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Abstract. In this paper the numerical solution of the two-dimensional sine-Gordon
equation is studied. Split local artificial boundary conditions are obtained by the op-
erator splitting method. Then the original problem is reduced to an initial boundary
value problem on a bounded computational domain, which can be solved by the finite
difference method. Several numerical examples are provided to demonstrate the effec-
tiveness and accuracy of the proposed method, and some interesting propagation and
collision behaviors of the solitary wave solutions are observed.
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1 Introduction

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation, which
was originally considered in the nineteenth century in the course of study of surfaces of
constant negative curvature. Then it attracted a lot of attention in the 1970s due to the
presence of soliton solutions. In recent years the sine-Gordon equation has also been used
to describe physical models which possess soliton-like structures in higher dimensions.
A typical example is the Josephson junction model which consists of two layers of super
conducting material separated by an isolating barrier [1, 2]. This paper is devoted to
study the numerical solution of the two-dimensional sine-Gordon equation on R2.

The initial value problem of the two-dimensional sine-Gordon equation is given by
the following problem:

∂2u

∂t2
−

∂2u

∂x2
−

∂2u

∂y2
+sin(u)=0, x,y∈R1, t>0, (1.1a)
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u|t=0 = ϕ0(x,y), ut|t=0 = ϕ1(x,y), x,y∈R1, (1.1b)

where u = u(x,y,t) represents the wave displacement at position (x,y) and at time t,
ϕ0(x,y), ϕ1(x,y) are the initial displacement and velocity respectively, and sin(u) is the
nonlinear force term.

The essential difficulty of the numerical solution to the problem (1.1a)-(1.1b) involves
two parts, the nonlinearity of the equation and the unboundedness of the physical do-
main. For the bounded domain case, there are a lot of studies on the numerical solution of
the two-dimensional sine-Gordon equation with Dirichlet, Neumann or periodic bound-
ary condition. For example, Guo et al. [5] used finite difference scheme to investigate
the numerical solution of the sine-Gordon equation with periodic boundary condition.
Xin [6] studied the sine-Gordon equation as an asymptotic reduction of the two level dis-
sipationless Maxwell-Bloch system. In addition, Christiansen and Lomdahl [7] used a
generalized leap frog method, Argyris et al. [8] used a finite element approach, Sheng et
al. [9] adopted a split cosine scheme, Djidjeli et al. [10] used a two-step one-parameter
leapfrog scheme, A. G. Bratsos [11] used a three time-level fourth-order explicit finite-
difference scheme, to simulate the sine-Gordon equation. Recently, A. G. Bratsos [12]
adopted the method of lines to solve the two-dimensional sine-Gordon equation. M. De-
hghan and A. Shokri [13] used the radial basis functions to solve the two-dimensional
sine-Gordon equation. D. Mirzaei and M. Dehghan [14] used the continuous linear el-
ements to obtain the boundary element solution of the two-dimensional sine-Gordon
equation. However, when one wants to solve the two-dimensional sine-Gordon equa-
tion on the unbounded domain, these methods will face essential difficulties. Since the
unboundedness of the physical domain in the problem (1.1a)-(1.1b), the standard finite
element method or finite difference method cannot be used directly. In this paper, we
will consider the numerical solution of the two-dimensional sine-Gordon equation on
the unbounded domain.

The artificial boundary condition (ABC) method is a powerful approach to reduce
the problems on the unbounded domain to a bounded computational domain. In gen-
eral, the artificial boundary conditions can be classified into implicit boundary conditions
and explicit boundary conditions including global, also called nonlocal ABC, local ABC
and discrete ABC [4]. For the last thirty years, many mathematicians have made great
contributions on this subject, see [15–19], which makes the artificial boundary condition
method for the linear partial differential equations on the unbounded domain become
a well developed method. In recent few years, there have been some new progress on
the artificial boundary condition method for nonlinear partial differential equations on
the unbounded domain. H. Han et al. [20] and Z. Xu et al. [21] used the Cole-Hopf
transformation to get the exact ABCs for the viscous Burger’s equation and the deter-
ministic KPZ equation. Zheng [23, 24] adopted the inverse scattering approach to obtain
the exact ABCs for the one-dimensional cubic nonlinear Schrödinger equation and the
one-dimensional sine-Gordon equation. H. Han et al. [22] also utilized an operator split-
ting method to design split local artificial boundary conditions for the one-dimensional



