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Abstract. Acoustic scattering cross sections of smart furtive obstacles are studied and
discussed. A smart furtive obstacle is an obstacle that, when hit by an incoming field,
avoids detection through the use of a pressure current acting on its boundary. A highly
parallelizable algorithm for computing the acoustic scattering cross section of smart
obstacles is developed. As a case study, this algorithm is applied to the (acoustic)
scattering cross section of a ”smart” (furtive) simplified version of the NASA space
shuttle when hit by incoming time-harmonic plane waves, the wavelengths of which
are small compared to the characteristic dimensions of the shuttle. The solution to this
numerically challenging scattering problem requires the solution of systems of linear
equations with many unknowns and equations. Due to the sparsity of these systems
of equations, they can be stored and solved using affordable computing resources. A
cross section analysis of the simplified NASA space shuttle highlights three findings:
i) the smart furtive obstacle reduces the magnitude of its cross section compared to the
cross section of a corresponding ”passive” obstacle; ii) several wave propagation direc-
tions fail to satisfactorily respond to the smart strategy of the obstacle; iii) satisfactory
furtive effects along all directions may only be obtained by using a pressure current of
considerable magnitude. Numerical experiments and virtual reality applications can
be found at the website: http://www.ceri.uniroma1.it/ceri/zirilli/w7.
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1 Introduction

A smart obstacle is an obstacle that, when hit by an incoming acoustic wave, responds
by circulating a pressure current on its boundary according to the goals of the object’s
designed detection strategy. The pressure current is a quantity with physical dimensions
of pressure divided by time. The most general class of smart obstacles considered by the
authors (ghost obstacles) are obstacles that, when hit by an incoming wave, attempt to
produce a scattered acoustic field that would be expected from a virtual obstacle (ghost)
present under the same circumstances. The virtual object is designed to differ from the
smart obstacle in both shape and position in space [5, 11]. This general class of smart
obstacles includes, as special cases, furtive obstacles and masked obstacles. Furtive ob-
stacles try to avoid detection when hit by an incoming wave by scattering a small ampli-
tude wave [13]. When hit by an incoming wave, masked obstacles try to avoid detection
by scattering an acoustic field that would be produced under the same circumstances
by a virtual obstacle (a mask) that is different from the masked object in shape [9, 10].
Passive obstacles are obstacles that, when hit by an incoming acoustic field, do not re-
spond by circulating a pressure current on their boundary as a way of manipulating
their scattered field. Models of ”smart obstacles” and scattering phenomena, introduced
in [5, 9–11, 13, 15], are expressed as optimization (or optimal control) problems and par-
tial differential equations. Some attempts at solving the time-harmonic inverse acoustic
scattering problems associated with the inversion of these models by smart obstacles are
described in [7, 8]. The mathematical model for the time-dependent scattering problem
stated above, which is a generalization of the model considered here, is an optimal control
problem for the wave equation [9, 11, 13]. Recently, physical examples of smart objects,
such as phase-switched screens, have been designed and built (see, for example, [1–4]).
Phase-switched screens are used to build radar absorbers and are an example in the elec-
tromagnetic domain of a smart object that pursues the goal of being furtive. In this paper,
we develop a parallel numerical method for computing the acoustic scattering cross sec-
tion of realistic smart obstacles. We use this algorithm to study the acoustic scattering
cross section of smart furtive obstacles and compare the cross section with the scattering
cross section of passive obstacles, that is, we study the furtivity effect. Cross sections of
realistic smart obstacles at the wavelengths considered here have not been studied pre-
viously using mathematical models based on partial differential equations that describe
the full wave propagation phenomenon. The behavior of these cross sections is relevant
to understanding the impact of the smart strategies (i.e., the pressure currents used) on
the fields scattered, and to the study of the relation between the geometry of the obsta-
cles and the properties of the corresponding cross sections. Let R3 be three-dimensional
real Euclidean space. To compute the cross section of a smart obstacle, we must solve
the corresponding smart furtive obstacle scattering problem several times, which can
be stated as follows: given an incoming time-harmonic acoustic field propagating in R3 and
a bounded obstacle Ω ⊂ R3, which is non-empty and characterized by a nonnegative acoustic
boundary impedance χ, find a time-harmonic pressure current circulating on the boundary of Ω
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that makes the field scattered by Ω, when hit by an incoming acoustic field, and the time-harmonic
pressure current itself, ”as small as possible”.

This problem is formulated as a constrained optimization problem in an infinite di-
mensional space with the constraints given by an exterior boundary value problem for
the Helmholtz equation (see Section 2, problems (2.5), (2.2a), (2.2b), and (2.4)). The spatial
part of the time-harmonic pressure current is the independent variable of this optimiza-
tion problem. Using the Lagrange multiplier method, the solution to the constrained
optimization problem is translated into a solution to the first-order necessary optimal-
ity condition for the Lagrangian functional associated with the optimization problem.
This first-order optimality condition can be expressed as an exterior problem for a sys-
tem of two Helmholtz equations (see Section 2 problems (2.7a)-(2.7d)). By applying sev-
eral assumptions along with a perturbation expansion known as the operator expansion
method (see, for example, [13]), we reduce the solution to the exterior problem of this
system of Helmholtz equations to a solution of a sequence of nested systems of first kind
integral equations (see Section 3, Eqs. (3.7a), and (3.7b)). Furthermore, using a suitable
wavelet basis to represent the kernels, unknowns, and data of these systems of integral
equations, we approximate the system of equations as a set of sparse systems of linear
equations (see Section 4 formula (3.14)). To exploit the sparsity and structure of these
linear systems, we developed an ad hoc parallel solver based on the conjugate gradient
method. Because these integrals are independent one of another, we used parallel com-
puting to evaluate the four- and two-dimensional integrals that define the entries of the
coefficient matrix and to calculate the right hand side of the linear systems.

Moreover, because the cross section analysis presented requires knowledge of the
solid angles of the far field patterns relative to several tens of incoming waves, we numer-
ically solved, in parallel, tens of time-harmonic smart scattering problems. To do so, we
divided the processors at our disposal into groups and devoted each group of processors
to the computation of a subset of these time-harmonic problems. The above-described
numerical methods for evaluating the (acoustic) scattered fields and scattering cross sec-
tion (see Section 2 formula (2.12)) generated by an obstacle were executed on the IBM
Power6 Supercomputer Huygens of the SARA Computing & Networking Service (Am-
sterdam and Almere-The Netherlands). The total number of cores of the supercomputer
is 3328, with a peak performance for the full configuration of 60 TeraFlop/s. The numer-
ical results reported here were obtained using 300,000 CPU time hours and (at most) 512
cores made available to us on the SARA Huygens machine through the research contract
”AEMCSSO-Acoustic and ElectroMagnetic Cross Sections of Smart Obstacles” granted
to CERI-Università di Roma ”La Sapienza” by the European Union in its FPG-Research
Infrastructure Project (EU FP6 project RI-031513 and the FP7 project RI-222919). The con-
tract AEMCSSO belongs to the 2007 Extreme Computing Initiative sponsored by DEISA
(Distributed European Infrastructure for Supercomputing Applications, www.deisa.eu).

Our numerical experiments resulted in three main findings. First, the magnitude of
the cross section of a passive obstacle is larger than the magnitude of the corresponding
cross section of a smart (furtive) obstacle. Second, some elements of the obstacle are more
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difficult to hide in a cross section than others. It will be useful to focus on scattering from
these elements via the smart behavior enforcement induced by the pressure current used.
Third, to make an obstacle undetectable in all directions, pressure currents of consider-
able size are required. Numerical experiments and virtual reality applications, including
stereographic applications that show the acoustic scattering cross section of a simplified
NASA space shuttle, can be found at the website: http://www.ceri.uniroma1.it/ceri/
zirilli/w7. For an overview of the issues associated with acoustic and electromagnetic
scattering, the reader is referred to the general references provided by the authors on the
website: http://www.econ.univpm.it/recchioni/scattering.

