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Abstract. This paper presents an extension of the lumped particle model in [1] to in-
clude the effects of particle collisions. The lumped particle model is a flexible frame-
work for the modeling of particle laden flows, that takes into account fundamental
features, including advection, diffusion and dispersion of the particles. In this pa-
per, we transform a binary collision model and concepts from kinetic theory into a
collision procedure for the lumped particle framework. We apply this new collision
procedure to investigate numerically the role of particle collisions in the hindered set-
tling effect. The hindered settling effect is characterized by an increase in the effective
drag coefficient CD that influences each particle in the flow. This coefficient is given by
CD =(1−φ)−nC∗

D, where φ is the volume fraction of particles, C∗
D is the drag coefficient

for a single particle, and n≃ 4.67 for creeping flow. We obtain an approximation for
CD/C∗

D by calculating the effective work done by collisions, and comparing that to the
work done by the drag force. In our numerical experiments, we observe a minimal
value of n = 3.0. Moreover, by allowing high energy dissipation, an approximation
for the classical value for creeping flow, n = 4.7, is reproduced. We also obtain high
values for n, up to n=6.5, which is consistent with recent physical experiments on the
sedimentation of sand grains.
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1 Introduction

Particle collisions are of paramount importance in dense particle laden flows. Such fluid
flow appears in many processes in Nature, as well as in many industrial applications. Ex-
amples range from chemical synthesis engines to highly turbulent sand-laden subaquatic
flow [27]. The complete understanding of the physics in these systems is of great scien-
tific and economical value, and a large body of literature has been dedicated to studying
these effects. In many of these physical phenomena, however, the exact effect of particle
collisions is still under debate. This is especially the case for highly turbulent sand-laden
flows. In a recent comprehensive review, Maiburg and Kneller [19] wrote: ”Researchers
will have to undertake high-resolution numerical simulations that track large numbers of
individual particles to gain insight into the influence of particle-particle interactions”. As
stated in [19], there is still a need to develop new numerical models for particle collisions
in these fluid flows, and the present paper describes the development of such a model.

There are numerous ways of modeling the effects of particle collisions. The most
commonly used approach is the discrete particle methods. Here, each particle’s position
and velocity are obtained by the application of Newton’s second law of motion [24]. This
equation is coupled with variants of the Navier-Stokes equation to obtain a description of
the dense flow [20]. Discrete particle methods, however, are computationally expensive.

An alternative way is to model the dense particle laden flow as a continuum [5], us-
ing a multiphase computational fluid dynamics (CFD) approach. In these approaches,
one of the big challenges lie in correctly obtaining the constitutive relations for the mod-
elling of two-phase flows [26]. Concepts from kinetic theory [11] has been used to obtain
constitutive relations for certain particle laden flows [15], but has of yet not been applied
to highly fluidized beds, or highly turbulent sand laden flows [19]. Continuum models
also have the conceptual difficulty of simulating discrete granular effects, such as particle
segregation [6].

It is beyond the scope of this paper to give a full survey of the available approaches
for the modelling of particle collisions. Readers interested in discrete particle modelling
are referred to [6]. For a detailed review of multiphase CFD, see [4, 26]. The goal of this
paper is to extend a recently developed numerical framework, the lumped particle model
originally presented in [1], with a new hybrid continuum-particle model for particle col-
lisions.

The lumped particle model is a flexible and numerically efficient framework for the
modelling of particle transport in fluid flow, that takes into account fundamental fea-
tures of particle flow, including advection, diffusion and dispersion of the particles. This
framework reproduces particle flow properties inherent in both continuum and discrete
approaches, and correctly reproduces advection and diffusion phenomena as special
cases [1]. There are, however, some particle flow features not included in the framework.
Currently, the lumped particle model is applicable to dilute particle laden flows only. In
this paper, we want to expand the framework to dense particle flows. When the local
volume fraction of particles increases, it is no longer reasonable to ignore inter-particle
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collisions. Hence, we present an expansion of the lumped particle model to include the
effects of particle collisions.

The goal of this paper is twofold. First, we want to extend the lumped particle frame-
work such that dense particle flows can be modelled. This extension implies the intro-
duction of a collision procedure. Second, by applying the newly developed procedure,
we want to investigate the role of particle collisions on the hindered settling effect. In
this setting, the hindered settling effect refers to the fact that particle sedimentation is
interfered by the presence of other particles within the flow [21].

The structure of this paper is as follows: Section 2 gives a brief overview of the
lumped particle modelling framework. In Section 3, we review some aspects from ki-
netic theory as applied to particle collisions. Moreover, we describe how these concepts
are to be applied to the lumped particle framework. This enables us to design a collision
procedure in Section 3.1. We continue in Section 3.2 to recount a specific binary colli-
sion model, which includes the effects of rotational energy dissipation. In Section 4, we
briefly discuss the hindered settling effect, and show how to apply the newly developed
collision procedure to this setting. Finally, in Section 4.1, we present a set of numerical
experiments on hindered settling.