H. Han and Z. Zhang / Commun. Comput. Phys., 10 (2011), pp. 1161-1183 1163

nonlinear Klein-Gordon equations.
In this paper, we use the operator splitting method to obtain the split local artificial

boundary conditions for the two-dimensional sine-Gordon equation on R2. Then reduce
the original problem (1.1a)-(1.1b) into an initial boundary value problem on a bounded
computational domain, which can be solved by the finite difference method.

The organization of this paper is as follows: in Section 2, we propose a split local arti-
ficial boundary condition for the two-dimensional sine-Gordon equation on R2 based on
the operator splitting method. A finite difference scheme is given by the coupling proce-
dure in Section 3. In Section 4, we give some numerical examples to test the convergence
and accuracy of the proposed method. We make some concluding remarks in Section 5.

2 The split local artificial boundary method

2.1 The operator splitting method

The operator splitting method [29, 30] is a powerful approach for numerical simulation
of complex physical time-dependent models, where the simultaneous effect of several
different subprocess has to be considered. Mathematical models of such phenomena
are usually described by time-dependent partial differential equations, which include
several spatial differential operators. Each of them is corresponding to a subprocess of the
physical phenomenon. Generally speaking, every subprocess is simpler than the whole
spatial differential operator.

In [22], Han et al. proposed a split local absorbing conditions for the one-dimensional
nonlinear Klein-Gordon equation on R1. The basic idea is using the operator splitting
method on the boundaries to construct boundary conditions. In this paper, we extend
this idea to construct the artificial boundary conditions for the two-dimensional sine-
Gordon problem (1.1a)-(1.1b) on R2.

For Eq. (1.1a), we introduce an auxiliary function v= ut, and denote the vector func-
tion U =[u,v]T . Then Eq. (1.1a) can be converted into a differential equation system:

Ut =

(

u
v

)

t

=

(

v
uxx+uyy−sin(u)

)

. (2.1)

We introduce a splitting control parameter α∈ (0,1), the previous two-dimensional sine-
Gordon problem (1.1a)-(1.1b) can be written in a splitting form.

Ut =

(

u
v

)

t

=

(

α2v
uxx+uyy

)

+

(

(1−α2)v
−sin(u)

)

:=L1U+L2(U), (2.2a)

U|t=0 =

(

ϕ0(x,y)
ϕ1(x,y)

)

. (2.2b)

From time t= tn to time t= tn+1, where tn+1 = tn +τ, t0 =0, we assume the solution

U(x,y,tn)=
[

u(x,y,tn),v(x,y,tn)
]T
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is given. Then we solve Eq. (2.2a) with the initial condition U(x,y,tn) in a small time step
τ to obtain U(x,y,tn+1). First of all, we split the problem with Eq. (2.2a) and the initial
condition U(x,y,tn) into a linear subproblem

U1
t =L1U1, x,y∈R

1, t∈ [tn ,tn+1], (2.3a)

U1(x,y,tn)=U(x,y,tn), (2.3b)

and a nonlinear subproblem

U2
t =L2(U2), x,y∈R

1, t∈ [tn ,tn+1], (2.4a)

U2(x,y,tn)=U1(x,y,tn+1). (2.4b)

Then we solve the subproblems (2.3a)-(2.3b) and (2.4a)-(2.4b) step by step, in which the
solution of one subproblem is employed as the initial condition for the alternative sub-
problem, and take

U(x,y,tn+1)≈U2(x,y,tn+1)

as the approximate solution to the problem (1.1a)-(1.1b) at time t = tn+1. More precisely,
let us define the flow map F τ

1 associated with the solution of the subproblem (2.3a)-(2.3b)
by

F τ
1

(

U1(x,y,tn)
)

=U1(x,y,tn+1)

and the flow map F τ
2 associated with the solution of the subproblem (2.4a)-(2.4b) by

F τ
2 (U2(x,y,tn))=U2(x,y,tn+1).

