0(τ1)α1+eν2 I0(τ2)α2+e−ν1 I0(τ1)α3+e−ν2 I0(τ2)α4 =−α0,

eν1 I1(τ1)α1−e−ν1 I1(τ1)α3 =0,

eν2 I1(τ2)α2−e−ν2 I1(τ2)α4 =0.

(2.17)

Direct calculations imply that





α1 =
1

2K
e−ν1

(
cosh(ν2)− I0(τ2)

)
α0,

α2 =
1

2K
e−ν2

(
I0(τ1)−cosh(ν1)

)
α0,

α3 =
1

2K
eν1

(
cosh(ν2)− I0(τ2)

)
α0,

α4 =
1

2K
eν2

(
I0(τ1)−cosh(ν1)

)
α0,

(2.18)

where

K :=cosh(ν1)I0(τ2)−cosh(ν2)I0(τ1).
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Notice that we leave the unknown α0 6= 0 as a degree of freedom. Moreover, after some
tedious calculations, we can prove that

lim
ε→0+

(α1,α2,α3,α4)=





(0,0,−α0,0), if Θ=0,

(0,0,0,−α0), if Θ=π/2,

(−α0,0,0,0), if Θ=π,

(0,−α0,0,0), if Θ=3π/2.

(2.19)

2.2 The five-point stencil of type II

We first define and recall some basic notations,

h12 =
√

h2
1+h2

2, τ12 =
h12

2ε
, ν1 =

a1h1

2ε
and ν2 =

a2h2

2ε
.

By applying type II stencil to the system of Eq. (2.16), we obtain the following explicit
form





α1+α2+α3+α4 =−α0,

eν1+ν2 I0(τ12)α1+e−ν1+ν2 I0(τ12)α2+e−ν1−ν2 I0(τ12)α3+eν1−ν2 I0(τ12)α4 =−α0,

eν1+ν2 I1(τ12)α1−e−ν1+ν2 I1(τ12)α2−e−ν1−ν2 I1(τ12)α3+eν1−ν2 I1(τ12)α4 =0,

eν1+ν2 I1(τ12)α1+e−ν1+ν2 I1(τ12)α2−e−ν1−ν2 I1(τ12)α3−eν1−ν2 I1(τ12)α4 =0.

(2.20)

Solving system (2.20) in unknowns αi, we obtain




α1 =
1

2L
e−ν1−ν2

(
cosh(ν1−ν2)− I0(τ12)

)
α0,

α2 =
1

2L
eν1−ν2

(
I0(τ12)−cosh(ν1+ν2)

)
α0,

α3 =
1

2L
eν1+ν2

(
cosh(ν1−ν2)− I0(τ12)

)
α0,

α4 =
1

2L
e−ν1+ν2

(
I0(τ12)−cosh(ν1+ν2)

)
α0,

(2.21)

where
L :=cosh(ν1+ν2)I0(τ12)−cosh(ν1−ν2)I0(τ12).

Again, we leave the unknown α0 6=0 as a degree of freedom. Furthermore, we can verify
that

lim
ε→0+

(α1,α2,α3,α4)=





(0,0,−α0,0), if 0<Θ<π/2,

(0,0,0,−α0), if π/2<Θ<π,

(−α0,0,0,0), if π <Θ<3π/2,

(0,−α0,0,0), if 3π/2<Θ<2π.

(2.22)

We remark that the limit equation (2.22) as well as the identity (2.21) are always true no
matter whether the mesh sizes h1 and h2 are chosen such that h2/h1 = |tan(Θ)| or not.
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Remark 2.1. We now give a heuristic explanation of why the mesh grid points must be
aligned with the convection field a when the TFPM is applied to solve the convection-
dominated convection-diffusion problems with a sufficiently small ε. For simplicity, let
us consider Eq. (2.1) in the homogeneous case and simplify it with ε=0, i.e.,

a·∇u=0, in Ω.