The paper is organized as follows. In Section 2, we present the mathematical model
used here to describe smart obstacles. This model implicitly defines the field scattered by
a smart obstacle and the corresponding cross section. In Section 3, we approximate the so-
lution to Eqs. (2.7a)-(2.7d) using the solution to a set of systems of linear equations using
appropriate wavelet bases, and we discuss how to numerically solve these systems of lin-
ear equations. Moreover, we show how to evaluate, in parallel, the (acoustic) scattering
cross sections. In Section 4, we describe the parallel implementation of the computational
method presented in Section 3. In Section 5, we present the numerical results obtained
from computation of the acoustic scattering cross section of a furtive simplified model of
the NASA space shuttle (Fig. 1(a)) as a function of the smart strategy.

Figure 1: (a) Simplified NASA space shuttle, (b) NASA space shuttle.

2 The mathematical model of a smart obstacle

Let us formulate the mathematical model used to study the time-harmonic scattering
problem involving smart furtive obstacles stated in Section 1. Let r be a positive integer,
R be the set of real numbers, and Rr be the r-dimensional real Euclidean space. For
convenience, let C, Cr be the set of complex numbers and the r-dimensional complex
Euclidean space, respectively.

Let Ω⊂R3 be a (nonempty) bounded simply connected open set, the boundary ∂Ω

of which is a locally Lipschitz surface characterized by a nonnegative constant acoustic
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boundary impedance χ. Without loss of generality, we assume that Ω contains the origin.
We denote by n(x)=(n1(x),n2(x),n3(x))T ∈R3, the outward unit normal vector to ∂Ω in
x ∈ ∂Ω. Since Ω has a locally Lipschitz boundary, the vector n(x), x ∈ ∂Ω exists almost
everywhere in ∂Ω (see [13] and the references therein). We denote by Ω the closure of
Ω. The couple (Ω;χ) may sometimes be called the obstacle. We assume that (Ω;χ) is
immersed in a homogeneous isotropic medium at rest, which fills R3\Ω with no source
terms present. Let (·,+) be the Euclidean scalar product in R3, and let ‖·‖ be the induced
vector norm in R3, where ·, + denote generic vectors in R3. We consider an acoustic
incoming time-harmonic plane wave ui(x,t), (x,t)∈R3×R, propagating in the medium
with velocity c>0, with frequency ω 6=0, and with space-dependent part ui

k,α. That is,

ui(x,t)= e−ıωtui
k,α(x)= e−ıωteık(x,α), (x,t)∈R

3×R, (2.1)

where ı is the imaginary unit, k = ω/c is the wave number, α ∈ R3 is a unit vector
that indicates the propagation direction of the wave (2.1). Let us denote by us

k,α(x),

x ∈ R3\Ω, the space-dependent part of the time-harmonic field scattered by the smart
obstacle (Ω;χ) when hit by an incoming wave ui given by (2.1), if ψ(x,t) is the time-
harmonic pressure current acting on ∂Ω as the response to the incoming wave. That is,
let ψ(x,t) = ce−ıωtψk,α(x), (x,t)∈ ∂Ω×R, where cψk,α is the space-dependent part of the
pressure current. Note that the wave propagation velocity c appears in the definition of
the spatial part of ψ(x,t), which simplifies some of the formulae derived later. The scat-
tered field us

k,α(x), x∈R3\Ω, is the solution to the following boundary value problem for
the Helmholtz equation (see [13]):

(
△us

k,α+k2us
k,α

)
(x)=0, x∈R

3\Ω, (2.2a)

ıkus
k,α(x)+χ

∂us
k,α

∂n(x)
(x)=(1+χ)ψk,α(x)+bk,α(x), x∈∂Ω, (2.2b)

where bk,α is given by

bk,α(x)=−ıkeık(x,α)
(
1+χ(n(x),α)

)
, x∈∂Ω, (2.3)

with the Sommerfeld radiation condition at infinity

∂us
k,α(x)

∂r
−ıkus

k,α(x)= o
(1

r

)
, r→+∞, (2.4)

where ∆= ∑
3
i=1∂2/∂x2

i is the Laplace operator, r = ‖x‖, x∈R3, and o(·) and O(·) are the
Landau symbols. Note that the factor (1+χ) in front of ψk,α(x), x ∈ ∂Ω, in (2.2b) was
introduced to simplify some of the formulae derived below. Let us point out that the
function cψk,α(x), x∈∂Ω, can be seen as the space-dependent part of the control function
of the optimal control problem for the wave equation used to model the time-dependent
acoustic scattering problem, which generalizes problems (2.2a)-(2.4) (see [13]).
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Note that when we choose ψk,α(x)=0, x∈∂Ω, in (2.2b), problems (2.2a)-(2.4) becomes
the acoustic time-harmonic scattering problem for a passive obstacle (Ω;χ). The smart
(furtive) obstacle scattering problem described in Section 1 is translated into the following
constrained optimization problem:

min
ψk,α∈C

Lk,α,λ,µ(ψk,α), (2.5)

subject to the constraints (2.2a), (2.2b), (2.4), where the cost functional Lk,α,λ,µ is given by

Lk,α,λ,µ(ψk,α)=
∫

∂Ω
ds∂Ω(x)(1+χ)

[
λ|us

k,α(x)|2+µς|ψk,α(x)|2
]
, ψk,α∈C, (2.6)

ds∂Ω is the surface measure on ∂Ω, λ≥0 and µ≥0 are adimensional constants such that
λ+µ = 1, ς is a positive dimensional constant that, without loss of generality, we can
assume to be one, C is a suitable set of admissible functions that, for simplicity, we leave
unspecified here (see [5] for further details), and |·| is the norm of · in C. The function ψk,α
is the independent variable of the constrained optimization problems (2.5), (2.2a), (2.2b),
(2.4). The case χ=+∞, which is the case of acoustically hard obstacles, can be treated with
some modifications to the Eqs. (2.2a)-(2.4), which are omitted to maintain the simplicity
of this exposition. Note that the simplified NASA space shuttle studied in Section 5 is
modeled as an acoustically hard obstacle. Given (2.6), it is easy to see that when µ = 0
or µ = 1, problems (2.5), (2.2a), (2.2b), (2.4) is trivial, see [5, 13]. The choice of the cost
functional (2.6) is motivated by the fact that when 0<µ<1, we have λ>0, that is, when 0<

µ<1, the minimization of Lk,α,λ,µ minimizes the field scattered by the smart obstacle and

the corresponding pressure current on ∂Ω. As a consequence, the scattered field on R3\Ω
is also minimized. That is, the function ψk,α, which is a solution to (2.5), (2.2a), (2.2b), (2.4)
for the cost functional given by (2.6), 0< µ < 1, makes an obstacle (Ω;χ) furtive when it

is hit by an incoming wave (2.1). Let ϕk,α(x), x∈R3\Ω, be the Lagrange multiplier of the
constrained optimization problems (2.5), (2.2a), (2.2b), (2.4). Under some assumptions
on the admissible functions ψk,α(x), x ∈ ∂Ω, and on the auxiliary functions ϕk,α(x), x ∈

R3\Ω, the first-order optimality condition for the Lagrangian functional associated with
the constrained optimization problems (2.5), (2.2a), (2.2b), (2.4), can be written as follows
(see [5, 13]):

(
△us

k,α+k2us
k,α

)
(x)=0,

(
△ϕk,α+k2 ϕk,α

)
(x)=0, x∈R

3\Ω, (2.7a)

ıkus
k,α(x)+χ

∂us
k,α

∂n(x)
(x)+

(1+χ)

