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Abstract. A two-dimensional lattice Boltzmann model has been employed to simu-
late the impingement of a liquid drop on a dry surface. For a range of Weber number,
Reynolds number and low density ratios, multiple phases leading to breakup have
been obtained. An analytical solution for breakup as function of Reynolds and Weber
number based on the conservation of energy is shown to match well with the simula-
tions. At the moment breakup occurs, the spread diameter is maximum; it increases
with Weber number and reaches an asymptotic value at a density ratio of 10. Droplet
breakup is found to be more viable for the case when the wall is non-wetting or neutral
as compared to a wetting surface. Upon breakup, the distance between the daughter
droplets is much higher for the case with a non-wetting wall, which illustrates the role
of the surface interactions in the outcome of the impact.
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1 Introduction

Impingement of liquid droplets onto a dry surface can be observed in natural and mod-
ern engineering phenomenon such as rain drops on the surface of the earth, atomized
fuel on the piston of an internal combustion engine, in ink-jet printing, spray cooling
and recently in microfabrication [1]. A variety of mechanisms underlying the impact
of liquid droplets on a dry surface, and the subsequent spreading behavior, have been
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highlighted through a variety of experimental investigations [2–10]. The breakup of the
parent droplet into daughter droplets, and the difference in the dynamics of a single drop
impact with a dry wall as compared to that of a train of drops has been demonstrated as
well [4]. Scheller and Bousfield [5] showed that the contact angle effect on the spread-
ing film diameter is negligible for droplet Re > 10, and that the maximum spread factor
follows the correlation given by

ξmax =0.61(Re2Oh)0.166. (1.1)

Rioboo et al. [6] showed that during the receding process, the perturbations merge lead-
ing to a rebound of the droplet for the case of water drops impacting a wax surface.
However, for cases where no rebound was noticed, the diameter of the spreading film
either remained constant or increased depending on the wettability of the surface used.

In addition to the experimental work, droplet impact dynamics has also been the sub-
ject of considerable numerical investigations [11–16]. However, much of the numerical
work has been focused on simulations of droplet impingement on a surface covered with
a thin liquid film [11–15]. Using the volume-of-fluid (VOF) method, Josserand and Za-
leski [11] developed a criterion to scale the transition between splashing and deposition
of liquid droplets on a thin liquid film. The VOF method has also been employed to
identify the conditions leading to the entrapment of vapor bubbles as a result of capillary
wave formed as a result of the droplet impact [12]. Lee and Lin [13] have developed and
applied a high density ratio lattice Boltzmann model to simulate the splashing and de-
position of droplets on a thin film. Mukherjee and Abraham [14, 15] extended the earlier
model [13] to simulate the deposition and splashing behavior for an axi-symmetric do-
main. In a separate study, droplet spreading behavior for very low Oh and subsequent
rebound on a dry surface for low density ratios was also investigated [16].

Impact of a droplet on a dry surface may be vastly different from that on a thin film,
and is likely to be dependent on the density ratio of the two fluids, especially in high
pressure systems where the parameter has a low value. The final shape and spreading of
the liquid drop also depends on a range of parameters, like the impact velocity (U), the
size of the droplet (D), the angle of attack to the surface, the physical properties of the
liquid drop and the surrounding pressure.

The objective of this work is to (a) illustrate the applicability of a two-dimensional lat-
tice Boltzmann method (LBM) in simulating droplet impingement on a dry surface, (b)
to elucidate the mechanisms involved in the collision and subsequent relaxation of liquid
droplets, and (c) to identify the physics of droplet breakup mechanism for low density
ratios. Based on the conservation of energy, a criterion based on Reynolds number, We-
ber number, and the density ratio is developed to predict whether the collision of a liquid
droplet would result in its breakup into daughter droplets. In addition, the physical be-
havior as a result of droplet collision may depend on whether the surface is hydrophobic
or hydrophilic, rough or smooth, and dry or wet. This work also briefly explores the
effect of the interaction between a liquid and the wetting characteristics (hydrophilic or
hydrophobic) of a surface, and its influence on the breakup process.
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2 Lattice Boltzmann method