Note that for this purely hyperbolic equation the boundary values are prescribed only on
the inflow part

∂Ω− :=
{
(x,y)∈∂Ω : n(x,y)·a<0

}
.

We assume that the inflow boundary condition is given by

u(x,y)= g(x,y), for (x,y)∈∂Ω− .

By the theory of hyperbolic equations, solution u must be a constant along each charac-
teristic which is a straight line lying in the domain Ω parallel with the convection field a.
The constant value of u along a given characteristic is given by g(x0,y0), where (x0,y0) is
the point that the characteristic intersects the inflow boundary part ∂Ω−. Now suppose
that the flow angle Θ satisfies 0<Θ<π/2, but h2/h1 6=tan(Θ) (cf. type II stencil in Fig. 1).
From (2.22) and (2.15), we obtain u0 =u3 (notice that ϕp0(x,y)≡0 for every interior point
p0). Unfortunately, this will be probably an inaccurate result because p0 and p3 are not
located at the same characteristic and in most cases, u should have different values at p0

and p3, i.e., u(p0) 6= u(p3). In contrast, if we require h2/h1 = tan(Θ) then p0 and p3 will
belong to the same characteristic, which implies u(p0)=u(p3).

However, for example, if Θ is very close to π/2, then the use of type II stencil with
h2/h1 = tan(Θ) implies the mesh will be very singular, i.e., h1 ≈0. In such case, we may
approximate Θ by π/2 and then use type I stencil rather than type II stencil. Another
possible remedy to overcome this drawback of the TFPM is the use of the curvilinear
grids. That is, one may construct a non-rectangular mesh of Ω such that the grid points
aligned with the characteristic lines.

Remark 2.2. We remark that the choice of particular solution ϕp0 to the inhomogeneous
equation (2.2) is not unique. Another possible choice is given by

ψp0(x,y) := f (p0)(a1(x−x0)+a2(y−y0)).

In such case, we have
ψp0(x,y)= ϕp0(x,y)+C,

where
C :=− f (p0)(a1x0+a2y0)

is a constant. Now, due to the first equations in (2.17) and (2.20), we have

4

∑
i=0

αi =0,
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which implies

0=
4

∑
i=0

αiui−
4

∑
i=0

αiψp0(pi)=
4

∑
i=0

αiui−
4

∑
i=0

αi ϕp0(pi).

That is, the resulting global linear system (2.15) of the TFPM using the particular solution
ψp0 is same with that using ϕp0 .

3 TFPM for the MHD duct flow problem

In this section, we extend the TFPM derived in Section 2 for scalar inhomogeneous
convection-diffusion problems to the MHD duct flow problem (1.1). We follow the nota-
tion in Section 2. Let p0=(x0,y0) be an arbitrary chosen interior grid point in a rectangular
mesh Th of Ω and let Ωp0 be a small cell centered at p0 and surrounded by four nearby
grid points pi =(xi,yi), i =1,2,3,4. The system of governing equations of the MHD duct
flow (1.1) restricted on Ωp0 can be approximated by

{
−ε∆u+a ·∇b= f1(p0), in Ωp0 ,

−ε∆b+a ·∇u= f2(p0), in Ωp0 ,
(3.1)

provided the cell Ωp0 is sufficiently small. We then choose a particular solution of system
(3.1) by (

ϕu
p0

(x,y),ϕb
p0

(x,y)
)

:=
(

f2(p0)(a1x+a2y), f1(p0)(a1x+a2y)
)
. (3.2)

Define

u∗(x,y) :=u(x,y)−ϕu
p0

(x,y) and b∗(x,y) :=b(x,y)−ϕb
p0

(x,y). (3.3)

Then we obtain the following coupled system of homogeneous convection-diffusion
equations: {

−ε∆u∗+a·∇b∗ =0, in Ωp0 ,

−ε∆b∗+a·∇u∗=0, in Ωp0 .
(3.4)

Introducing two new variables Ũ and B̃ by

Ũ :=u∗+b∗ and B̃ :=u∗−b∗, (3.5)

we have

u∗=
1

2
(Ũ+ B̃) and b∗=

1

2
(Ũ− B̃). (3.6)