Then the first-order approximation solution can be written in a compact form:

Un+1≈F τ
2 ◦F

τ
1 (Un) :=F τ

2

(

F τ
1 (Un)

)

. (2.5)

So far, the simplest idea of the operator splitting method has been described. The error of
the approximation (2.5) is the first-order O(τ) induced by the noncommutativity of the
operators L1 and L2. In general, the Strang splitting [29] is more frequently adopted in
applications, for which the approximation solution is approximated by,

Un+1≈F
τ
2

2 ◦F τ
1 ◦F

τ
2

2 (Un). (2.6)

In practical computation, the only difference between the Strang splitting method [29]
and the first-order splitting method is that the first and last steps are half of the normal
step τ.
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2.2 Construct the split local ABC

In this section, we discuss the split local artificial boundary condition for the two-
dimensional sine-Gordon problem (1.1a)-(1.1b) on R2. Simple calculation shows that the
equation of the linear subproblem (2.3a)-(2.3b) is equivalent to the following wave equa-
tion:

utt−α2uxx−α2uyy =0, x,y∈R1, t>0. (2.7)

Notice that the equation of the nonlinear subproblem (2.4a)-(2.4b) is a first order ordinary
differential equation system, in which only the time derivative involved, hence no extra
boundary condition is required.

Next we consider how to obtain the local artificial boundary condition for the wave
equation (2.7). First of all, we introduce four artificial boundaries,

Σe =
{

(x,y,t)|x= xe , ys ≤y≤yn , 0≤ t≤T
}

,

Σw =
{

(x,y,t)|x= xw , ys ≤y≤yn , 0≤ t≤T
}

,

Σn =
{

(x,y,t)|xw ≤ x≤ xe, y=yn, 0≤ t≤T
}

,

Σs =
{

(x,y,t)|xw ≤ x≤ xe, y=ys, 0≤ t≤T
}

,

where xw, xe, ys, yn are four constants, with xw < xe and ys < yn, which divide the un-
bounded domain R2×[0,T] into a bounded domain Di and an unbounded domain De,
namely,

Di =
{

(x,y,t)|xw < x< xe, ys <y<yn, 0≤ t≤T
}

,

De =R2×[0,T]\Di,

where Di denotes the closure of the set Di. The bounded domain Di is the computational
domain. We must find some appropriate boundary conditions on Σe, Σw, Σn and Σs, re-
spectively, to reduce the original linear subproblem (2.3a)-(2.3b) into an initial boundary
value problem on the bounded domain Di.

In order to limit the scope of this paper somewhat, we assume that during the whole
propagation process only the waves in the interior domain will move out of the domain Di

through the artificial boundaries and there will be no waves traveling from the exterior domain into
the interior domain Di. That means the local artificial boundary conditions are transparent
for the out-going waves.