2 Overview of the lumped particle model

We will now give a short account of the lumped particle modelling framework. The
framework is based on a mesoscopic hybrid continuum-particle approach, where groups
of particles constitute a particle lump. Instead of tracking the individual dynamics of
each particle, a weighted spatial averaging procedure is used to evolve the particles in
the computational domain. The external forces are applied to the lump of particles, from
which an average position and velocity is derived. Hence, the particles are in a sense
considered as a continuum, but where the particle nature heavily influence the dynamics.
In the following description, we will restrict our attention to a two-dimensional regular
lattice.

When computing the evolution of the particles, the particle lumps are partitioned into
smaller entities, known as quasi-particles, which are then transported according to local
physical effects. These smaller entities recombine into new particle lumps at the target
destinations. We partition the computational domain into a regular lattice, with physical
spacing parameters ∆x and ∆y. Time is discretized into increments of ∆t. As shown in
Fig. 1, the lattice defines a set of grid cells, each having a center point xp. The distribution
N(xp,t), and the velocity V(xp,t) are defined as the number of particles inside the cell
and the average velocity of these particles, respectively. The computation of the temporal
evolution of these variables consists of three distinct steps which replace the conventional
full particle-tracking approach.

The first step is a dispersion step, where the particle lump is split into smaller parts,
the quasi-particles. Each of these quasi-particles have a dispersion velocity cm, which
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Figure 1: The lumped representation of particles. Particles within a grid cell are treated as a single entity. Here,
ṽ is the average velocity and ds is the offset from the particle centroid to the cell center.

quantifies the direction of the quasi-particle movement. It is in this step that the kine-
matics of these quasi-particles is calculated. The second step is the recombination step,
where quasi-particles are recombined to form a new particle lump at the destination sites.
In preparation for the next time step, the dispersion velocities are calculated at this stage
as well. The third step is a diffusion step, which enables the modeling of Brownian mo-
tion and similar phenomena. In this paper, however, we will not discuss the diffusion
step further. Interested readers are referred to [1].

In the dispersion step, we compute the force acting on the particle lump in each grid
cell. Using the average velocity as a basis, an acceleration is calculated numerically from
Newton’s second law applied to the particle lump. In this context, Newtons second law
can be written as

dvp

dt
=− 1

τp

(

vp−u
)

+
(

1− ̺ f

̺p

)

g. (2.1)

By solving the above equation, the particle position x can be found from

dx

dt
=vp. (2.2)

Here, we have defined

τp =
d2

p ̺p

18µ
, (2.3)

where the particle relaxation time τp is a measure of the particle’s response to a changing
fluid velocity. In Eq. (2.1), vp and u are the particle and fluid velocities respectively, while
dp is the particle diameter, and g is the gravitational acceleration. Furthermore, ̺ f and
̺p are the fluid and particle densities respectively, and µ is the dynamic fluid viscosity.
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The first term on the right hand side is the drag force on the particle, and the second
term represents the combined effect of gravity and buoyancy. In our approximation, the
relaxation time can be written as

τp =
8mp

πdpµ f

(

CDRep

)−1
, (2.4)

where CD is called the drag coefficient. Moreover, Rep is the particle Reynolds number
defined as

Rep =
̺ f |vp−u|dp

µ
. (2.5)

For low particle Reynolds number, that is Rep <1000, the drag coefficient can be approx-
imated by

CD ≃ 24

Rep
(1+0.15Re0.687

p ). (2.6)

The drag coefficient we use at this stage is that of a single particle. That is, we assume
that the particles are unperturbed by each other’s presence. Using the above equations,
the drag force can be written as

Fd =−
πd2

p̺ f

8
CD(vp−u)|vp−u|. (2.7)

Observe that we have neglected some physical effects like the virtual mass force [24] and
rotational forces. When adding these effects, the above equation is better known as the
Bassinet-Boussinesq-Oseen (BBO) equation.

A discrete solution of Eq. (2.1) is obtained by an explicit forward Euler method in
time. Let tℓ = ℓ∆t with ℓ being the time step index. A temporal discretization of Eq. (2.1)
becomes

∆vℓ

∆t
=− 1

τp

(

Vℓ−1−uℓ−1
)

+
(

1− ̺ f

̺p

)

g, (2.8)

where ∆vℓ/∆t is the acceleration of each individual particle in the current grid cell. We
will apply this acceleration to the quasi-particles. The average velocity Vℓ−1 is used as the
basis for the force calculation, modeling the overall drift of the particle lump. Whereas
the fluid velocity uℓ−1 is assumed to be known, either analytically or as a numerical
approximation generated by a separate solver for fluid flow.

The displacement ∆xℓ of the quasi-particles will depend on the dispersion velocities.
The above acceleration is then applied to the quasi-particles within a grid cell, thereby
changing their dispersion velocities ci. Since the k′th quasi-particle attains the new veloc-
ity ck +∆vℓ, we can numerically integrate Eq. (2.2) to obtain the displacement,

∆xℓ
k =

∫ tl

tl−1
vpdt=

(

ck+
∆vℓ

2

)

∆t. (2.9)
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As a result, the quasi-particles are transported to their target cells, corresponding to trav-
eling with their respective velocities in the given time increment ∆t.