In recent years, LBM has emerged as a powerful alternative to study the fluid behavior in
problems relating to two-phase and porous media flows [17,18]. LBM requires no empir-
ical correlations for the closure of extra source terms in the governing equations, and at
the same time can yield detailed physics of the flow around single or multiple droplets.
The interface is no longer a mathematical boundary; it is a post-processed quantity that
can be detected by monitoring the variation in fluid densities.

The Boltzmann’s kinetic equation describes the evolution of the single particle distri-
bution function ( fi(x,t)) as a function of space and time. Unlike conventional schemes
that are based on discretization of continuum based macroscopic equations, LBM models
the kinetic equations. These simplified kinetic models incorporate the nature of physics
at the microscale such that the flow field variables obey the macroscopic governing equa-
tions.

The lattice Boltzmann equation for the evolution of the particle distribution function
can be written as

fi(x+eiδt,t+δt)= fi(x,t)− fi(x,t)− f
eq
i (x,t)

τ
, i=0,1,··· ,b−1, (2.1)

where the particular form of the collision operator with the single time relaxation ap-
proximation, also known as the lattice BGK (Bhatnagar-Gross-Krook) operator has been
used. In this work, the two-dimensional, nine-speed, phase-space discretization model,
D2Q9, for the discrete velocity space has been used that gives a square lattice for the
space discretization. The velocity vectors are given as

ei =











(0,0), i=0,

(±1,0)c, (0,±1)c, i=1,2,3,4,

(±1,±1)c, i=5,6,7,8.

(2.2)

The macroscopic density and the macroscopic momentum density at each lattice are de-
fined in terms of the particle distribution functions by

ρ=∑
i

fi =∑
i

f
eq
i , ρu=∑

i

fiei =∑
i

f
eq
i ei. (2.3)

The equilibrium distribution functions depend only on local density and velocity and are
given as:

f
eq
i =

ρ−d0

b
+

ρD

c2b
(ei ·u)+ρ

D(D+2)

2c4b
(eiei : uu)− ρD

2c2b
(u·u), (2.4a)

f
eq
0 =d0−

ρ

c2
(u·u), (2.4b)

where f
eq
i is the equilibrium distribution of particles moving in direction i, f

eq
0 is the

equilibrium distribution of rest particles, D is the dimension rank (2 for two-dimensions),



770 A. Gupta and R. Kumar / Commun. Comput. Phys., 10 (2011), pp. 767-784

b is the number of lattice directions, c is the lattice unit length, and d0 is the average
rest particle number [19]. The lattice Boltzmann’s equation bridges the gap between the
microscopic and macroscopic fluid interactions as it yields the Navier-Stokes equation in
the low Mach number limit using the Chapman-Enskog expansion [17,18], and is second
order accurate in space. In addition, τ >1/2 in order for viscosity to be positive.

2.1 Multiphase model in LBM

LBM has been shown to be especially useful for the simulation of multiphase flows due
to its local nature and the solution of a linear equation to determine the macroscopic
fluid behavior. As a result, a number of different variants have been proposed to conduct
multiphase simulations in the domain of this method [13–16, 20–29]. One of the earliest
and commonly used methods is the Shan-Chen’s (S-C) model [21]. Hou et al. [22] have
compared the chromodynamic [20] and the S-C [21] models and showed that the latter
was superior by recording the pressure and velocity at the interface of a static bubble
equilibrated in a three-dimensional domain. The two models were also reported to suf-
fer from some shortcomings, such as high spurious velocities at the interface, and their
inability to simulate high density ratio fluids. A recent improvement of the chromody-
namic model [27] has been proposed to counter the problem of high spurious velocities at
the interface; however, the model could only work for fluids with equal densities [30,31].
Despite these shortcomings, the S-C model has been widely used to simulate multiphase
flows with low to moderate density ratios in a variety of recent studies because of its ease
of implementation and isotropic nature of solutions [28, 29, 32–34, 36, 38].