Next, one consider a plane wave solution to Eq. (2.7) of the following form,

u(x,y,t)= e−i(ωt−ξx−ηy), (2.8)

where ω is the time frequency, ξ and η are the wave numbers in x- and y-directions
respectively. We have the dual relation between the space-time domain (x,y,t) and the
wave number-frequency domain

(ξ,η,ω) : ξ↔−i
∂

∂x
, η↔−i

∂

∂y
and ω↔ i

∂

∂t
.
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Apply the ansatz (2.8) to Eq. (2.7), one obtains the corresponding dispersion relation,

ω2 =α2(ξ2+η2). (2.9)

For the sake of simplicity, we discuss the local artificial boundary condition on the east
boundary Σe. Under the framework of Engquist and Majda’s pseudo-differential operator
approach, see [15, 25], the exact artificial boundary condition on the east boundary Σe

is obtained by solving the dispersion equation (2.9) to get an expression for the wave
number ξ, namely,

αξ =±ω

√

1−
α2η2

ω2
. (2.10)

We assume the time frequency ω and the wave number ξ are both positive numbers.
Under this assumption, the positive and negative signs in Eq. (2.10) correspond to the
right-going and left-going waves, respectively. According to our assumption, the waves
will move out of the domain Di through the east boundary Σe and no waves travel from
the exterior domain into the interior domain Di, namely, there are only right-going waves
on the east boundary Σe. Therefore we drop the negative sign in the dispersion relation
(2.10) and obtain,

αξ =ω

√

1−
α2η2

ω2
. (2.11)

The exact artificial boundary condition can be obtained by transforming the dispersion
equation (2.11) into the space-time domain (x,y,t). The result is a pseudo-differential
equation applied to the boundary Σe, which can perfectly absorb all the right-going
waves impinging on the boundary Σe. However, the pseudo-differential form of the arti-
ficial boundary condition is non-local and does not work for an operator splitting scheme
because it is with a memory term in time. In [15,25–27], the authors adopted local approx-
imations to the dispersion equation (2.11) by expanding the square root term to various
orders of accuracy. Then they obtained the corresponding local artificial boundary con-
ditions by transforming the approximate dispersion relation into the space-time domain.
For example, using the zero order Taylor approximation,

√

1−
α2η2

ω2
≈1+O

(α2η2

ω2

)

, (2.12)

for the square root term in the dispersion equation (2.11) and transforming the approxi-
mate dispersion relation into the space-time domain, one obtains

( ∂

∂t
+α

∂

∂x

)

u|Σe =0. (2.13)

We point out that the approximation (2.12) is called paraxial approximation in the literature,
which means that the ratio of the time frequency and the wave number in y-direction η/ω
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is small. In [22], we indicated that for the one-dimensional wave equation the artificial
boundary condition (2.13) is exact. For two-dimensional wave equation, the artificial
boundary condition (2.13) is exact only for the waves impinging into the boundary Σe in
the normal direction. Therefore, one need more accurate approximation to the dispersion
equation (2.11) to construct local artificial boundary condition.

In [26,27], the author showed that the differential operators in the space-time domain
corresponding to the higher order approximations to the dispersion relation (2.11) can be
expressed in the following form

p

∏
l=1

(

cos(θl)
∂

∂t
+α

∂

∂x

)

u
∣

∣

∣

Σe

=0, (2.14)

where p is an integer and θl, l = 1,··· ,p are angles between the wave incident direction
and the normal direction of the boundary Σe. By the same technique, the local artificial
boundary conditions on the west boundary Σw, north boundary Σn and south boundary
Σs can be obtained,respectively, which are the following forms,

p

∏
l=1

(

cos(θl)
∂

∂t
−α

∂

∂x

)

u
∣

∣

∣

Σw

=0, (2.15a)

p

∏
l=1

(

cos(θl)
∂

∂t
+α

∂

∂y

)

u
∣

∣

∣

Σn

=0, (2.15b)

p

∏
l=1

(

cos(θl)
∂

∂t
−α

∂

∂y

)

u
∣

∣

∣

Σs

=0. (2.15c)

So far, we have obtained local artificial boundary conditions for Eq. (2.7) on the bound-
aries Σe, Σw, Σn and Σs, respectively. Therefore we can reduce the linear subproblem
(2.3a)-(2.3b) into an initial boundary value problem on the bounded computational do-
main Di.