The distance a quasi-particle travels does not usually correspond to an integer mul-
tiple of one grid cell. As a means to track this error, an error correction vector ds(xp)
is introduced, which quantifies the offset of the centroid of the particle lump relative to
xp, and can also serve as a measure of positional error. A quasi-particle displacement
algorithm is used to calculate the target grid cell and the new error correction vector ds+.
Let Ij be the initial grid cell and Ik be the target grid cell, where k and j are grid cell in-
dex vectors. If dsi and ki denotes the i’th component of ds and the grid cell index vector
respectively, then these three are updated at each time step by

ds̃i = si−
[ si

∆xi

]

∆xi, (2.10a)

ki = ji+
[ si

∆xi

]

+
[dsi+ds̃i

∆xi

]

, (2.10b)

ds+
i =dsi+ds̃i−

[dsi+ds̃i

∆xi

]

∆xi, (2.10c)

where si is i-th component of the displacement vector calculated by Eq. (2.9). Here, [·]
denotes the closest integer value. The full derivation of this algorithm is given in [1].

In the recombination step, the quasi-particles entering the grid cells are recombined
into a new lumped particle. A new mean velocity V and error measure ds are calculated
as the averages of the respective velocities and error measures of the quasi-particles. Con-
sider a grid cell where several quasi-particles have entered, where the i’th quasi-particle
consists of Ni particles and has a velocity vi. Assuming that there are m quasi-particles
entering the grid cell, the magnitude of the average velocity for the next time step be-
comes

ṽ+ =

√

N1v2
1+N2v2

2+···+Nmv2
m

∑Ni
, (2.11)

which is the root mean square (rms) of the quasi-particles’ velocities. To find the direc-
tion, we first calculate the weighted average velocity vector

v̂=
N1v1+N2v2+···+Nmvm

∑Ni
, (2.12)

which implies the new velocity

V= ṽ+ v̂

|v̂| . (2.13)

This averaging approach has the distinct advantage of conserving the total kinetic energy
of the particles. Moreover, the error correction ds is calculated as the weighted average
of the incoming quasi-particles’ offsets

ds=
N1ds1+N2ds2+···+Nmdsm

∑Ni
. (2.14)
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Note that each dsl is obtained from Eqs. (2.10a)-(2.10c). Moreover, the number of particles
constituting the new lump is N(xp,t+∆t)=∑ Ni.

To compensate for the possibly varying velocities of the quasi-particles, a set of dis-
persion velocities ci are defined. These are derived from a momentum balance calcula-
tion, where each direction is weighted according to its fraction of the total momentum
within the grid cell. That is, in preparation for the next time step, these weights deter-
mine the number of particles each quasi-particle will consist of. A standard deviation
σ =(σx,σy) from the mean value v̂ =(v̂x,v̂y) is defined to quantify the general spread of
particle velocities within the grid cell. The standard deviation is then

σx =

√

N1(v̂x−v1
x)

2+N2(v̂x−v2
x)

2+···+Nm(v̂x−vm
x )2

∑N i
, (2.15a)

σy =

√

N1(v̂y−v1
y)

2+N2(v̂y−v2
y)

2+···+Nm(v̂y−vm
y )2

∑N i
. (2.15b)

The directions of dispersion are given by

c̃0 = v̂, c̃1 = v̂+σ, c̃2 = v̂−σ. (2.16)

Furthermore, we define a fractional number distribution qi, which quantifies the fraction
of particles at each grid cell that are transported in direction ci. So, qi is given by

qi =
c̃2

i

∑j c̃
2
j

. (2.17)

Furthermore, the magnitude of the dispersion directions must be adjusted to conserve
the total kinetic energy within the grid cell. This property is guaranteed by setting the
magnitude equal to the rms velocity V, which defines the dispersion vectors

c0 =v+ v̂

|v̂| , c1 =v+ v̂+σ

|v̂+σ| , c2 =v+ v̂−σ

|v̂−σ| . (2.18)

Further details about the lumped particle modelling framework can be found in [1].

3 Modeling particle collisions with the lumped particle

framework

Particle collisions serve to redistribute the mechanical energy of the individuals involved.
This usually changes the direction and magnitude of particle velocities. For conservative
collisions, the total kinetic energy is conserved. For dissipative collisions, however, some
of the kinetic energy is lost through frictional interaction between the particles. We will
only consider the effects of two-particle collisions.

In this section, we will first show in general how the lumped particle framework
can be extended to include the effects of particle collisions. Once the formalism is well
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established, we will then give an explicit example of a specific particle model, which will
be used for the remainder of this paper. We will also assume that the particle angular
velocity is negligible, meaning that any rotational buildup will dissipate faster than the
collision time scale. Furthermore, only two-particle collisions will be considered.