Since the current study is focused on droplet interactions at high pressures and low
density ratios, the S-C model has been adopted. The S-C model incorporates non-local
interactions among particles to simulate multiple component fluids. The interaction po-
tential between components σ and σ̄ is defined as

V(x,x′)=Gσσ̄(x,x′)ψσ(x)ψσ̄(x′), (2.5)

where Gσσ̄(x,x′) is the Green’s function. The quantity ψσ is the ”effective mass” function,
and for the case when with nearest neighbor interactions only, can be written as

Gσσ̄(x,x′)=

{

0, |x−x′ |> c,

Gσσ̄, |x−x′ |= c.
(2.6)

The strength of the interaction between components σ and σ̄ is quantified by the magni-
tude of the Green’s function (Gσσ̄), while its sign determines whether the interaction is
attractive or repulsive. As a result, the net force due to surface tension-based interaction
at each lattice site can be written as

Fσ
int(x)=−ψσ(x)

S

∑
σ̄=1

Gσσ̄

b−1

∑
a=0

ψσ̄(x+ea)ea. (2.7)
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Similarly, at the solid-fluid interface, an attractive or repulsive force [35] could be incor-
porated to control the wetting nature of the heavier liquid with the solid surface. This
form of the interaction is given by

Fσ
wall(x)=−ρσ(x)

b−1

∑
a=0

Gw,σρσ̄(x+ea)ea, (2.8)

where the interaction parameter Gw,σ denotes the intensity of interaction from the wall
and the sign (positive/negative) indicates whether the interaction is repulsive/attractive
(non-wetting/wetting). For the D2Q9 lattice used in this work, Gw,σ takes into consider-
ation the nearest and second-nearest nodes through the following equation,

Gw,σ(x,x′)=















Gw, |x−x′ |=1,

Gw

4
, |x−x′ |=

√
2,

0, otherwise.

(2.9)

An external force of gravity is directed in the negative vertical direction. This external
force can be introduced into the force equation using the expression [36]

Fσ
ext =ρσaext =ρσg

(

1− 〈ρ〉
ρ

)

, (2.10)

where ρ is the mixture number density at the node of interest and 〈ρ〉 is the average
number density of the mixture in the entire domain. Eq. (2.10) ensures that the average
value of the external force is zero in the periodic domain, and hence the mass-average
velocity of the mixture remains constant. Combining (Eqs. (2.7), (2.8) and (2.10), the total
force at each lattice node can be computed by

Fσ
tot =Fσ

int+Fσ
wall+Fσ

ext. (2.11)

The total force is incorporated into the momentum change at each node through the equi-
librium distribution function before the collision step [37], such that

ρσuσ =ρσu+τσFσ
tot(x), (2.12)

where

ρσ =mσ f σ(x) (2.13)

is the mass density of the σth component and

u=
( S

∑
σ

mσ∑
a

f σ
a ea/τσ

)( S

∑
σ

mσ∑
a

f σ
a /τσ

)−1
(2.14)

and

f σ(x)=∑
a

f σ
a . (2.15)
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3 Results and discussion

The S-C model [21] was first validated for simulation of bubbly flows using periodic
boundary conditions. The drag force was calculated and the bubble shape regimes were
found to match well with the experimentally observed shapes [38].

Droplet equilibration was conducted to generate a good initial condition in a channel
with top and bottom boundaries as walls and side boundaries to be periodic. The upper
boundary condition was changed from no-slip to free-slip, without significant difference
in the diameter of the spreading film for results presented in later sections of this study.
The nearest neighbor SC model [39] has been incorporated by including the next-nearest
neighbor in the force discretization. Thus, Eq. (2.6) was modified to account for the sec-
ond nearest neighbors as well, through the following modification,

Gσσ̄(x,x′)=















g, |x−x′ |=1,
g

4
, |x−x′ |=

√
2,

0, otherwise.