The equation of the nonlinear subproblem (2.4a)-(2.4b) is equivalent to the following
ordinary differential equation,

utt+(1−α2)sin(u)=0, x,y∈R1, t>0. (2.16)

Note that the restriction of ODE system (2.16) on the bounded computational domain
Di is an initial value problem, which can be solved by the Runge-Kutta method or the
Matlab ode-solver (ode15). Therefore, no extra boundary condition is required.

It should be pointed out that the proposed artificial boundary conditions (2.14)-(2.15c)
are valid under the conditions that during the whole propagation process only the waves
in the interior domain will move out of the domain Di through the artificial boundaries
and there will have no waves traveling from the exterior domain into the interior domain
Di.
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3 The derivation of the difference scheme

In this section, we consider the coupling procedure for solving the two-dimensional
sine-Gordon problem (1.1a)-(1.1b) on the bounded computational domain Di =(xw,xe)×
(ys,yn)×[0,T]. We divide the domain Di by a set of lines parallel to the x-, y- and t-axis to
form a grid, and choose hx =(xr−xl)/J, hy =(yt−yb)/K and τ = T/N for the line spac-
ings, where J, K and N are three positive integers. For simplicity, we assume h=hx =hy.
The grid points are given by

Ω=
{

(xj,yk,tn)|xj = xl + jh, yk =yb +kh, tn =nτ, j=0,··· , J, k=0,··· ,K, n=0,··· ,N
}

.

Let Ie denote the index set corresponding to the grid points on the east boundary of
the bounded domain Di, that is,

Ie =
{

(j,k)|j= J, 1≤ k≤K−1
}

.

Similarly one defines the index sets Iw, In and Is corresponding to the grid points on the
west, north and south boundaries of the bounded domain Di, respectively, as following,

Iw =
{

(j,k)|j=0, 1≤ k≤K−1
}

,

In =
{

(j,k)|k=K, 0≤ j≤ J
}

,

Is =
{

(j,k)|k=0, 0≤ k≤ J
}

.

The indices of the four corner points belong to the sets In and Is, which means the numer-
ical solutions on the corner points will be updated by the boundary conditions (2.15b)
and (2.15c). Finally, let

IB = Ie

⋃

Iw

⋃

In

⋃

Is

denote the index set corresponding to all the grid points on the boundaries of the
bounded domain Di.

Suppose the numerical solutions un={un
jk|0≤j≤J, 0≤k≤K, 0≤n≤N} are given at time

t= tn, where un
jk represents the approximation solution of wave displacement u(x,y,t) on

the grid point (xj,yk,tn). Let un+1
I ={un+1

jk |1≤ j≤ J−1, 1≤k≤K−1} denote the numerical

solutions in the interior domain Di and un+1
B =un+1\un+1

I denote the numerical solutions
on the boundaries of the domain Di.

Moveover, one needs to record the values of the auxiliary function v=ut on the bound-
aries, namely, assume the numerical solutions vn

B={vn
jk |(i,k)∈IB} are known at time t=tn,

where vn
jk represents the approximation solution of the auxiliary function v(x,y,t) on the

grid point (xj,yk,tn).
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From time t = tn to time t = tn+1, where tn+1 = tn+τ, t0 = 0, we first use the central
difference scheme to discretize Eq. (2.7) at points (xj,yk,tn), 1≤ j≤ J−1, 1≤k≤K−1 in the
interior domain Di and obtain,

D+
t D−

t un
jk−α2D+

x D−
x un

jk−α2D+
y D−

y un
jk+sinun

jk =0, 1≤ j≤ J−1, 1≤ k≤K−1, (3.1)

where D+
• and D−

• represent the forward and backward differences in t-, x- or y- direction,
respectively. At time t = tn+1, we need to obtain the numerical solution un+1, which
contains (J+1)(K+1) unknowns. However the linear equation system (3.1) only has
(J−1)(K−1) equations. Therefore we can only get the numerical solutions at time t=tn+1

in the interior domain Di, namely un+1
I . Thus the 2J+2K extra unknown values un+1

B must
be updated through boundary conditions (2.14)-(2.15c) and (2.16).