The modeling of collision within the lumped particle framework will be accomplished
by a re-calculation of the dispersion velocities. Recall that in the dispersion phase, the
particle lump is partitioned into three quasi-particles, each with a dispersion velocity.
These dispersion velocities give a measure of the distribution of velocities of the particles
within a grid cell, and are consequently necessary variables for Newton’s laws of motion.
It is therefore natural to add a collision procedure before Eqs. (2.1)-(2.2) are applied on
the particles. The collision procedure will consist of an algorithm for updating the dis-
persion velocities, which will be based on a number of factors, like the average number
of collisions occurring within a grid cell.

The collision procedure is as follows; Consider a particle lump in a grid cell consist-
ing of N real particles. We first calculate the number of colliding particles NC, which
we will refer to as the collision number. Recall that in the dispersion phase, the lumped
particle is partitioned into three quasi-particles, each with their own dispersion velocity.
An amount of NC real particles are proportionally removed from these quasi-particles,
which are used to create two new ones. These two colliding quasi-particles, which each
consist of NC/2 real particles, will be given dispersion velocities according to collisional
effects. To this end, we need to calculate the average impact velocity v∆ of the NC col-
liding particles. Here, the impact velocity is the relative velocity between the colliding
particles, which can be obtained by a statistical mechanics approach. Once v∆ is calcu-
lated, a specific collision model can be applied to find the colliding particles’ new ve-
locities, which will be the dispersion velocities of the new colliding quasi-particles. The
three original quasi-particles, which now consist of fewer particles, will continue unper-
turbed by the collisions and retain their dispersion velocities. Hence, we are left with five
quasi-particles, two of which encode collisional effects.

It is important to note that with the term ”collision model”, we mean a specific rule
that relates the impact velocity of the particles with the new perturbed velocities of the
particles. In essence, a collision model will describe the momentum transfer and dissipa-
tion of the interacting particles. This is equivalent to specifying the constitutive law for
the system. Furthermore, particle collision number can also be affected by the amount
of turbulence in the flow. Although we are not considering turbulence in this paper, the
formalism developed here is compatible with modeling effects such as these in future
developments.

3.1 The collision procedure

We will now give a detailed account on the collision procedure, which entails the calcu-
lation of the collision number NC and the average impact velocity v∆. This will consist of
studying the particle lump using a statistical mechanics approach based on the book [3]
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and results in [10]. Moreover, we describe how the new quasi-particles are constructed,
and give a complete algorithm for the re-calculation of the dispersion velocities.

Consider a set of N particles suspended in a fluid or gas within a grid cell. In statis-
tical mechanics, the particle velocity vp can be expressed as a sum of the local ensemble
average velocity V, and a random fluctuating velocity C=(Cx,Cy,Cz). This can be written
as [10]

C=vp−V. (3.1)

Moreover, it is usual to define a velocity distribution function f (vp,x,t), which is the
probability of finding a particle at position x within the volume dx with the velocity vp

at time t. A well known approximation for the distribution function is the Maxwellian
distribution, which is based on the assumption that the particle velocity is isotropically
distributed around a mean velocity. In our setting, the velocity distribution is given by

f (Cx,Cy,t)=4πN′ C2
x+C2

y+C2
z

(2π)3/2θ1/2
x θ1/2

y θ1/2
z

exp
[

− C2
x

2θx
−

C2
y

2θy
− C2

z

2θz

]

, (3.2)

where θi is the granular temperature defined as

θx = 〈Cx,Cx〉, θy = 〈Cy,Cy〉, θz = 〈Cz,Cz〉. (3.3)

Here, N′ is the number density defined as the number of particles per unit volume. It is
also convenient to define the directionally averaged granular temperature θ ≡ D−1∑i θi,
where D is the number of dimensions of the system.

To study collisional interactions, we can define the pair distribution function
f12(vp,1,x1,vp,2,x2,t), which is the probability of finding a pair of particles with veloci-
ties vp,1 and vp,2 at the position x1 and x2 within the volumes dx1 and dx2 at time t. By
assuming that the velocities of the particles are statistically uncorrelated, it is shown in [3]
that the pair distribution f12 can be approximated by

f12(vp,1,x1,vp,2,x2,t)= g0(x1−x2) f (vp,1,x1,t) f (vp,2,x2,t). (3.4)

Here, g0(x1−x2) is the radial distribution function, which quantifies the effect of the vol-
ume occupied by the two particles on their movement. We will assume that the radial
function depends only on the volume fraction of particles. Physically, this means that
the degree of anisotropy in particle collisions is small [10]. The radial function can then
be written as a function of the volume fraction of a grid cell φ = NVp/(∆x∆y). That is,
g0(x1−x2)≡ g0(φ). Here, Vp is the particle volume. Many different expressions for g0

exist in the literature. The most commonly used expression from [23] is given by

g0(φ)=
[

1−
( φ

Φ

)1/3]−1
, (3.5)

where Φ is the maximum volume fraction of the particles, which in general is dependent
on particle shape. Another similar expression is

g2(φ)=
3

5

[

1−
( φ

Φ

)1/3]−1
, (3.6)
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which was first proposed in [7]. We will mention one more radial function given by [16],
which according to [10] gives the best fit for experiments on elastic spheres [2]. This is
given by

g3(φ)=1+4φ
1+2.5φ+4.5904φ2 +4.515439φ3

[

1−(φ/Φ)3
]0.67802

. (3.7)

In Section 4, we will investigate what differences these three radial functions will have
on the collisions. We will, unless we state otherwise, use Eq. (3.5) in the numerical exper-
iments. Furthermore, we assume that the particles are spherical in shape. Experiments
on random packing [12] have shown a maximum volume fraction of Φ∼0.64. Note that
g0(φ) approaches 1 for dilute flows.