It follows from (3.4) and (3.5) that

−ε∆Ũ+a·∇Ũ =0, in Ωp0 , (3.7)

−ε∆B̃−a ·∇B̃=0, in Ωp0 . (3.8)
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Notice that both (3.7) and (3.8) are scalar homogeneous convection-diffusion equations
and the TFPM (2.14) developed in Section 2 for Eq. (2.5) can be applied to (3.7) and (3.8)
directly. Following the similar procedure in Section 2, we define

Φ+
1 (r,θ)=1, Φ+

2 (r,θ)= eν I0(κr),

Φ+
3 (r,θ)= eν I1(κr)cosθ, Φ+

4 (r,θ)= eν I1(κr)sinθ,

Φ−
1 (r,θ)=1, Φ−

2 (r,θ)= e−ν I0(κr),

Φ−
3 (r,θ)= e−ν I1(κr)cosθ, Φ−

4 (r,θ)= e−ν I1(κr)sinθ,

where

ν :=
a1rcosθ+a2rsinθ

2ε
,

and then construct the following two function spaces:

W+ :=span
{

Φ+
1 ,Φ+

2 ,Φ+
3 ,Φ+

4

}
and W− :=span

{
Φ−

1 ,Φ−
2 ,Φ−

3 ,Φ−
4

}
.

Let Ũi and B̃i denote the approximations of Ũ(pi) and B̃(pi), respectively. Then the tai-
lored five-point approximations to (3.7) and (3.8) at the interior grid point p0=(x0,y0) are
respectively given by

α0Ũ0+α1Ũ1+α2Ũ2+α3Ũ3+α4Ũ4 =0, (3.9)

β0B̃0+β1B̃1+β2B̃2+β3B̃3+β4B̃4 =0, (3.10)

where the coefficients αi and βi in (3.9) and (3.10) are required to satisfy the following
underdetermined linear systems of equations, respectively:

α0Φ+
j (p0)+α1Φ+

j (p1)+α2Φ+
j (p2)+α3Φ+

j (p3)+α4Φ+
j (p4)=0, j=1,2,3,4, (3.11)

β0Φ−
j (p0)+β1Φ−

j (p1)+β2Φ−
j (p2)+β3Φ−

j (p3)+β4Φ−
j (p4)=0, j=1,2,3,4. (3.12)

Due to (3.6), we define the approximations of u∗(pi) and b∗(pi) by

u∗
i :=

1

2
(Ũi+ B̃i) and b∗i :=

1

2
(Ũi− B̃i),

respectively. Then by (3.9) and (3.10) the tailored five-point approximation to system (3.4)
at the interior grid point p0 =(x0,y0) is defined by





4

∑
i=0

αiu
∗
i +

4

∑
i=0

αib
∗
i =0,

4

∑
i=0

βiu
∗
i −

4

∑
i=0

βib
∗
i =0.

(3.13)

Now, according to (3.3), we define the approximations of u(pi) and b(pi) by

ui :=u∗
i +ϕu

p0
(pi) and bi :=b∗i +ϕb

p0
(pi).
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The tailored five-point approximation to system (3.1) at the interior grid point p0=(x0,y0)
is then given by 




4

∑
i=0

αiui+
4

∑
i=0

αibi =
4

∑
i=0

αi

(
ϕu

p0
(pi)+ϕb

p0
(pi)

)
,

4

∑
i=0

βiui−
4

∑
i=0

βibi =
4

∑
i=0

βi

(
ϕu

p0
(pi)−ϕb

p0
(pi)

)
.

(3.14)

By applying the tailored five-point formula (3.14) to each interior grid point in the given
rectangular mesh Th, we obtain a global linear system of equations, where the boundary
conditions are imposed as in the conventional finite difference schemes.