We illustrate how to discretize Eq. (2.14) on the artificial boundary Σe. Recall that
the boundary condition (2.14) on Σe is a composition of factors of the form cos(θj)∂/∂t+
α∂/∂x, which can be discretized by cos(θj)S−

x D−
t +αS−

t D−
x . Here S−

• denotes the back-
ward sum, namely,

S−
x un

jk =
un

j−1,k+un
jk

2
and S−

t un+1
jk =

un
jk+un+1

jk

2
.

Hence the boundary condition (2.14) on Σe can be discretized by,

Σe :
p

∏
l=1

(

cos(θl)S−
x D−

t +αS−
t D−

x

)

un+1
J,k =0, 1≤ k≤K−1. (3.2)

Similarly, the boundary conditions on other sides can be discretized by,

Σw :
p

∏
l=1

(

cos(θl)S+
x D−

t −αS−
t D+

x

)

un+1
0,k =0, 1≤ k≤K−1, (3.3a)

Σn :
p

∏
l=1

(

cos(θl)S−
y D−

t +αS−
t D−

y

)

un+1
j,K =0, 0≤ j≤ J, (3.3b)

Σs :
p

∏
l=1

(

cos(θl)S+
y D−

t −αS−
t D+

y

)

un+1
j,0 =0, 0≤ j≤ J. (3.3c)

Here S+
• denotes the forward sum, for example, S+

x un
jk =(un

jk+un
j+1,k)/2.

According to the discussion in Section 2, we split the problem (1.1a)-(1.1b) into a lin-
ear subproblem (2.3a)-(2.3b) and a nonlinear subproblem (2.4a)-(2.4b) on the boundaries of
the bounded domain Di and then solve them separately, in which the solution of one sub-
problem is employed as an initial condition for the alternative subproblem. For notation
convenience, we introduce the intermediate variable U∗={[u∗

jk,v∗jk]
T |(i,k)∈ IB}.

The restriction of the nonlinear subproblem (2.4a)-(2.4b) on the boundaries is an initial
value problem, hence no extra boundary condition is required. We use the flow map
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operator form to denote the solution after one time step τ, that is,

U∗≈F τ
2 (Un

B), (j,k)∈ IB , (3.4)

where Un
B=[un

B,vn
B]T . Then we set vn+1

jk =v∗jk, (j,k)∈IB. Recall that the boundary conditions

(2.14)-(2.15c) are obtained from the linear subproblem (2.3a)-(2.3b), hence the solution of
the nonlinear subproblem (2.4a)-(2.4b) u∗

jk,(j,k) ∈ IB will be regarded as the initial data

for the subproblem (2.3a)-(2.3b). More precisely, we will replace un
jk by u∗

jk, (j,k) ∈ IB

and solve Eqs. (3.2)-(3.3c) to obtain the numerical solutions un+1
B = {un+1

j,k |(j,k)∈ IB} on

the boundaries. Combine the numerical solution un+1
B and the numerical solution un+1

I

obtained by solving Eq. (3.1), one gets the numerical solution un+1 at time t= tn+1.
So far, the simple operator splitting method has been described. In order to improve

the accuracy, the Strang splitting method [29] can be used, where we introduce two inter-
mediate variables

U∗=
{

[u∗
jk,v∗jk]

T|(j,k)∈ IB

}

and U∗∗=
{

[u∗∗
jk ,v∗∗jk ]T|(j,k)∈ IB

}

.

Here U∗ is obtained from Un through the half time step of the nonlinear subproblem
(2.4a)-(2.4b) on the boundaries,

U∗≈F
τ
2

2 (Un), (j,k)∈ IB. (3.5)

Suppose that v∗∗jk = v∗jk, (j,k) ∈ IB. And u∗∗
jk , (j,k) ∈ IB are obtained from the boundary

condition equations (3.2)-(3.3c) by replacing un
jk with u∗

jk and un+1
jk with u∗∗

jk , respectively.