By calculating the first moment of the pair distribution f12, we can find an estimate for
the number of colliding particles per unit volume and unit time N̄C [3]. This calculation
gives

N̄C =4N′2d2
pg0(φ)

√
πθ. (3.8)

We will now apply the above results to the lumped framework. Restricting our attention
to the two dimensional case, the particle lump is partitioned into three quasi-particles,
each consisting of q0N, q1N, and q2N particles, respectively. We remove q0NC, q1NC, and
q2NC from each of the respective quasi-particles; these will be the colliding particles. Two
new quasi-particles are created, consisting of NC/2 particles each. These quasi-particles
are given new post-collision dispersion velocities, c6 and c7. Since we are studying the
averaged collision effect, the pre-collision velocities will be set equal to the average dis-
persion velocities of the particle lump c1 and c2. This implies that the average impact
velocity is given by

v∆ = c2−c1. (3.9)

By the principle of momentum conservation, the velocities after the collision gives

c6 = c1+
∆J(v∆)

mp
, c7 = c2−

∆J(v∆)

mp
, (3.10)

where J(v∆) is the impulse between the particles. In general, the impulse is a function of
the impact velocity, and must be specified by a collision model. As mentioned earlier, we
will give an example of such a model in Section 3.2. In summary, we are left with three
quasi-particles with dispersion velocities given by Eqs. (2.18), and the two colliding ones
with dispersion velocities c6 and c7. This also implies a recalculation of the velocity of
the particle lump V. Observe that when the particle collision number NC becomes high,
some or all of the non-colliding quasi-particles can be left with no particles.

What remains to be quantified is the granular temperature θ for the lumped particle
in each grid cell. Observe that the definition of the standard deviation σ from Eq. (2.15a)
can be viewed as a discrete approximation to

√
θ. Hence, we can assume the following
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relations

θ =
1

2

(

σ2
x +σ2

y

)

, θx =σ2
x , θy =σ2

y . (3.11)

Given the above equations, we obtain

N̄C =2N′2d2
pg0(φ)

√

2π(σ2
x +σ2

y ). (3.12)

From the above results, we can calculate the collision number NC by

NC = N̄C∆x∆y∆t, (3.13)

which is the number of collisions that occur in a grid cell during one time step.

3.2 A dissipative binary collision model

We will now discuss a binary collision model from the literature, and illustrate how this
model can be applied in the lumped particle framework. The collision model shown here
is based on the work of [10], and is used frequently in studying granular flows [9,14,28].
Although there exist many variations of this model, we will use a variant that has the
advantage of being able to model the effects of rotational energy dissipation. It should be
noted, however, that only binary collisions is considered in this model.

Three parameters are integral in describing the collisions; The coefficient of normal
restitution e, the coefficient of tangential restitution β, and the Coulomb friction coeffi-
cient µC. The coefficient of normal restitution e represents the ratio between the relative
normal velocities of the colliding particles before and after the collision. Here, the rel-
ative normal velocity is the component of the impact velocity along the radial distance
between the colliding particles. A value of e =1 is equivalent to a perfect elastic impact,
while e = 0 represents a collision of perfectly plastic particles [14]. The latter case im-
plies a significant loss in kinetic energy. Moreover, the tangential restitution coefficient
β represents the loss of kinetic energy in the tangential direction of impact. Finally, the
coefficient µC models the sliding friction between the particles. We have that 0≤ e ≤ 1,
0≤β≤1, and µC ≥0.

In this model it is usual to distinguish between two distinct types of collisions. A
sliding collision, and a sticking collision. The collision is of the sliding type if the angle
of impact γ is greater than the critical angle

γ0 =arctan
[7

2

µC(1+e)

1+β

]

. (3.14)

Otherwise, we have a collision of the sticking type. In the sliding collision case, the
impulse can be written as

∆J =−mp

2
(1+e)vn

∆−
mp

2
µC(1+e)cotγ|vn

∆|
vt

∆

|vt
∆
| , (3.15)
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Figure 2: Estimation of the normal impact vector for two quasi-particles.

where vn
∆ and vt

∆ is the normal and tangential component of v∆ relative to the direction
of impact, respectively. The direction of impact is defined as the unit vector between the
particle positions r1 and r2

n=
r1−r2

|r1−r2|
. (3.16)

This implies that [28],

vn
∆ =(v∆ ·n)n, (3.17a)

vt
∆ =(v∆ ·n)

v∆−(v∆ ·n)n

|v∆−(v∆ ·n)n| . (3.17b)