4 Numerical experiments

In this section, we will give three numerical examples to demonstrate the high perfor-
mance of our tailored five-point method for the MHD duct flow problem (1.1). However,
the exact solution is available only for the first. Thus, in the first example, we can calcu-
late the exact errors of the numerical solutions and estimate the convergence rates with
respect to the mesh size h. For all test problems, we take α0 = β0 >0.

Example 4.1. (The 2D square-channel flow with an exact solution) By constructing an
inhomogeneous problem with an exact solution, in this example, we will study the con-
vergence behavior of the TFPM. We take the domain

Ω=(0,1)×(0,1), ε=10−2, a=
(
−sin

(π

3

)
,−cos

(π

3

))⊤
=

(−
√

3

2
,−1

2

)⊤
.

Thus, the externally applied magnetic field makes a positive angle α = π/3 with the y-
axis, see Fig. 2. Define

Q1(x,y)=
{ x2

2a1
+

εx

a2
1

+
( 1

2a1
+

ε

a2
1

)(1−e
a1x

ε

e
a1
ε −1

)}{ y2

2a2
+

εy

a2
2

+
( 1

2a2
+

ε

a2
2

)(1−e
a2y

ε

e
a2
ε −1

)}
,

Q2(x,y)=
{−x2

2a1
+

εx

a2
1

+
(−1

2a1
+

ε

a2
1

)(1−e−
a1x

ε

e−
a1
ε −1

)}{−y2

2a2
+

εy

a2
2

+
(−1

2a2
+

ε

a2
2

)(1−e−
a2y

ε

e−
a2
ε −1

)}
.

We then assume that the exact solutions u and b of problem (1.1) are given by

u(x,y)=Q1(x,y)+Q2(x,y) and b(x,y)=Q1(x,y)−Q2(x,y).

Then u = b = 0 on ∂Ω. Substituting solutions u and b into (1.1), we can obtain the in-
homogeneous source terms f1 and f2. Since the diffusivity ε = 10−2 is not too small, we
apply the TFPM using type II stencil with h1=h2=h for h=1/10,1/20,1/40,1/80 to solve
problem (1.1). Notice that in this example, the mesh grid points do not align with the
convection field a=(−

√
3/2,−1/2)⊤.
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Figure 2: Problem statement of Example 4.1.

The elevation and contour plots of the exact solutions u and b and the approximate
solutions uh and bh for h = 1/80 are depicted in Figs. 3 and 4. One can observe that
when the external magnetic field applies obliquely, the boundary layers are concentrated
near the corners in the direction of the convection field for both solutions u and b. This
is a well-known behavior of the MHD duct flows [8, 12]. The profiles of uh(x,0.1) and
bh(x,0.9) for various mesh size h are shown in Fig. 5, where the exact errors of uh(0.1,0.1)
and bh(0.9,0.9) are measured to estimate the rates of convergence of uh and bh with re-
spect to the mesh size h. The rate of convergence of uh(0.1,0.1) is approximately 1.8742
and the rate of convergence of bh(0.9,0.9) is approximately 1.5489. Both convergence be-
havior are better than O(h1.5). From these numerical results, we can conclude that the
TFPM produces stable and accurate results for this example.

Example 4.2. (The 2D square-channel flow with an oblique applied magnetic field) This
is a frequently used test problem in the literature (cf. [12]). In this example, the domain
is given by Ω := (−1,1)×(−1,1). The walls of the channel are insulated, i.e., b = 0 on
∂Ω, and the velocity is zero on the solid walls, i.e., u = 0 on ∂Ω. The right-hand side
source functions in problem (1.1) are given by f1 ≡ ε and f2 ≡ 0. That is, we still have
an inhomogeneous MHD duct flow problem but with constant source functions. The
externally applied magnetic field makes a positive angle α with the y-axis, see Fig. 6.