ς
ϕk,α(x)=bk,α(x), x∈∂Ω, (2.7b)

ıkµϕk,α(x)−µχ
∂ϕk,α

∂n(x)
(x)=−λ(1+χ)us

k,α(x), x∈∂Ω, (2.7c)

∂us
k,α(x)

∂r
−ıkus

k,α(x)=o
(1

r

)
,

∂ϕk,α(x)

∂r
+ıkϕk,α(x)=o

(1

r

)
, r→+∞, (2.7d)

where bk,α is given by (2.3). Problems (2.7a)-(2.7d) is an exterior boundary value prob-
lem in the two unknowns uk,α, ϕk,α for a system of Helmholtz equations (2.7a) coupled
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through the boundary conditions (2.7b), (2.7c), and with the boundary conditions at in-
finity (2.7d). The relation between ϕk,α, the solution to the problems (2.7a)-(2.7d), and the
function ψk,α = ψ̂k,α, the solution to the problems (2.5), (2.2a), (2.2b), (2.4), is (see [6, 13]):

ψk,α(x)= ψ̂k,α(x)=−
1

ς
ϕk,α(x), x∈∂Ω. (2.8)

Under the hypotheses used to deduce (2.7a)-(2.7d), we can say that the problems (2.7a)-
(2.7d) and the condition (2.8) are a formulation of the time-harmonic furtive obstacle
scattering problem in the form of a system of partial differential equations, which is
equivalent to the original formulation (2.5), (2.2a), (2.2b), (2.4), (2.6) as a constrained opti-
mization problem. Let B={x∈R3|‖x‖<1}, ∂B be the boundary of B, and let F0

λ,µ(x̂,k,α),

x̂, α∈∂B, k=ω/c∈R, be the far field associated with us
k,α(x), the solution to (2.5), (2.2a),

(2.2b), (2.4). We have,

us
k,α(x)=

eikr

r
F0

λ,µ(x̂,k,α)+O
( 1

r2

)
, x= rx̂∈R

3\Ω, r→+∞. (2.9)

Note that, in general, F0
λ,µ(x̂,k,α), k∈R, x̂,α∈ ∂B, is a complex function of its arguments.

The acoustic cross section Cλ,µ(x̂,k), x̂∈∂B, k∈R, of (Ω;χ) associated with the scattering
phenomenon described previously is defined as follows:

Cλ,µ(x̂,k)=
∫

∂B
|F0

λ,µ(x̂,k,α)|2ds∂B(α), x̂∈∂B, k∈R, (2.10)

where ds∂B is the surface measure on ∂B. Note that in (2.9) and (2.10), we have chosen to
keep the notation simple by omitting the dependence of F0

λ,µ and of Cλ,µ from ς. Let Nθ ,

Nφ, Mθ, and Mφ be positive integers greater than one, and let SNθ,Nφ , IMθ,Mφ ⊂ ∂B be the
following sets:

SNθ ,Nφ =
{

x̂i,j =
(

sinθN
i cosφN

j ,sinθN
i sinφN

j ,cosθN
i

)T
, θN

i = i
π

Nθ−1
,

φN
j = j

2π

Nφ
, i=1,2,··· ,Nθ−2, j=0,1,··· ,Nφ−1

}
∪

{
x̂i,i =(0,0,cosθN

i )T, θN
i = i

π

Nθ−1
, i=0,Nθ−1

}
, (2.11a)

IMθ ,Mφ =
{

αi,j =
(

sinθM
i cosφM

j ,sinθM
i sinφM

j ,cosθM
i

)T
, θM

i = i
π

Mθ−1
,

φM
j = j

2π

Mφ
, i=1,2,··· ,Mθ−2, j=0,1,··· ,Mφ−1

}
∪

{
αi,i =(0,0,cosθM

i )T, θM
i = i

π

Mθ−1
, i=0,Mθ−1

}
. (2.11b)

Given k∈R and k 6=0, the acoustic scattering cross section Cλ,µ(x̂,k), x̂∈ ∂B is evaluated
by approximating the integral appearing in (2.10) using the rectangular quadrature rule
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applied to the set of nodes given by IMθ,Mφ . Considering that SNθ,Nφ defines a set of
observation directions, Cλ,µ(x̂,k), x̂∈∂B is approximated by:

C̃λ,µ(x̂,k)=
Mθ−2

∑
i=1

sin(θM
i )

Mφ−1

∑
j=0

|F0
λ,µ(x̂,k,αi,j)|

2, x̂∈SNθ ,Nφ ⊂∂B. (2.12)

To evaluate C̃λ,µ(x̂,k) defined in (2.12), for x̂ ∈ SNθ,Nφ , we must solve (Mθ−2)·Mφ and
the time-harmonic scattering problems (2.7a)-(2.7d) in order to obtain the corresponding
far fields. These problems are independent of each other and can be solved in parallel.
Parallel computing makes possible the study of the case presented in Section 5, with rea-
sonable effort. Identifying a solution to this realistic problem enables an understanding
of how smart effects on the far fields, induced by the function ψk,α(x), x∈∂Ω, change with
the propagation direction of the incoming plane wave (i.e., with α∈∂B) and with the per-
spective of the observer (i.e., with the vector x̂∈ ∂B of F0

λ,µ(x̂,k,α)). The smart effects on

the far fields are additionally reflected in the acoustic cross section.

3 Solution to the exterior problem and computation of the

cross section

Let (x1,x2,x3) be the canonical Cartesian coordinates of R3. We consider a cylindrical co-

ordinate system that has x3 as the cylindrical axis given by (r1,φ,x3), where r1 =
√

x2
1+x2

2

and φ=arctan(x2/x1), x1, x2∈R. Some attention must be paid in the use of these formu-
lae for x1 =0. To solve the exterior problems (2.7a)-(2.7d), we use the operator expansion
method expressed in the cylindrical coordinate system defined above. This choice is mo-
tivated by the shape of the obstacle studied in the numerical experiments presented in
Section 5 (see Fig. 1(a)). Let us summarize the operator expansion method used to ap-
proximate the exterior problem (2.7a)-(2.7d) using a set of sparse linear systems, which
must be solved numerically. For (k,α)∈R×∂B, k 6=0, we assume that

(a) the boundary of the obstacle ∂Ω can be represented as follows:

∂Ω=
{

x=(r1cosφ,r1sinφ,x3)
T ∈R

3
∣∣r1 =ξ(φ,x3), φ∈ [0,2π), x3∈ [x3,i,x3, f ]

}
, (3.1)

where x3,i, x3, f are real numbers such that x3,i < x3, f and ξ(φ,x3)≥0, φ∈ [0,2π),x3 ∈
[x3,i,x3, f ], is a single valued function that we assume is sufficiently regular that the
following formulae may be defined. Moreover, we assume that ξ(φ,x3) > 0, φ ∈
[0,2π], x3 ∈ (x3,i,x3, f ). When Eq. (3.1) holds, it is easy to see that there exists a
bounded simply connected open set Ωc⊂Ω with a locally Lipschitz boundary ∂Ωc⊂
Ω such that ∂Ωc can be represented as

∂Ωc=
{

x=(r1 cosφ,r1sinφ,x3)
T∈R

3
∣∣r1=ξc(φ,x3), φ∈[0,2π), x3∈[x̃3,i, x̃3, f ]

}
, (3.2)



680 L. Fatone, M. C. Recchioni and F. Zirilli / Commun. Comput. Phys., 10 (2011), pp. 672-694

where x̃3,i, x̃3, f are real numbers such that x̃3,i < x̃3, f , [x̃3,i, x̃3, f ] ⊂ (x3,i,x3, f ) and
ξc(φ,x3)≥ 0, φ∈ [0,2π),x3 ∈ [x̃3,i, x̃3, f ] is a single valued function that is sufficiently
regular that the following formulae may be defined. We assume that ξc(φ,x3)> 0,
φ∈[0,2π], x3∈(x̃3,i, x̃3, f ). Moreover, there exists a surface measure ds∂Ωc