(3.1)

The non-ideal equation of state for the fluid can then be written as

p= c2
Sρ+

3

2
gΨ2(ρ), (3.2)

where cS = 1/
√

3 is the speed of sound in lattice units. A lower value of the interaction
strength (i.e., g < gcrit =−4/(9ρ0)) would result in phase separation of the liquid phase,
and hence leads to a high density ratio. The ”effective mass” function, Ψ, as given in the
original work [21] was used.

Ψ(ρ)=ρ0

[

1−exp
(

− ρ

ρ0

)]

. (3.3)

The computational domain was divided into 400×100 lattice points, which was tested to
be adequate to resolve the thinnest regions of the spreading lamella on the wall.

The important dimensionless parameters that classify the dynamics of droplet im-
pact on a dry surface are the Weber number (We = ρlU

2D/σ), Reynolds number (Re =
ρlUD/µl), and the spread factor (given by the ratio of the diameters of the film and
the droplet (i.e., ξ = d/D)). The fluid-interaction parameter g, as given in Eq. (3.1), was
varied between -0.047 to -0.054, and the corresponding density ratio in the simulations
ranged from 4 and 10. The suspended droplet, whose radius was varied between 8 to 25
lattice units, was equilibrated for 20,000 lattice time steps such that the pressure inside
and outside the drop converged to a steady state value. After the equilibration period,
the external force was switched on and the drop was allowed to fall towards the solid
surface.

Fig. 1 shows the results for droplet spreading on a surface for a density ratio of
ρl/ρg =3.6 at We=162 and Re=42. Non-dimensionalization of time was done using the
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(a) t∗=1.137 (b) t∗=1.420

(c) t∗=2.268 (d) t∗=2.834

(e) t∗=4.531

Figure 1: Velocity vectors for We = 162 and
Re = 42 at a density ratio of 3.6. The con-
tours (shown in red) denote the interface.
The velocity vectors are shown in black.

characteristic time tref=D/U. The non-dimensionalized time at which each snapshot has
been taken after the point of impact with the surface are also shown in the figure. A few
observations can be made: after the droplet falls on the surface, it spreads and oscillates
until it gets stretched to a maximum diameter (Figs. 1(a)-(c)), beyond which the contact
line recedes in a non-uniform fashion (Fig. 1(e)). It can be seen that the droplet spreading
process is quicker in the spreading phase in which the drop spreads due to an elonga-
tional flow after colliding with the surface. The velocity vectors around the droplet are
shown at the appropriate time instants. Fig. 1(b) shows the presence of an elongational
flow as the droplet undergoes the spreading phase. In this stage, the velocity of the heav-
ier phase in the transverse (horizontal) direction drives it faster to an extremum (Fig. 1(c))
at t∗=2.268. As a result of the drag on the lighter phase induced by the movement of the
liquid film, a vortical flow is generated near the interface of the two phases, as is shown in
Figs. 1(b) and (c). The strength of these vortices decreases with time as the spreading film
dissipates momentum into the surrounding fluid. In Fig. 1(d), the shape of the droplet
at the initiation of the relaxation phase is shown. In this phase, interfacial tension comes
into play leading to the retraction of the interface. The relaxation to the final equilibrium
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shape was found to take a longer amount of time as compared to the other phases of the
process. Eventually, the drop attains a steady shape beyond which there is no significant
change.

Simulations were done for a range of Weber and Reynolds numbers, but the ratio
We0.5/Re, called the Ohnesorge number (Oh), was held constant, to study the effect of the
interplay of the viscous and surface tension forces on the spreading behavior of a single
drop. Ohnesorge number is a measure of the viscous force relative to the surface tension
force for a given size of the droplet. The time evolution of the spread factor (ξ = d/D)
for Oh = 0.197 and different Weber numbers is shown in Fig. 2. For each We, the time
evolution can be divided into four phases, (a) kinematic, (b) spreading, (c) relaxation,
and (d) equilibrium. The spreading length was calculated based on the number of lattice
points that are in contact with the heavier fluid at the wall. The physics of each phase is
discussed below.