When α=π/2 (i.e., a=(−1,0)⊤ and the flow angle Θ=π), we have the so-called Sher-
cliff problem [12]. Although it is claimed in [12] that the problem possesses an analytic
solution, only partial exact values of u and b for ε=10−2 are available in [12]. In Table 1,
we compare the absolute errors of the numerical solutions produced by the tailored five-
point method using Type I stencil, the residual-free bubble method (RFBM) [12] and by
the stabilized least-squares finite element method (LSFEM) [8], all using

h1 =h2 =
1

40
,

with the exact values at the given specified grid points in the first quadrant of the channel.



P.-W. Hsieh, Y. Shih and S.-Y. Yang / Commun. Comput. Phys., 10 (2011), pp. 161-182 175

0

0.5

1 0

0.5

1

0

0.5

1

y

exact solution u

x

exact solution u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0

0.5

1 0

0.5

1

0

0.5

1

y

tailored finite point solution: u
h

x

tailored finite point solution: u
h

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5
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Table 1: A comparison of the absolute errors of numerical solutions of Shercliff’s problem with ε=10−2.

x y TFPM (uh) RFBM (uh) LSFEM (uh) TFPM (bh) RFBM (bh) LSFEM (bh)
0.00 0.00 0 0 3.5150E-4 0 0 0
0.25 0.00 0 0 3.5330E-4 0 0 1.5200E-5
0.50 0.00 0 0 3.5860E-4 0 0 3.0600E-5
0.75 0.00 0 0 3.6680E-4 0 0 4.6200E-5
0.00 0.25 0 0 3.3740E-4 0 0 0
0.25 0.25 0 0 3.4060E-4 0 0 2.2400E-5
0.50 0.25 0 1.0000E-7 3.5000E-4 0 0 4.5100E-5
0.75 0.25 1.0000E-7 0 3.6480E-4 1.0000E-7 0 6.8100E-5
0.00 0.50 7.0000E-7 1.0000E-7 3.0140E-4 0 0 0
0.25 0.50 1.8000E-6 2.0000E-7 3.0930E-4 1.0000E-6 2.0000E-7 5.0800E-5
0.50 0.50 5.5000E-6 3.0000E-7 3.3280E-4 3.0000E-6 3.0000E-7 1.0040E-4
0.75 0.50 1.2300E-5 5.0000E-7 3.6930E-4 6.9000E-6 5.0000E-7 1.4750E-4
0.00 0.75 7.6800E-5 4.8000E-6 4.7760E-4 0 0 0
0.25 0.75 8.6400E-5 4.6000E-6 4.5480E-4 5.6600E-5 1.3000E-6 4.7400E-5
0.50 0.75 1.1460E-4 4.0000E-6 3.9210E-4 1.0890E-4 2.6000E-6 9.6600E-5
0.75 0.75 1.5730E-4 3.6000E-6 3.0750E-4 1.5720E-4 3.4000E-6 1.5720E-4

From the numerical results given in Table 1, it can be observed that all the methods ex-
hibit acceptable results at the specified grid points when compared with the exact values.
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Figure 7: Numerical solutions of Example 4.2 with ε=10−4 and α= π/2 (i.e., a =(−1,0)⊤) produced by the
TFPM using type I stencil with h1 =h2 =1/20.
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2/2)⊤) produced
by the TFPM using type II stencil with h1 =h2 =1/20.

In addition, it seems that RFBM gives better results than TFPM for ε = 10−2. However,
when the diffusivity coefficient ε is getting small, the numerical solutions produced by
the RFBM and the stabilized LSFEM will exhibit spurious oscillations near the bound-
ary layer regions (e.g., see Fig. 11 given in Example 4.3). By contrast, the present TFPM
always shows a high accuracy, even for a very small diffusivity coefficient ε.

Further computations for this example are carried out for ε = 10−4 and for values of
α=π/2,π/3 and π/4, where the corresponding flow angles are given by

Θ=π,
7π

6
and

5π

4
,

respectively. The elevation and contour plots for the approximate solutions generated
by the TFPM are depicted in Figs. 7, 8 and 9. Apparently, when Θ = 7π/6 and 5π/4,
boundary layers appear near the corners,

(x,y)=(−1,−1) and (x,y)=(1,1).