Note that since the Coulomb friction force is proportional to the normal impact velocity
component, (v∆ ·n) has been used as the magnitude of the tangential component vt

∆. For
the sticking collision, the impulse is given by

∆J =−mp

2
(1+e)vn

∆−
mp

7
(1+β)vt

∆. (3.18)

To apply this collision model to our framework, we need to find an estimate for the av-
erage normal vector n̄ for the lumped particle. This calculation will be done in the re-
combination step during each time increment. The weighted average impact normal n̄ is
given by

n̄=
N1ds1−N2ds2−N3ds3−···−Nmdsm

∑Ni
, (3.19)

where Ni is the number of real particles constituting quasi-particle i. Furthermore, m is
the number of quasi-particles entering the grid cell. Fig. 2 shows an illustration of this
calculation for two quasi-particles. In Section 4, we will investigate what consequences
this collision model has on freely evolving particle flow.
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4 Hindered settling experiments

In the previous section we discussed a specific three parameter collision model within
the lumped particle framework. We will now consider a physical setting where collisions
are highly relevant. This case will involve a highly dense distribution of particles within
a fluid, which is often referred to as a fluidized bed [13]. Many physical forces affect these
particles, such as gravity, bubble lifting, fluid drag force, and in some cases electrostatic
forces [17]. To be able to pinpoint the exact effect of the collisions, however, we will focus
on fluid-particle interaction alone. Therefore, buoyancy and the other physical effects
will be omitted. The analysis and results presented here can be viewed as a proof of
concept for the simulation of particle collisions within the lumped particle approach.

Recall that in Eq. (2.1), we use the single particle description for the particle lump.
Hence, we want to investigate what effect collisions have on the evolution of the par-
ticles in the flow. Particularly, we will calculate the effective increase of the drag force.
In this setting, is usual to compare the effective drag coefficient CD on a single particle
in the lump compared to the drag coefficient C∗

D of an isolated particle. One common
parameterization is given by [13]

CD =C∗
D f (ǫ)m. (4.1)

The above equation is known as a drag law, with f (ǫ) being the voidage function and m
is an integer. Here, ǫ is the voidage fraction within a control volume. That is, we have that
ǫ=1−φ. In Eq. (4.1), m lies between 1 and 2, depending on the particle Reynolds number
Rep. For low values of Rep, m=1 [14]. The voidage function f (ǫ) is often approximated
by a power law correlation ǫ−n [8, 21]. This gives

CD =C∗
Dǫ−n, (4.2)

where n is the drag correlation index. A value of n =4.67 reproduces experimental data
for flow of spherical particles with low particle Reynolds number [18, 29]. For particles
in turbulent flows, n is usually between 2 and 4. The drag law described by Eq. (4.2)
has been successfully used in many numerical approaches for particle flows. It should be
noted, however, that the experimental values obtained for n results from the averaging of
many different physical effects, including many-particle collisional events. It is therefore
unclear how the different physical forces contribute to the drag law. Moreover, the value
of n may also depend on the particles studied. For instance, it has been recently shown
in [25] that the drag index n can become as large as 6.5 for the sedimentation of sand
grains.

In this paper, we will investigate if the lumped particle framework can reproduce the
drag law described above. Hence, we need to calculate the effect of collisions on the drag
law as described by the ratio CD/C∗

D. Since the configuration of the particles’ position
and velocities is complex, a calculation of an effective drag force is faces considerable
challenges. Instead, we will estimate the drag law by calculating the total work done
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by the drag force, and compare that to an effective drag force which takes the particle
collisions into account.

Recall that during each time step, the particle lump is partitioned into three quasi-
particles, each of which are influenced by Eq. (2.1). If each quasi-particle consists of Mi

real particles, then the work done by the fluid on each quasi-particle is given by

Wi =−mpMi
1

τp
(vp−u)·si, (4.3)

where si is the displacement resulting from the drag force. These particles are then moved
to their target grid cells where a collision event occurs. Consider one target grid cell. If
no collisions take place, the total work done, W, is given by Fd ·si. Using Eq. (2.7), we
obtain

W=−
πd2

p̺ f

8
C∗

D Mi∑
i

(vi−u)·si|vi|. (4.4)

If a collision event occurs, however, we can write down the effective drag force as

W+WC =−
πd2

p̺ f

8
CD Mi∑

i

(vi−u)·si|vi|, (4.5)

where WC is the work done by the particle collision. By combining these two equations,
we get

CD

C∗
D

=1+
WC

W
. (4.6)

We obtain a value for WC by calculating the difference in kinetic energy before and after
the collision event. Our aim is to plot the values for CD/C∗

D against the values of the void
fraction ǫ.