Assuming that the diameter of the drop after the impact is still the same, a simple ex-
pression for the spread factor, given as ξ=d/D=2t∗1/2, where t∗=tU/D can be obtained
for a two-dimensional droplet in the kinematic phase (t∗≪ 1). The constant of propor-
tionality was found to be 2.8 in experiments [6]. In the kinematic phase, the spread factor
does not change significantly for different We and Re. The curve fit for the current LBM
simulations in the kinematic phase of several cases yields d/D=1.42t∗0.5 which compares
reasonably well with the theoretical expression.

As the spreading phase begins, the velocity of the droplet in the transverse (horizon-
tal) direction drives it faster to an extremum, as is shown in Fig. 1(b). Other parameters
such as the diameter of the impacting droplet, the velocity, the surface tension and vis-
cosity start to influence the rate at which the lamella spreads. Results of simulations
conducted for a constant Oh are shown in Fig. 2. As can be observed, the spread factor is
a strong function of We and Re which control the maximum diameter and time to reach
an equilibrium shape, respectively. For the lowest Weber number of 2.78, the droplet di-
ameter does not exceed the original diameter in any of the phases, and behaves similar
to a rigid body. From Fig. 2, two observations on the relative influence of lowering the
surface tension (i.e., increase of We) can be made: a) the peak diameter is reached after a
much longer time, and b) the spread factor increases, reaching a maximum for We=140.
The effect of Reynolds number on the relaxation phase is shown in Fig. 3. Simulations
conducted by increasing Re, while keeping We constant, showed that the droplet reached
the final equilibrium shape at higher t∗ values. A higher Re indicates lower viscous dis-
sipation of the oscillating film into the surrounding lighter fluid.

Earlier experiments [8] have indicated that droplet spreading and breakup mecha-
nism are a strong function of the surrounding density (or pressure). Fig. 4 shows that, for
the constant We and Re, the spread factor is higher for the case with the higher density
ratio. The spread factor was also found to be higher for wetting wall as compared to a
non-wetting wall. A similar conclusion was also reached earlier [6] where experiments
were conducted at We >35. At a higher density ratio, the relaxation phase is marked by
the presence of higher amplitude oscillations in the spreading diameter as is shown in
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Figure 2: Time evolution of spread factor as a function of time for Ohnesorge number, Oh, (We0.5/Re)=0.197.

Figure 3: Spread factor variation for three different Re values at We=21. At higher Re, the oscillations in the
relaxation phase are found to be higher compared to lower Re.

Figure 4: Comparison of spreading profiles for two different density ratios at We=40 and Re=30.
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Fig. 4, which is also the case for Re > 100. These are attributed to (a) lower drag when
the surrounding gas has a lower density, and (b) slower viscous dissipation of the reced-
ing drop when the surrounding gas has a lower viscosity, both of which lead to longer
fluctuations in the attainment of the equilibrium shape of the spreading drop.

3.1 Droplet breakup analysis

An impinging droplet can breakup into smaller drops at higher Weber and Reynolds
numbers. By the principle of conservation of energy before and after the impact,

Ei
KE+Ei

PE+Ei
SE =E

f
KE+E

f
PE+E

f
SE+E

f
D, (3.4)

where Ei
KE, Ei

PE and Ei
SE are the kinetic, potential and surface energies before the impact of

the liquid drop with the solid, and E
f
KE, E

f
PE, E

f
SE and E

f
D are the kinetic, potential, surface

and dissipation energies after the impact [9]. For a two-dimensional drop of length L, the
kinetic energy of impact can be written as

Ei
KE =

1

2
∆ρU2

(π

4
D2L

)