, defined on
∂Ωc, given by

ds∂Ωc

(
x(φ,x3)

)
= gc(φ,x3)dφdx3, (φ,x3)∈U′, (3.3)

where U′ =(0,2π)×(x̃3,i, x̃3, f ), dφdx3 is the usual Lebesgue measure on U′, and gc

is an almost everywhere positive function defined on U′;

(b) the functions us
k,α, ϕk,α, α∈ ∂B, k∈R, which are solutions to the exterior problems

(2.7a)-(2.7d), can be represented as single layer acoustic potentials with density
functions defined on ∂Ωc. That is, we assume that

us
k,α(x)=

∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′))ck,α(y

ξc
(υ′)), α∈∂B, k∈R, (3.4a)

ϕk,α(x)=
∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′)) fk,α(y

ξc
(υ′)), α∈∂B, k∈R, (3.4b)

where y
ξc
(υ′)= (ξc(υ′)cos(φ′),ξc(υ′)sin(φ′), x′3)

T, υ′=(φ′,x′3)
T∈U′ denotes a point

belonging to ∂Ωc, dυ′=dφ′dx′3 is the Lebesgue measure on U′,

Φk(x,y)=
eik‖x−y‖

4π‖x−y‖
, x,y∈R

3, x 6=y,

is the fundamental solution to the Helmholtz operator on R3 satisfying the ”radia-
tion” condition (2.7d) at infinity, Φk is the complex conjugate of Φk, and ck,α, fk,α are
the unknown density functions of the single layer acoustic potentials (3.4a), (3.4b)
used to represent us

k,α and ϕk,α, respectively, that we have assumed exist;

(c) there exists a surface ∂Ωr with a boundary consisting of a simply connected open
set Ωr that can be represented by a formula analogous to formula (3.1) if we replace
the function ξ with a suitable single valued function ξr . The surface ∂Ωr will be
called the reference surface. Note that we do not assume that ∂Ωr⊂Ω. To guarantee
convergence of the operator expansion method, it is convenient to choose ∂Ωr such
that the ”distance” between ∂Ωr and ∂Ω is small. The reference surface ∂Ωr is
usually a smoothed and simplified version of the surface ∂Ω. We assume that the
following expansions of the functions us

k,α, ϕk,α, defined in (3.4a), (3.4b), hold:

us
k,α(x)=

∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′))ck,α(y

ξc
(υ′))

=
∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′))

+∞

∑
s=0

ck,α,s(υ′), x∈R
3\Ω, α∈∂B, k∈R, (3.5a)
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ϕk,α(x)=
∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′)) fk,α(y

ξc
(υ′))

=
∫

U ′
dυ′gc(υ′)Φk(x,y

ξc
(υ′))

+∞

∑
s=0

fk,α,s(υ′), x∈R
3\Ω, α∈∂B, k∈R, (3.5b)

where ck,α,s =O((ξ−ξr)s) for ξ→ξr or ck,α,s =0, and fk,α,s =O((ξ−ξr)s) for ξ→ξr or
fk,α,s =0, s=0,1,··· .

Let U =(0,2π)×(x3,i,x3, f ), xξ be a map from U to ∂Ω, and xξr
be a map from U to ∂Ωr.

The maps xξ , xξr
are defined analogously to the map y

ξc
from U′ to ∂Ωc, introduced

above. Moreover, let ∇x be the gradient operator with respect to x∈R3, and let φ
k
(υ)=

(1/ık)χn(xξ(υ)), υ∈U, k 6=0. For ν=0,1,··· , we define

Qν(υ,y)=
∂ν

∂rν
1

∇xΦk

(
(r1 cosφ,r1sinφ,x3)

T,y
)∣∣

r1=ξr(υ)
, υ∈U, y∈R

3\∂Ωr, (3.6a)

Lν(υ,y)=
∂ν

∂rν
1

Φk

(
(r1cosφ,r1sinφ,x3)

T,y
)∣∣

r1=ξr(υ)
, υ∈U, y∈R

3\∂Ωr. (3.6b)

Using assumptions (a)-(c), substituting (3.5a), (3.5b) into the boundary conditions (2.7b),
(2.7c), and arguing as in [6], we obtain a sequence of systems of integral equations that
depend on the index s, s =0,1,··· . The sequence contains one system for each order s in
the expansion in powers of (ξ−ξr) of the unknown density functions appearing in (3.5a),
(3.5b). That is, at order s, we have (see [6])

∫

U ′
dυ′Kξr,ξc

(υ,υ′)ck,α,s(υ′)+
(1+χ)

2ςkc

∫

U ′
dυ′ıΦk(xξr

(υ),y
ξc
(υ′)) fk,α,s(υ′)

=d1,k,α,s(υ), υ∈U, s=0,1,2,··· , (3.7a)

−
2λ(1+χ)

kc

∫

U ′
dυ′ıΦk(xξr

(υ),y
ξc
(υ′))ck,α,s(υ′)+µ

∫

U ′
dυ′Kξr,ξc

(υ,υ′) fk,α,s(υ′)

=d2,k,α,s(υ), υ∈U, s=0,1,2,··· , (3.7b)

where Kξr,ξc
is given by

Kξr,ξc
(υ,υ′)=

[
Φk(xξr

(υ),y
ξc

(υ′))+
(
φ

k
(υ),(∇xΦk)(xξr

(υ),y
ξc
(υ′))

)]
, υ∈U, υ′∈U′, (3.8)

and for s=0,1,··· , the right hand sides dj,k,α,s, j=1,2, of the integral equations (3.7a), (3.7b)
are given by

d1,k,α,0(υ)=−eık(xξ (υ),α)[1+χ
(
n(xξ(υ)),α

)]
, d2,k,α,0(υ)=0, υ∈U, (3.9a)

d1,k,α,s(υ)=−
s−1

∑
ν=0

(ξ(υ)−ξr(υ))s−ν

(s−ν)!

∫

U′
dυ′
{[(

φ
k
(υ),Qs−ν(υ,y

ξc
(υ′))

)
+Ls−ν(υ,y

ξc
(υ′))

]
ck,α,ν(υ′)

+
(1+χ)

2ςkc
ıLs−ν(υ,y

ξc
(υ′)) fk,α,ν(υ′)

}
, υ∈U, s=1,2,··· , (3.9b)



682 L. Fatone, M. C. Recchioni and F. Zirilli / Commun. Comput. Phys., 10 (2011), pp. 672-694

and d2,k,α,s(υ), υ∈U can be obtained by arguing, as above, to obtain (3.9b). To approximate
the systems of integral equations (3.7a), (3.7b) using (sparse) systems of linear equations,
we use a family of wavelet bases introduced in [6]. Let L2(U) and L2(U′) be the real
Hilbert spaces of the square integrable functions defined on U and U′, respectively, and
let M ≥ 1, N ≥ 2 be integers, ηi ∈ (0,1), i = 1,2,··· ,N−1, be N−1 points such that ηi <

ηi+1, i = 1,2,··· ,N−2, and let ηN =(η1,η2,··· ,ηN−1)
T ∈RN−1. Moreover, we denote with

WM
N,ηN (U′) and WM

N,ηN (U), respectively, the orthonormal wavelet bases of L2(U′) and

L2(U) constructed in [6]. In particular, let us introduce the sets of indices IM,N,m, m =
0,1,··· , needed to represent the unknowns ck,α,s, fk,α,s, s=0,1,··· , of the system of integral

equations (3.7a), (3.7b) in the basis WM
N,ηN(U′) of L2(U′). The data d1,k,α,s, d2,k,α,s, s=0,1,··· ,

of the system of integral equations (3.7a), (3.7b) is represented in the basis WM
N,ηN(U) of

L2(U). That is, let us define

IM,N,m =

{
µ=(j,m̂,ν)T

∣∣j=−M,−M+1,··· ,M(N−1)−2,M(N−1)−1;

m̂=

{
m, j≥0,
0, j<0,

ν=0,1,··· ,(Nm̂−1)+

}
, m=0,1,··· . (3.10)

We denote by ΥM
µ,µ′,N,ηN and by Υ̃M

µ,µ′,N,ηN , µ,µ′ ∈ IM,N,m′, m′ = 0,1,··· , respectively, the

elements of the wavelet basis WM
N,ηN (U) and the wavelet basis WM

N,ηN (U′), given in [6].