Observe that the available experimental correlations for CD/C∗
D are conducted in a

strictly three dimensional setting. Our numerical experiments are carried out in two
dimensions. Hence, we require a procedure to make our results comparable with the
three dimensional data. To accomplish this, we will use a pseudo three-dimensional
concept where the characteristic length in the third dimension is set equal to the particle
diameter. Following the procedure from Helland et al. in [13], we transform the value of
ǫ from our calculations to an effective three dimensional void fraction ǫ3D by

ǫ3D =1− 2

3
(1−ǫ). (4.7)

We will restrict our attention to the low Stokes number (St) domain. Recall that this
paper is focused on the particle motion alone, and does not include the dynamics of the
ambient fluid. Hence, we will set the fluid velocity u = 0. We use the physical domain
[0.0,5.0]×[0.0,5.0], which is partitioned in 151×151 grid cells. This division corresponds
to a grid spacing of ∆x = ∆y = 0.033m. Moreover, the relaxation time is calculated to
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τp=2.34s, and the length of the time steps is chosen to be ∆t=1.0s. The particles, of which
there are 28900, are distributed randomly in the rectangular area [1.0,2.0]×[1.0,2.0] within
the domain. Moreover, the particles have a radius r=0.002m, and density ̺p=2630kg/m3.
Furthermore, the filling rate varies from φ = 0.58 to φ = 0.21 with an average of φ̄ = 0.4,
where the maximum filling rate is set to Φ=0.64. Using the above expression for the void
fraction, we get ǭ3D =0.73.

Each particle is initialized with a velocity

vp =v0(cosη,sinη), (4.8)

where η is a uniformly distributed random variable in [−π/3,π/3] and v0=0.1m/s. From
the particle velocities, the average velocity V and the dispersion directions are calculated
as described earlier in Section 2. The particles are then evolved one time step using our
model.

At grid cells where a collision event occurs, the value of φ and CD/C∗
D is recorded.

We partition the interval [φmin,φmax] into 15 equal parts, where a measured value of φ
is associated with the midpoint of one of these intervals. Hence, we associate each of
the measured drag correlations with the corresponding interval. Once the entire compu-
tational domain has been traversed, the average value of CD/C∗

D is calculated for each
φ-class. From the measured values of the filling rate, we calculate the void fraction ǫ,
which henceforth will refer to the transformed three dimensional value.

4.1 The effect of collisions on the particles

We have performed a series of numerical experiments to explore the parameter space
spanned by µC, e, and β. Recall that in this specific collision model, rotational dissipation
is included. We will, however, focus mainly on the variation of the normal restitution co-
efficient e, since the simulation results indicate a higher sensitivity to this parameter. For
each choice of values for the model parameters e, µC and β, we obtain a relation between
CD/C∗

D and ǫ. This allows us to calculate the logarithm of CD/C∗
D and ǫ, respectively.

For convenience, we set D= log(CD/C∗
D) and E= logǫ. If a power law relation is present,

then we should have

log
CD

C∗
D

=−nlogǫ. (4.9)

To quantify the degree of linearity of the data sets, we calculate the correlation coeffi-
cient [22] given by,

r=
∑k(Dk−D̄)(Ek−Ē)

[

∑k(Dk−D̄)2∑k(Ek−Ē)2
]1/2

, (4.10)

where {Ek} is the set of values of logǫ, and {Dk} is the set of values of log(CD/C∗
D).

Moreover, D̄ and Ē are the mean values of {Dk} and {Ek}, respectively. Recall that a
value of r=±1 implies a perfect linear relationship between the data sets.
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(a) Plot of n=3.76 (b) Logarithmic plot with r=−0.99

Figure 3: A power law correlation between CD/C∗
D and ǫ. We have used the values e = 0.95, β = 0.1 and

µC =0.1. This data plotted reproduces the value of n=3.76 for the drag correlation index.

Fig. 3 shows the first of these experiments. What can be observed first is that there
is indeed a power law correlation between the measured results. The plot of Fig. 3(a)
shows the value n=3.76 for the drag law above, where we have plotted a reference curve
y = Cǫ−3.76. Moreover, Fig. 3(a) shows the logarithmic plot for three sets of parameter
values, with a calculated correlation coefficient r =−0.99. We will shortly return to the
significance of the constant C, which will illuminate an interesting property of our simu-
lated data. But first, let us study some additional simulations.

In all of the simulations, we observe that the correlation factor r was within the range
0.99−0.98. Fig. 4 shows three instances of numerical trials, where we have varied the
restitution parameter e from 1.0 to 0.1. We can see a definitive decrease in the index n
with lower values of e. This is consistent with a higher rate of collision energy dissipation
with lower values of e. Within the range of the simulated values of e, we obtain values of
n between 3.2 and 6.0.

The value of n, however, seem to fluctuate slightly for the same choice of parameters.
This is expected, since we have randomized both the particle position and velocities.
Fig. 5 shows three instances of the drag correlation for the same parameter values. By
averaging over many simulations, however, we obtain a convergence towards n̄=4.7 for
the parameter values β =0.1, µc =0.1, and e =0.8. This is a very good approximation to
the classical result of n=4.67. Moreover, we observe a decrease in the standard deviation
of the average index, as illustrated in Fig. 6.