, (3.5)

where ∆ρ=ρl−ρg is the difference in densities of the two fluids. The thickness of the film
(h) when the drop reaches a maximum diameter of Dmax can be written as

π

4
D2L= DmaxhL⇒h=

π

4

D

ξmax
, (3.6)

where ξmax is the ratio of the maximum film diameter to the initial diameter of the drop.
From [10], the dissipation energy can be simplified as

ED≈VΦte, (3.7)

where Φ is the dissipation function, i.e.,

Φ=µ
( ∂ui

∂xj
+

∂uj

∂xi

)∂ui

∂xj
,

which can be simplified to the form given by

⇒Φ≈µ
(U

h

)2
, (3.8)

te = D/U is the time taken by the droplet height to go from D to 0. Thus, the dissipation
energy is given by

E
f
D =µ

(U

h

)2 D

U

(π

4
D2L

)

=
4

π
µUDLξ2

max. (3.9)



A. Gupta and R. Kumar / Commun. Comput. Phys., 10 (2011), pp. 767-784 777

The surface energy before the impact is given by

Ei
SE =σDL. (3.10)

The surface energy at the instant when the maximum diameter (Dmax) is attained is given
by

E
f
SE =σDmaxL(1−cosθ). (3.11)

For flows where Re > 10, it has been shown that the maximum spread factor does not
depend on the contact angle. Moreover, analytical work [7] has also shown the minimal
effect of capillary forces for flows with We≫Re1/2. Thus, the contact angle dependence
on the surface energy is ignored. Back substituting into Eq. (3.4), and on simplification,
the energy equation can be reduced to

8

π

(ξmax−1)

We
+

32

π2

ξ2
max

Re
=

∆ρ

ρl
. (3.12)

For large differences in density, the right hand side of Eq. (3.12) would approach a con-
stant value (i.e., ∆ρ/ρl≈1). However, for the density ratios simulated in the current study,
∆ρ/ρl can vary from 0.75 to 0.9.

Due to the competition between the surface and kinetic energies, a liquid droplet
undergoing spreading on a dry surface may breakup into daughter droplets. The energy
analysis has been motivated by the need to quantify the interplay between the two. Thus,
(3.12) can be used to predict the outcome of droplet impingement on a dry surface. The
droplet will spread to a maximum diameter and breakup into smaller daughter droplets
if

ρl

∆ρ

( 8

π

(ξmax−1)

We
+

32

π2

ξ2
max

Re

)

<1.

For situations where the following condition, given by

ρl

∆ρ

( 8

π

(ξmax−1)

We
+

32

π2

ξ2
max

Re

)

>1

is satisfied, the spreading film will relax to the final equilibrium shape without breaking
into smaller droplets.

Using LBM results, a complete analysis of the 2D droplet breakup can be performed
for a range of We and Re at different density ratios to observe a possible breakup of
the parent drop into daughter droplets due to impact and surface interactions from the
wall. For a density ratio that ranged from 3 to 10, the Weber and Reynolds number were
increased linearly by increasing the diameter of the impacting drop without changing
any of the other variables. The size of the domain in the transverse and longitudinal
directions was correspondingly increased to between 8 and 10 times the diameter of the
impinging drop to obtain grid independent solutions. The current multiphase model
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Table 1: LBM simulation results at breakup for different density ratios.

Case ρl/ρg We Re ξmax

(a) 3 347.85 75.13 3.7
(b) 4 330 91.1 4.637
(c) 5 252.08 97.56 5.01
(d) 6 222.21 103.87 5.21
(e) 8 186.85 115.57 5.83
(f) 10 183.91 132.1 6.1

precludes any changes in the surface tension parameter once the interaction strength Gσσ̄