The following formulae hold (see [6] for further details):

Kξr,ξc
(υ,υ′)=

+∞

∑
n=0

∑
µ∈IM,N,n

+∞

∑
n′=0

∑
µ′∈IM,N,n′

ΥM
µ,µ′,N,ηN (υ)

+∞

∑
m=0

∑
µ̃∈IM,N,m

+∞

∑
m′=0

∑
µ̃′∈IM,N,m′

ãk,s,µ,µ′,µ̃,µ̃′ Υ̃M
µ̃,µ̃′,N,ηN (υ′), υ∈U, υ′∈U′, (3.11a)

(1+χ)Φ(xξ(υ),xξc
(υ′))=

+∞

∑
n=0

∑
µ∈IM,N,n

+∞

∑
n′=0

∑
µ′∈IM,N,n′

ΥM
µ,µ′,N,ηN (υ)

+∞

∑
m=0

∑
µ̃∈IM,N,m

+∞

∑
m′=0

∑
µ̃′∈IM,N,m′

âk,s,µ,µ′,µ̃,µ̃′ Υ̃M
µ̃,µ̃′,N,ηN (υ′), υ∈U, υ′∈U′, (3.11b)

ck,α,s(υ′)=
+∞

∑
m=0

∑
µ∈IM,N,m

+∞

∑
m′=0

∑
µ′∈IM,N,m′

ck,α,s,µ,µ′ Υ̃M
µ,µ′,N,ηN (υ′), υ′∈U′, s=0,1,··· , (3.11c)

and formulae similar to formula (3.11c) hold for fk,α,s(υ′), υ′∈U, di,k,α,s(υ), υ∈U′, i=1,2,
s =0,1,··· . Let m∗ be a positive integer. To approximate the system of integral equations
(3.7a), (3.7b) using a system of finitely many linear equations, we truncate the sums in m
and m′ according to m=m′=m∗, in (3.11a)-(3.11c). The number of wavelet basis elements
remaining in the series of the unknowns and of the data considered (see, for example,
(3.11c)) after this truncation is JM,N,m∗ =(M·Nm∗+1)2 (see [6,14]). Substituting these trun-
cated wavelet expansions in (3.7a), (3.7b), we approximate the sequence of systems of
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integral equations (3.7a), (3.7b) using the following sequence of systems of (complex)
linear equations:

Ak,Mvk,α,s,M =dk,α,s,M, s=0,1,··· , (3.12)

where vk,α,s,M, dk,α,s,M∈C2JM,N,m∗ , s=0,1,··· , are finite dimensional (complex) vectors parti-
tioned in JM,N,m∗ two-dimensional blocks. The two entries of each block of vk,α,s,M are, re-
spectively, approximations of the coefficients of the wavelet expansion of the unknowns
ck,α,s and fk,α,s, s = 0,1,··· . Similarly, the two entries of the two-dimensional blocks of

dk,α,s,M are, respectively, approximations of the coefficients of the wavelet expansion of
the data di,k,α,s, i=1,2, s=0,1,··· . Let us assume for simplicity that the index i corresponds
to the two indices µ, µ′ and the index j corresponds to the two indices µ̃, µ̃′. The matrix

Ak,M ∈ C2JM,N,m∗×2JM,N,m∗ is a block partitioned matrix, the blocks of which are (Ak,M
B )i,j,

i, j =1,2,··· , JM,N,m∗ . The blocks (Ak,M
B )i,j, i, j =1,2,··· , JM,N,m∗ , are 2×2 complex matrices.

These blocks and the blocks of the vectors vk,α,s,M, dk,α,s,M are ordered appropriately to
yield (3.12) for application of the standard row by column matrix-vector multiplication

rule (see [6] for further details). The 2×2 block (Ak,M
B )i,j is defined as follows:

(Ak,M
B )i,j =

(
ãk,α,s,µ,µ′,µ̃,µ̃′

1
2ςkc ıâk,α,s,µ,µ′,µ̃,µ̃′

− 2λ
kc ıâk,α,s,µ,µ′,µ̃,µ̃′ µãk,α,s,µ,µ′,µ̃,µ̃′

)

, i, j=1,2,··· , JM,N,m∗ . (3.13)

It is easy to see that when k>0, each block (3.13) is invertible if at least one of the entries
is nonzero. The linear systems (3.12) are ”dense” linear systems, that is, in general, all
elements of the matrix Ak,M are nonzero. However, due to the properties of the wavelet
bases (see [6]), several coefficients of the wavelet expansions of the kernels (3.11a), (3.11b)

(i.e., several ”matrix elements” (Ak,M
B )i,j of Ak,M) are ”small”. This fact suggests the use of

a ”sparse” approximation, Ak,M,τ =((Ak,M,τ
B )i,j), i, j=1,2,··· , JM,N,m∗, of Ak,M, obtained by

substituting zero for those elements of Ak,M that are ”smaller” than a (given) truncation
threshold τ > 0. Using this truncation procedure, we approximate the solution to the
dense linear system (3.12) as the solution to the sparse linear system

Ak,M,τvk,α,s,M =dk,α,s,M, s=0,1,··· , (3.14)

the coefficients of which matrix, Ak,M,τ=((Ak,M,τ
B )i,j)∈C2JM,N,m∗×2JM,N,m∗ , i, j=1,2,··· , JM,N,m∗ ,

are defined as

(Ak,M,τ
B )i,j =

{
(Ak,M

B )i,j, if ‖|(Ak,M
B )i,j|‖>τ,

0, if ‖|(Ak,M
B )i,j|‖≤τ,

i, j=1,2,··· , JM,N,m∗ , (3.15)

where

‖|(Ak,M
B )i,j‖|=

√
|âk,s,µ,µ′,µ̃,µ̃′ |2+|ãk,s,µ,µ′,µ̃,µ̃′ |2, i, j=1,2,··· , JM,N,m∗ .
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We transform the complex system (3.14) into an equivalent real system. We denote by
Ar,k,M,τ ∈R

4JM,N,m∗×4JM,N,m∗ the real matrix obtained by Ak,M,τ from the transformation of

the 2×2 complex blocks (Ak,M,τ
B )i,j, i, j=1,2,··· , JM,N,m∗ , into 4×4 real blocks (Ar,k,M,τ

B )i,j, i,
j=1,2,··· , JM,N,m∗ . Note that the complex systems (3.14) are transformed into NS×NS real
systems, where NS =4JM,N,m∗ . Let S>0 be an integer. We obtain an approximate solution
to the problem (2.7a)-(2.7d) by solving the systems of integral equations (3.7a), (3.7b),
using the method described previously for s = 0,1,··· ,S. We compute an approximate
value for the series given in (3.5a), (3.5b), truncated at s = S. We conclude this Section
by explaining how to proceed, given the knowledge of the approximate solutions to the
problems (2.7a)-(2.7d) considered to the corresponding approximate acoustic scattering
cross section defined in (2.12). Given k ∈ R, k 6= 0, it is easy to see that the following
expansion holds:

Φk(rx̂,y)=
eık‖rx̂−y‖

4π‖rx̂−y‖
=

eikr

4πr

(
e−ik(x̂,y)+O

(1

r

))
, y∈∂Ωc, x̂∈∂B, r→+∞. (3.16)

Substituting formula (3.16) in (3.5a) and using formula (2.9), we obtain

F0
λ,µ(x̂,k,α)=

1

4π

∫

U ′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)ck,α(y

ξc
(υ′))

=
1

4π

∫

U ′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)

+∞

∑
s=0

ck,α,s(υ′), x̂, α∈∂B. (3.17)

Moreover, substituting (3.17) into (2.10), yields

Cλ,µ(x̂,k)=
1

4π

∫

∂B

∣∣∣
∫

U ′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)

+∞

∑
s=0

ck,α,s(υ′)
∣∣∣
2
ds∂B(α), x̂∈∂B. (3.18)

Formula (3.18) may be approximated by formula (2.12), that is, we approximate Cλ,µ with

C̃λ,µ given by

C̃λ,µ(x̂,k)=
1

4π

Mθ−2

∑
i=1

sin(θM
i )

Mφ−1

∑
j=0

∣∣∣
∫

U ′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)

+∞

∑
s=0

ck,αi,j,s(υ′)
∣∣∣
2
, x̂∈∂B. (3.19)

Finally, truncating the series expansion contained in (3.19) at order s = S and the series
expansions of ck,αi,j,s

, i=1,2,··· ,Mθ−2, j=0,1,··· ,Mφ−1 contained in (3.11c) at m=m′=m∗,

we approximate (3.19) using the following formula:

C̃a
λ,µ,S,M,N,m∗(x̂,k)=

1

4π

Mθ−2

∑
i=1

sin(θM
i ) ·

Mφ−1

∑
j=0

∣∣∣∣
∫

U′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)

[ m∗

∑
m=0

∑
µ∈IM,N,m

m∗

∑
m′=0

∑
µ′∈IM,N,m′

S

∑
s=0

ck,αi,j,s,µ,µ′ Υ̃M
µ,µ′,N,ηN (υ′)

]∣∣∣∣
2

, x̂∈∂B. (3.20)

Formula (3.20) is the formula used to compute the approximate acoustic scattering cross
sections shown in Section 5.
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4 Parallel implementation

We now describe the parallel computation of the approximation of the acoustic cross sec-
tion C̃a

λ,µ,S,M,N,m∗(x̂,k), defined in (3.20) for x̂∈SNθ,Nφ . Given the values of the parameters

k, λ, µ, S, M, N, and m∗, the numerical method proposed to evaluate (3.20) is divided
into two parts. That is,

1. For α∈ IMθ ,Mφ , compute the wavelet coefficients ck,α,s,µ,µ′ , s=0,1,··· ,S, µ∈IM,N,m, µ′∈IM,N,m′,

m,m′ = 0,1,··· ,m∗, defined in (3.11c). This corresponds to the solution, using the method
described in Section 3, to Mtot = (Mθ−2) ·Mφ+2 time-harmonic scattering problems (2.7a)-
(2.7d);

2. For x̂∈SNθ ,Nφ , compute C̃a
λ,µ,S,M,N,m∗(x̂,k) given in (3.20).

Note that because the parallel implementation of Part 1 has already been presented in [14],
it is only summarized here for the convenience of the reader. The first level of parallelism
in the execution of Part 1 of the computation (see Fig. 2) arises from the fact that, for
a given value of the parameters λ and k, we must solve Mtot exterior boundary value
problems (2.7a)-(2.7d). In fact, these exterior boundary value problems are independent
of one another. We associate a value of the index ν to each of these problems, that is,
we use ν = 1,2,··· ,Mtot. The polar angles corresponding to the propagation direction
of the incoming wave associated with the ν-th problem are chosen as follows: For ν=1:

θ∗,M
1 =φ∗,M

1 =0; For ν=2,3,··· ,Mtot−1: θ∗,M
ν =θM

1+int((ν−2)/Mφ)
, φ∗,M

ν =φ(ν−2)−Mφint((ν−2)/Mφ);

Finally, for ν= Mtot: θ∗,M
Mtot

=π, φ∗,M
Mtot

=0, where int(·) is the integer part of ·. Let Np, Ng be
two positive integers. For simplicity, suppose that we have at our disposal Ng ·Np pro-
cessors. We divide these processors into Ng groups of Np processors. Denote by pj,i the
i-th processor of the j-th group, i = 1,2,··· ,Np, j = 1,2,··· ,Ng. Choose the first processor
of each group to be the master processor of the processors of its group, that is, we have
Ng group masters pj,1, j = 1,2,··· ,Ng. Moreover, when necessary, the processor p1,1 will
act as master of the group masters. To keep the exposition simple, we approximate the
system of integral equations (3.7a), (3.7b), using a vector space generated by JM,N,m∗ =N

q
p

wavelet basis functions, where q is a positive integer greater than or equal to one. Finally,
we assume, for simplicity, that Mtot/Ng is an integer.

The first level of parallelism is exploited by assigning, for j = 1,2,··· ,Ng−1, and to
the j-th group of processors, the solution to the problems (2.7a)-(2.7d) indexed by ν =
1+(j−1)Mtot/Ng, 2+(j−1)Mtot/Ng,··· , jMtot/Ng. To the processors of the group j= Ng

are assigned the solution to the problems indexed by ν = 1+(Ng−1)Mtot/Ng, 2+(Ng−
1)Mtot/Ng,··· ,Mtot (see, for further details, [14]). A second level of parallelism in the ex-
ecution of Part 1 of the computation is contained in the solution to each problem (2.7a)-
(2.7d). This level of parallelism is exploited inside each of the Ng groups of Np processors
(see Fig. 2). There are two tasks in the second level of parallelism: computation of the
elements of the JM,N,m∗× JM,N,m∗ coefficient matrix mentioned above (this computation

is carried out once by the processors of each group) and, for each choice of θ∗,M
ν , φ∗,M

ν ,
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Figure 2: The three levels of parallelism.
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ν = 1,2,··· ,Mtot, computation of the right hand sides of the linear systems (3.14). The
matrix coefficients smaller than a given threshold τ (τ > 0) are discarded according to
formula (3.15), and, hence, they are not stored. The fact that each processor has only a
portion of the matrix to compute and that the matrix has several elements approximated
by zero makes possible the computation and storage of matrices of very high dimension
using limited resources. Indeed, because each processor usually has a certain amount of
memory at its disposal, the larger the number of processors used to perform this compu-
tation, the larger the dimension of the matrix that can be stored.

Next, the Np processors belonging to a group are used to compute the (truncated)
wavelet expansion of the right hand sides of the systems of integral equations (3.7a),
(3.7b), that is, the right hand sides of the linear systems (3.14), which must be solved by
the group of processors considered. For each right hand side considered, this compu-
tation consists of the numerical evaluation of JM,N,m∗ complex double integrals. These
integrals are independent of each other and are computed in parallel. In this phase of
the computation, some work must be replicated in exchange for removing the need for
communication between the processors in each group and between the different groups
of processors. When the processors belonging to a group have computed the coefficients
of the wavelet expansion of the right hand side of a linear system (3.14), they communi-
cate their results to the master processor of the group, which begins computation of the
solution to the linear system using an ad hoc parallel implementation of the conjugate
gradient method. The master processor of a group uses the Np processors of its group to
solve the linear systems. In the execution of the conjugate gradient method, the proces-
sors belonging to a group are used in parallel to compute the (row by column) product
of the coefficient matrix of the linear system with its transposed matrix. An iteration of
the conjugate gradient method is completed when each processor of the group commu-
nicates its results, obtained by performing these products, to the master processor of the
group (see [14] for further details). Finally, we discuss the parallel implementation of
Part 2 of the computation, that is, the computation of C̃a

λ,µ,S,M,N,m∗(x̂,k) for x̂∈SNθ ,Nφ (see

(3.20)). This involves a third level of parallelism (see Fig. 2).