In the expression for the collision number NC, Eq. (3.8), we used the radial function

g0(φ)=
[

1−
( φ

Φ

)1/3]−1
. (4.11)

For completeness, we compare the three radial functions described in Section 3.1. That
is, we compare the above function with the two defined by Eq. (3.6) and Eq. (3.7). We
perform a series of 10 experiments for parameter values e∈ [0.1,0.9] for each of the radial
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(a) n=3.15 and e=1.0 (b) n=5.68 and e=0.5 (c) n=6.0 and e=0.1

Figure 4: Correlations between log[CD/C∗
D ] and logǫ. In all the plots, we have that β=0.1 and µc =0.1.

(a) n=4.64 (b) n=4.71 (c) n=4.74

Figure 5: Three simulations of CD/C∗
D and ǫ with β = 0.1, µc = 0.1, and e = 0.8. In each experiment, the

calculated value of n varies slightly.

functions. Fig. 7 shows the result of these numerical trials. We can observe a slight
difference in the drag correlation index. The function g2 gives the highest index values,
while g1 is correlated with the lowest index values.

There are three important aspects to consider. First, for the types of particles stud-
ied here, we do not expect that the normal restitution coefficient to become much lower
than e=0.9. Moreover, many-particle collision events should occur in these high concen-
trations, which we have not accounted for. Furthermore, the remaining physical effects
valid for these particle laden flows are very difficult to simulate. But as we showed ear-
lier, our results successfully reproduce physical experiments in hindered settling. Recall
that we obtained a good approximation for the classical value of n = 4.67 for creeping
flow. By allowing the normal restitution parameter to decrease below what is usual,
we can conclude that we can actually simulate the complete hindered settling effect by
a binary collision model. This means that we can compensate for not including these
physical aspects into our framework by increasing the collisional effect.

From our simulations, we obtain that the lowest value for the drag correlation index
is n=3.0. Moreover, we can even obtain higher values of n than 4.7, up to n=6.0. Using
the radial function g3, we get the maximum of n = 6.5. Hence, our simulations indicate
that the hindered settling effect can be even more profound than previously expected.
This has recently been shown in [25], where experiments on sand grains produced high
values of the drag correlation index, up to n=6.0.
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Figure 6: The standard deviation of the simulated data for n̄=4.7.

Figure 7: The value of the correlation index n as a function of the restitution coefficient e. All of these
experiments has been done with µC = 0.1 and β = 0.1. Three different radial functions has been used; The
function g0 defined by Eq. (4.11), g1 defined by Eq. (3.6) and g3 defined by Eq. (3.7)

We now return to the constant C mentioned briefly above. The fact that C 6=1 shows
that our data is biased in some fashion. However, the value of C∼ 0.5 for all the simu-
lations we have carried out, which represents the average value over the computational
domain. This biasing factor has a very simple explanation. Observe that we have shown
with the above analysis that

CD =Cǫ−nC∗
D. (4.12)

Recall that in each simulation, ǭ = 0.73, with ǭ2 = 0.53. The value of C varies from
exp(−0.60) to exp(−0.77), which is approximately ∼ 0.5, indicating that C≃ ǫ2. To test
this, we simulated some additional cases with ǭ =[0.5,0.8]. We consistently observe that
the constant C≃ ǭ2. Moreover, it is independent of the radial function used in the sim-
ulations. This indicates that CD = ǭ2ǫ−nC∗

D. One way of interpreting this bias is that the
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effective drag force, Eq. (4.2), must be modified to

Fd =−
πd2

p̺ f

8
ǫ2ǫ−nC∗

D(v−u)|v|. (4.13)

This is, however, the exact form of the drag force used in most applications with granular
flow [13]. Even though that the above analysis is not an exact a proof, we find it very
pleasing that the extra ǫ2 factor in the drag force is reproduced by our data. This acts as
an additional verification of our results, and reveals some of the potential of the lumped
particle framework.

5 Conclusions

In this paper we have extended the lumped particle framework in [1] to include parti-
cle collisions. Using concepts from kinetic theory, we introduced a collision procedure.
where we used a binary collision model from [10] which includes rotational energy dis-
sipation. By testing this framework on the hindered settling effect, we observed that the
lowest value of the drag correlation index is n=3.0. We also showed that we can compen-
sate for the many physical effects not included in the model by allowing high collisional
energy dissipation: numerical simulations show that we can obtain n=4.7, which is very
close to the classical value from physical experiments on creeping flow. Moreover, the ex-
periments show that the slight bias in the simulated data give rise to a modified effective
drag force which includes a factor of ǫ2. This is consistent with a widely used expression
for the drag force in granular flows. Furthermore, high values of the drag index n = 6.5
is also possible to simulate, which is consistent with recent physical experiments on the
sedimentation of sand grains.

To conclude, the proposed binary-based collision procedure, embedded in the
lumped particle framework seems very promising, as it quantitatively captures several
key features observed in physical experiments on dense particle flows. Moreover, since
our model works with lumped particles, the computational procedure is also possibly
much more efficient than models based on pure discrete particle methods.
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