is fixed. As the diameter is increased, the maximum film length also increases. At a
critical value of Re and We, the drop breaks into daughter droplets when the maximum
spreading diameter is reached. This process was repeated for other density ratios as well,
and the results for Wecrit and Recrit are listed in Table 1, and plotted in Fig. 5. It can be
observed that as the density ratio is increased, the maximum spread factor at breakup
also increases, reaching an asymptote at a density ratio of 10. Using the density ratio and
the Recrit and Wecrit values, the maximum spread factor at breakup can be back-calculated
from the quadratic Eq. (3.12). The ξmax obtained from Eq. (3.12) is compared with the
actual ξmax obtained from the LBM simulations, and is plotted in Fig. 6. For comparison,
a line at 45◦ is drawn that corresponds to an exact match of LBM with theory. The LBM
results and the solution from the energy equation were found to be accurate within a
±5% error margin.

Figure 5: Plot with variation of maximum spread factor from LBM simulations at the moment of breakup as a
function of density ratio for two-dimensional droplets.

The results of increasing We and Re for different density ratios are shown in Fig. 7.
First, Re and We were increased by increasing the drop diameter for each density ratio
until breakup occurred. The Weber number and Reynolds number were recorded at the
point of breakup and used in (3.12) to find the maximum spread factor. Through this
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Figure 6: Comparison of LBM results and the analytical solution from (3.12) for two-dimensional droplets.

Figure 7: The spread/breakup regime map for impact of single droplet with a solid surface for neutral wetting
conditions. The hollow symbols indicate that droplet spreads without breakup, and the filled circles indicate a
breakup of the parent droplet. The demarcating curves (broken lines) that are shown are from the solution of

the equation
ρl

∆ρ

(

8
π

(ξmax−1)
We + 32

π2

ξ2
max
Re

)

=1 for selected density ratios of 3 (- - -) and 10 (···). These curves move

to the right as the density ratio is increased from 3 to 10. Also shown is the locus (solid line) of the critical
parameters at breakup.

point, the breakup curve for the given density ratio was drawn. For example, at a density
ratio of 3 and ξmax =3.7 (see Table 1), a map of the possible outcomes given by 11/We+
73/Re = 1 is shown in the figure. Similarly, for ρl/ρg = 10 and ξmax = 6.1, the analogous
curve is given by 14/We+122/Re=1 and is also shown in the figure. Consequently, the
critical points at which breakup would occur fall in between these two curves. As the
density ratio is increased, these curves shift to the right, decreasing and increasing the
value of Weber and Reynolds number for breakup respectively. Several density ratios
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were run to generate Wecrit and Recrit, and the locus of these points is drawn as the solid
curve in Fig. 7. Below this critical line, droplet breakup would not occur, and above it,
it would for any density ratio. Above Wecrit and Recrit, the drop may break into two to
three smaller droplets.

3.2 Surface wetting characteristics of a 2D droplet

Wetting characteristics play an important role in determining the mechanism of breakup.
Simulations were conducted at different Weber and Reynolds numbers, with different
density ratios, to compare the effect of the wetting nature on possible breakup of the
spreading liquid film on the wall. For We = 114 and Re = 152, the surface was varied to
be wetting, neutral and non-wetting, as is shown in the Fig. 8. For a non-wetting surface
(Fig. 8(c)), the impinging drop was observed to breakup readily impact with the solid
surface. Since the surface is non-wetting, the drop fails to have an affinity for the solid
wall, and in turn the surface interactions from the solid reduce the surface energy. This
leads to a strong elongation flow and a high kinetic energy in the direction of spread,
eventually leading to a breakup of the parent drop. In the case of a wetting surface, the
surface energy is high, and thus plays a prominent role in reducing the kinetic energy

(a) Wetting

(b) Neutral

(c) Non-wetting

Figure 8: Different outcomes of a droplet splashing mechanism depending on the surface wetting characteristics
at We=114 and Re=152. The domain size has been shown as truncated on the left and right boundaries and
extends much further than as depicted.
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in the transverse direction, due to which the film spreads to a maximum diameter and
yet does not break into daughter drops (Fig. 8(a)). A neutral surface can be described by
(3.12), and for the We and Re, as shown in Fig. 8(b), the outcome lies on the right of this
critical curve. It can be observed that the nature of breakup of the spreading film is vastly
different for the non- and neutral-wetting cases.