Note that computation of formula (3.20) requires the numerical approximation of the
following integral:

a(x̂,α)=
∫

U′
dυ′e

−ik(x̂,y
ξc

(υ′))
gc(υ′)

[ m∗

∑
m=0

∑
µ∈IM,N,m

m∗

∑
m′=0

∑
µ′∈IM,N,m′

S

∑
s=0

ck,α,s,µ,µ′ Υ̃M
µ,µ′,N,ηN (υ′)

]
, x̂∈SNθ ,Nφ , α∈ IMθ ,Mφ . (4.1)

Let Ru be a positive integer that denotes the number of quadrature nodes in U′ used to
approximate the integral in (4.1). Let υ′

l, pl , l =1,2,··· ,Ru be the nodes and the weights of
the quadrature rule used. Note that to compute (4.1), it is convenient to sum the wavelet
coefficients on the grid IMθ,Mφ and on the Ru quadrature nodes, that is, it is convenient to
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compute the following functions:

sα(υ′)=
m∗

∑
m=0

∑
µ∈IM,N,m

m∗

∑
m′=0

∑
µ′∈IM,N,m′

Υ̃M
µ,µ′,N,ηN (υ′)

( S

∑
s=0

ck,α,s,µ,µ′

)
, υ′∈U′, α∈ IMθ ,Mφ , (4.2)

on the quadratures nodes of U′, store the result obtained, and sum the addenda of (3.20)
as follows:

C̃a
λ,µ,S,M,N,m∗(x̂,k)=

1

4π

Mθ−2

∑
i=1

sin(θM
i )

Mφ−1

∑
j=0

∣∣∣
Ru

∑
l=1

ple
−ik(x̂,y

ξc
(υ′l))gc(υ′

l)sαi,j
(υ′

l)
∣∣∣
2
, x̂∈∂B. (4.3)

The cost of computing (4.3) is Ru ·((Mθ−2)·Mφ)·((Nθ−2)·Nφ+2)+ Ru ·((Mθ−2)·Mφ)·
JM,N,m∗ elementary operations. In fact, Ru ·((Mθ−2)·Mφ)· JM,N,m∗ elementary operations
are necessary to approximate the function sα(υ′) on the quadrature nodes of U′ for α∈
IMθ,Mφ . To this cost, we must add the cost of re-summing the appropriate expressions
containing sα(υ′) on the Ru quadrature nodes of U′ for x̂ ∈ SNθ,Nφ , given by Ru ·((Mθ−
2)·Mφ)·((Nθ−2)·Nφ +2) elementary operations. That is, the parallel procedure has a
computational cost for each group of processors of Ru ·((Mθ−2)·Mφ)/Ng)·(JM,N,m∗/Np)
+Ru ·(((Mθ−2)·Mφ)/Ng)·((Nθ−2)·Nφ +2)/Np elementary operations.

5 A case study: the acoustic scattering cross section of the

simplified NASA space shuttle

In the numerical experiments presented in this Section, we computationally modeled
several acoustic scattering cross section conditions for a furtive simplified model of the
NASA space shuttle using formulae (2.12) and (3.20). The original model of the NASA
space shuttle (see Fig. 1(b)) was modified (see Fig. 1(a)) to allow representation (3.1) of
its boundary, using, as the cylindrical axis, the ”symmetry” axis of the main body of the
shuttle. The data relative to the original obstacle (see Fig. 1(b)) may be downloaded from
the website: http://www.nasa.gov/multimedia/3d−resources/assets/sts.html. The
physical dimensions of the shuttle are expressed in units such that 1unit=56.14/14meters.
The maximum length of the shuttle in the direction of the symmetry axis of its main body
is 14units. The space shuttle is an acoustically hard obstacle, that is, we have χ=+∞, and
the speed of sound in air is assumed to be c =331.45meters/seconds, which corresponds
approximately to c = 82.65units/seconds. The surfaces ξr , ξc were chosen such that the
kernels Kξr,ξc

and Φ(xξr
,y

ξc
) were continuous with respect to their first partial deriva-

tives. These surfaces ξr , ξc were obtained by smoothing the surface ξ and implementing
a kind of magnification along the symmetry axis of the smoothed ξ. The wavelength of
the time-harmonic incoming waves was 0.2 units, which corresponded to a wave number
k=10π units−1. These parameters resulted in a ratio between the characteristic length of
the obstacle (14units) and the wavelength of the incoming waves (0.2units) of seventy.
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To numerically solve the time-harmonic scattering problems (2.7a)-(2.7d) needed to
compute the cross sections shown in Figs. 3-7, we chose M = 1, N = 4, m∗ = 3, S = 1.
With these choices, each scattering problem is approximated by a square complex linear
systems with a coefficient matrix composed of JM,N,m∗ = (M ·Nm∗+1)2 = 216 = 65536 two
by two blocks (see (3.14)), corresponding to square linear systems of (real) dimension
NS=4JM,N,m∗=262144. Moreover, we chose τ=5×10−4. The incoming wave propagation
directions used to approximate the acoustic scattering cross section were the directions
contained in the set IMθ,Mφ defined in (2.11b), for Mθ = 6, Mφ = 12. The set SNθ ,Nφ, cor-
responding to the observation directions of the scattered field and of the acoustic cross
section, was the set defined in (2.11a) for Nθ =12, Nφ =24. In the computation, the cross
section the origin of the spherical coordinate system was taken to be the same as that used
to represent the boundary of the obstacle in cylindrical coordinates (the center of mass of
the obstacle). The symmetries of the obstacle were exploited in the computation. Let us
first show the effect of the smart strategy in reducing the entire solid angle of the acoustic
cross section. In the following, to avoid confusion, we denote the spherical coordinates
by (r,θ,φs) and the cylindrical coordinates by (r1,φ,x3). Recall that these two coordinate
systems have the same origin, and that we chose φ=φs.

Fig. 3 shows the surface ξ(x3,φ), x3∈ [−7,7], φ∈ [0,2π) of the simplified version of the
NASA space shuttle (a), the acoustic cross section Cλ,µ (multiplied by 40) (measured in

unit2 Kg2/sec4) of the passive obstacle (b), and the acoustic cross section Cλ,µ (multiplied

by 40) (measured in unit2 Kg2/sec4) of the smart obstacle for λ = 0.5 (c). Recall that the
cross section is a function of x̂ = x̂(θ,φs), θ ∈ [0,π], φ ∈ [0,2π), and note that in Fig. 3,
the cross section is represented in cylindrical coordinates. In fact, in Fig. 3, the cross
sections are represented as follows: to x̂, we associate (θ,φs), and to (θ,φs), we associate
x3 = 7cos(θ), φ = φs, θ ∈ [0,π], φs ∈ [0,2π). In this way, we represent the cross section in
cylindrical coordinates using the surface of a cylinder of radius 9, and the cylindrical axis
given by the x3 axis is zero for x3 ∈ [−7,7] and φ ∈ [0,2π) (Fig. 3). Visualization of the
cross section assists an understanding of the relation between the features of the obstacle
and the peaks of the cross section. We see that the cross section of the passive obstacle is
sensibly larger than the cross section of the smart obstacle (λ = 0.5). Moreover, the two
cross sections take their maxima according to the largest extension of the ”wings”, x3≈6,
φ=0,π,2π and of the ”vertical stabilizer”, x3≈6.5 and φ=3π/2, of the shuttle.