Example 4.3. (The 2D square-channel flow driven by the current produced by elec-
trodes [13]) We investigate the MHD flow in the 2D square-channel driven by the current
produced by electrodes, placed one in each of the walls of the duct where the applied



P.-W. Hsieh, Y. Shih and S.-Y. Yang / Commun. Comput. Phys., 10 (2011), pp. 161-182 179y
x1 1�1 �1

u=0u=0 b=pu=0b0 u=0b=$p b n=0electrode
electrodeb n=0

x=7l
x=7l

x=l
x=l

Figure 10: Problem statement of Example 4.3.

magnetic field b0 is parallel, i.e., α=π/2 (cf. Fig. 10). In this example, fi≡0 for i=1,2 and
the boundary conditions are given by





u=0, on ∂Ω,

b= p, on {(x,y)∈∂Ω : x>ℓ, y=±1}∪{(x,y) : x=1, −1≤y≤1},

b=−p, on {(x,y)∈∂Ω : x<−ℓ, y=±1}∪{(x,y) : x=−1, −1≤y≤1},

∇b·n=0, on {(x,y)∈∂Ω :−ℓ≤ x≤ ℓ, y=±1}.

In numerical computations, we set ℓ= 0.3 and p = 1. We then consider the extreme case
that ε=10−6, i.e., we have an extremely large Hartmann number Ha=106.

Here, we impose the Neumann boundary conditions ∇b·n = 0 on the electrodes as
in the conventional finite difference methods. For example, consider the type I stencil
shown in Fig. 1. Suppose that b0 and b2 are the approximations of b(p0) and b(p2), re-
spectively, and p2 locates at the upper electrode. Since n(p2)=(0,1)⊤ and

0=∇b(p2)·n(p2)=
∂b

∂y
(p2)≈

b(p2)−b(p0)

h2
,

we require that b0 =b2.

The elevation plots of the approximate solutions uh and bh produced by the TFPM
using type I stencil with h1 =h2 =1/20 and by the bubble-stabilized LSFEM [8] with h1 =
h2 =1/40 are displayed in Fig. 11. From these figures, it can be observed that boundary
layer formation makes a strong appearance for u and b. The numerical results of the
bubble-stabilized LSFEM still exhibit some spurious oscillations near the boundary layer
regions. Similar phenomena occur in the numerical results of the RFBM [13]. In contrast,
the TFPM presents a superior performance for such a high Hartmann number.
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Figure 11: Numerical solutions of Example 4.3 with ε=10−6 and α=π/2 (i.e., a=(−1,0)⊤) produced by the
TFPM using type I stencil with h1 =h2 =1/20 and by the bubble-stabilized LSFEM with h1 =h2 =1/40.

5 Summary and conclusions

In this paper, we have proposed a TFPM for solving steady MHD duct flow problems
with a high Hartmann number. Such an MHD duct flow is convection-dominated and
the solution exhibits boundary layers. The presented TFPM is a development of the fi-
nite difference method. We first derive the tailored finite point method for the scalar
inhomogeneous convection-diffusion equation, and then extend it to the MHD duct flow
problem which consists of a coupled system of convection-diffusion equations. For each
interior grid point of a given rectangular mesh, we construct a finite-point difference
operator at that point with some neighboring grid points, where the coefficients of the
difference operator are tailored to some particular properties of the problem. Finally,
we have provided several numerical examples to illustrate the high performance of the
proposed TFPM.

The most distinguished feature of this approach is that it can achieve very high accu-
racy with very coarse mesh even for very small ε. However, the disadvantage of this
approach is that the mesh grid points must be aligned with the flow angle as ε ≪ 1.
Therefore, it should be a challenge when we deal with convection-dominated convection-
diffusion problems with a variable convection field

a(x,y)=(a1(x,y),a2(x,y))⊤.
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A further study of the TFPM for solving coupled systems of inhomogeneous convection-
dominated convection-diffusion equations with a variable convection field is under way.
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