Thus, the wetting characteristics of the wall influence the geometric separation of
the smaller droplets when the original drop eventually breaks up on the wall. Upon
breakup, the distance between the daughter droplets is much higher for the case with a
non-wetting wall as compared to breakup at a wetting wall. Hence, a possible breakup
of the drop on a neutral or non-wetting surface can be averted by altering the surface and
making it wetting in nature.

4 Conclusions

In this work, two-dimensional simulations of droplet impact dynamics using S-C model,
that allows two-phase fluid-fluid and fluid-solid interactions, have been conducted. Sim-
ulations were performed with different densities of the heavier and lighter phases such
that the density ratio lies between 3 and 10. For this range of density ratio, a breakup cri-
terion based on a simplified energy conservation analysis was developed and validated
with the aid of lattice Boltzmann method.

Several simulations of single-drop collisions on a dry wall were done for a range of
Weber number (2<We <162) and Reynolds number (10< Re <100). The spread factor
was shown be a strong function of the Weber number, which determines the maximum
diameter of the spreading film, and the Reynolds number, which controls the time it
takes for the droplet to reach the equilibrium shape. For We = constant, simulations
indicate that the time taken by the droplet to reach a final equilibrium shape increases
as Re increases. A higher Re indicates lower viscous dissipation of the oscillating film
into the surrounding lighter fluid. The role of the density ratio on the droplet spreading
behavior was also recorded. In the relaxation phase, a higher density ratio results in
higher amplitude oscillations in the spreading film diameter.

Criteria for two-dimensional droplet breakup was developed, which depends on Re
and We. For a wide range of Re and We, the LBM simulations obeyed the droplet breakup
criteria developed in this paper. The breakup of the droplet was observed to occur only
after a maximum spread factor was reached. This value increased with the density ratio,
but reached an asymptote at a density ratio of 10. The LBM simulation results were
compared with an analytical solution for the spread factor based on the conservation of
energy and were found to be within ±5% error margin.

The spreading behavior of the drops was also found to be a strong function of the
wetting characteristics of the wall, although for impacts with high inertia the role of the
wall wetting characteristics was not very significant as for low inertia impacts. Droplet
breaks up readily for the case when the wall is non-wetting or neutral as compared to a
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wetting surface. In addition, after the breakup on a non-wetting wall, the smaller droplets
move farther away from each other. Such behavior illustrates the role of the surface
interactions in the outcome of the impact. Hence, use of a hydrophilic surface can assist
in delaying/averting the break-up on a liquid droplet impacting on a dry surface.

Nomenclature

a acceleration b number of lattice directions
c lattice unit length cs speed of sound
d diameter of the spreading film D diameter of the spherical drop
f particle distribution function F force
G Green’s function h film thickness
m molecular mass p pressure/momentum
r radius of the drop Re Reynolds number=ρlUD/µ
S number of phases t time
u velocity U drop impact velocity
V interaction potential We Weber number=ρlU

2D/σ
ei lattice speed of particles moving in direction i
g acceleration due to gravity/fluid-fluid interaction strength

Oh Ohnesorge number=µ/(ρσD)1/2 =We1/2/Re

Greek symbols

ρ density σ surface tension
µ dynamic viscosity ν kinematic viscosity
τ relaxation time ξ spread factor
θ contact angle δαβ Kronecker delta
ψ effective mass function Ψ dissipation function

Subscripts

crit critical D dissipation
e effective ext external
g gas i index
int interaction KE kinetic energy
l liquid max maximum
PE potential energy ref reference
SE surface energy sph sphere
tot total w wall
σ phase index

Superscripts

∗ non-dimensional quantities eq equilibrium
f final i initial
σ phase index
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