Fig. 4 shows, from left to right, the acoustic cross sections (multiplied by 80) of the
passive obstacle and of the smart obstacle (λ = 0.5). The cross sections are represented
in the radial coordinates of the spherical coordinate system using the surface of a sphere
of radius 9, such that the center is at the origin as zero. This last surface is chosen as
zero because the sphere of radius 9, with the center at the origin, can contain the obsta-
cle. The view of the obstacle and its cross section, as shown in Fig. 4, together assist an
understanding of the scattering phenomenon studied. Note that the smart strategy, with
λ = 0.5, satisfactorily reduces the scattered field on almost the entire solid angle, except
for the part of the solid angle corresponding to the ”wings” of the obstacle located ap-
proximately at φs = 0, π, 2π, θ = π/9 (i.e., x1 ∈ (−5,5), x2 = 0 and x3 ∈ (4,6)) and to the
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Figure 3: Furtivity effect: (a) boundary of the obstacle ξ, (b) cross section of the passive obstacle Cλ,µ

(multiplied by 40), (c) cross section of the smart obstacle (λ=0.5) Cλ,µ (multiplied by 40).

Figure 4: From left to right, the acoustic cross section (unit2 Kg2/sec4) of the passive obstacle (multiplied by
80) and of the smart obstacle (λ=0.5) (multiplied by 80) represented in the radial coordinate using the surface
of a sphere of radius 9, and assigning the center of the sphere to the origin, to represent a value of zero for the
cross section. Inside this sphere is shown a model of the obstacle positioned coherently within the cross section.
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vertical stabilizer, located approximately at φs = 3π/2, θ = π/9 (i.e., x1 = 0, x2 ∈ (1,4),
x3∈(6,7)). We want to examine the relation between the smart strategy and the scattered
field by studying the magnitude of the coefficients of the series expansions appearing in
(3.5a), (3.5b). Recall that we have chosen S=1. We consider the following quantities:

mλ
c,k,α =

1

2JN,M,m∗

1

∑
s=0

m∗

∑
m=0

∑
µ∈IM,N,m

m∗

∑
m′=0

∑
µ′∈IM,N,m′

|cλ
k,α,s,µ,µ′ |, α∈∂B, λ∈ [0,1], (5.1a)

mλ
f ,k,α =

1

2JN,M,m∗

1

∑
s=0

m∗

∑
m=0

∑
µ∈IM,N,m

m∗

∑
m′=0

∑
µ′∈IM,N,m′

| f λ
k,α,s,µ,µ′ |, α∈∂B, λ∈ [0,1], (5.1b)

and we consider the ratio

rλ
c,k,α =

mλ
c,k,α

m0
c,k,α

, α∈∂B, λ∈ [0,1], (5.2)

and the quantities

rλ
c,k =

1

Mθ Mφ

Mθ

∑
i=1

Mφ

∑
j=1

rλ
c,k,αi,j

, λ∈ [0,1], (5.3a)

rλ
f ,k =

1

Mθ Mφ

Mθ

∑
i=1

Mφ

∑
j=1

mλ
f ,k,αi,j

, λ∈ [0,1], (5.3b)

where αi,j=α(θM
i ,φM

j )=(sinθM
i cosφM

j ,sinθM
i sinφM

j ,cosθM
i )T, i=1,2,··· ,Mθ, j=1,2,··· ,Mφ,

see (2.12). The quantity rλ
c,k is a measure of the mean reduction of the wavelet coefficient

amplitudes of the acoustic scattered fields as a function of λ∈ [0,1], and the quantity rλ
f ,k

is a measure of the mean cost of the smart strategy measured in terms of the amplitudes
of the wavelet coefficients of the pressure current as a function of λ∈ [0,1].

Table 1 shows the quantities rλ
c,k, rλ

f ,k, for λ=0.5, λ=1−10−6, and the ratio rλ
c,k,α given

in (5.2) for the same values of λ and for some incoming directions α(θ,φs)∈ IMθ,Mφ . The

Table 1: Furtivity effect on the wavelet coefficients.

(θ,φs)∈ IMθ ,Mφ r0.5
c,k r1−10−6

c,k,α m0.5
f ,k,α m1−10−6

f ,k,α

(π/5,0) 0.739 0.533 2.06×10−5 2.11×10−3

(π/5,π) 0.813 0.237 5.51×10−6 8.43×10−4

(3π/5,0) 0.562 0.472 2.14×10−5 9.89×10−4

(3π/5,π/2) 1.01 0.216 3.01×10−5 9.61×10−6

(3π/5,π) 0.813 0.237 4.96×10−6 1.11×10−2

(4π/5,0) 0.658 0.685 3.26×10−5 1.74×10−3

mean value on IMθ ,Mφ r0.5
c,k =0.442 r1−10−6

c,k =0.319 r0.5
f ,k =9.55×10−6 r1−10−6

f ,k =5.56×10−4
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furtivity effect induced by the pressure current reduces, on average, the amplitudes of the
wavelet coefficients of the acoustic scattered fields by about 55.8% (i.e., 1−0.442=0.558)
for λ = 0.5, and by about 68.1% (i.e., 1−0.319 = 0.681) for λ = 1−10−6. Note that, as
shown in Table 1, the improvement in the furtivity effect obtained in going from λ =0.5
to λ = 1−10−6 implies a cost associated with the ”size” of the pressure current used to
obtain the furtivity effect, measured by rλ

f ,k. Furthermore, Table 1 shows that for some

incoming directions of the incident wave, the smart strategy fails to hide the obstacle. In
particular, these critical directions are those along which the scattering effects of some of
the features of the obstacle are relevant (that is, the effects of the ”wings” corresponding
to (θ,φs) equal to (π/5,0), (3π/5,π), of the ”vertical stabilizer” corresponding to (θ,φs)=
(3π/5,3π/2), or of the prow corresponding to (θ,φs)= (4π/5,0)).

Let us examine, in detail, some of these incoming directions. For example, let us con-
sider the direction α̂ = (sin(4π/5)cos(5π/3),sin(4π/5)sin(5π/3),cos(4π/5)), that is, a
direction along which the effects of the prow are relevant. We select this direction of
incoming wave to complete the analysis of the scattering cross section shown in Figs. 3
and 4. In fact, these figures do not clearly show the effects of the prow. In particular,
in Fig. 5, the (θ,φs) plane is shown on the color scale alongside the modulus of the far
field, F0

λ,µ(x̂(θ,φs),k,α̂) (multiplied by 9) for λ = 0,0.5,1−10−6. The corresponding cross

sections Cλ,µ(x̂(θ,φs),k) (multiplied by 9) are shown in Fig. 6. Figs. 5, 6 are presented in
the same color scale. Fig. 5 shows that the far fields of the passive obstacle and the smart
obstacle, for λ = 0.5, reveal the presence of the wings and prow. That is, the far field
corresponding to the smart obstacle, for λ = 0.5, behaves similarly to the far field corre-
sponding to the passive obstacle. In contrast, the behavior of the far field corresponding
to the smart obstacle, for λ = 1−10−6, is satisfactory. This effect depends on the incom-
ing wave propagation direction considered. In fact, the acoustic cross section (see Fig. 6)
shows that the smart strategy works well for λ=0.5. Finally, Fig. 7 shows that along the
direction (θ,φs) = (4π/5,π/30), the scattered field is large. This is probably due to the
effects of the wings and prow. However, Fig. 7 shows also that along this direction, the
smart strategy works satisfactorily for the two values of λ considered. Finally, Figs. 5, 6,
7 show that the vertical stabilizer is the element of the obstacle that is the most difficult
to make furtive. Instead, the prow is the element of the obstacle that the smart strategy
hides satisfactorily. The website http://www.ceri.uniroma1.it/ceri/zirilli/w7 con-
tains virtual reality and stereographic applications related to the acoustic scattering cross
sections of the simplified NASA space shuttle.
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