Finally, Un+1
B is obtained from U∗∗ through another half time step of the nonlinear sub-

problem (2.4a)-(2.4b) on the boundaries,

Un+1
B ≈F

τ
2

2 (U∗∗), (j,k)∈ IB . (3.6)

The component un+1
B in Un+1

B is the numerical solution on the boundaries at time t= tn+1,
and the component vn+1

B will be recorded for the next time step.

4 Numerical results

In this section we present numerical examples to demonstrate the validity of the pro-
posed split local artificial boundary conditions for the two-dimensional sine-Gordon
problem (1.1a)-(1.1b) on R2 and to show the numerical accuracy of the numerical scheme.
We choose the initial data the same as those in [7, 8, 10, 11], which are called line and ring
solitons.

The choice of the splitting control parameter α is quite important in the proposed
method, however how to get the α in an analytic way is still open. Through numerical
experiment, we find that a larger α will have a better performance for the split local
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ABC. Therefore we choose α = 0.9 in the numerical test. The choices of the integer p
and the angles θl , l =1,··· ,p in the boundary conditions (2.14)-(2.15c) are also important.
In [26–28], Higdon studied the relation between the amplitude of the reflected waves
and the parameter p and θl , l = 1,··· ,p. Through numerical experiments, we find that
one simply chooses p = 2 and θ1 = θ2 = 0, the given method is nearly transparent for
the wave propagation. However, how to adaptively choose the optimal p and θl , l =
1,··· ,p to reduce the amplitude of the reflected waves is still open and will be our further
consideration.

4.1 Soliton-type solutions of the sine-Gordon equation

The sine-Gordon equation allows for solitary wave solutions, a ubiquitous phenomenon
in a large variety of physical problem. In this subsection, we use the proposed split
local artificial conditions to solve the two-dimensional sine-Gordon problem on R2 and
investigate the corresponding solitary wave solutions. Our numerical experiments are
carried out for the following cases: (1) Superposition of two orthogonal line solitons; (2)
Symmetric perturbation of a static line solitons; (3) Circular ring solitons; (4) Elliptical
breather; (5) Collision of four circular solitons. The first two are typical line solitons, and
the rest three are typical ring solitons.

The energy conservation of the sine-Gordon equation (1.1a) has been proven to be
a characteristic property of the nonlinear solitary waves. In this section, we define the
energy of the sine-Gordon equation (1.1a) on the bounded domain Di by the following
expression:

E(t)=
1

2

∫ xe

xw

∫ yn

ys

(

u2
t +u2

x+u2
y+2(1−cosu)

)

dxdy. (4.1)

The energy E(t) can be calculated numerically through the numerical quadrature to ap-
proximate Eq. (4.1). Our concern is with the dynamic behaviors of the different solitary
wave solutions and the energy conservation property of the solitary waves. In all of the
experiments in this subsection, except when otherwise defined, hx = hy = h = 1/16 and
τ =1/32 are used.

4.1.1 Superposition of two orthogonal line solitons

As considered in [2], if one line soliton operates along the x-axis and the other on the
y-axis, an exact solution to the sine-Gordon equation can be obtained. Soliton solution to
the sine-Gordon equation (1.1a) with initial conditions

ϕ0(x,y)=4
(

tan−1(ex)+tan−1(ey)
)

, x,y∈R1,

ϕ1(x,y)=0, x,y∈R1,

is called the superposition of two orthogonal line solitons in the literature, see [9, 11]. In this
example, the bounded computational domain is chosen to be [−6,6]×[−6,6]. In Fig. 1,
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Figure 1: Superposition of two orthogonal line solitons at time t=0,4,8,12.
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Figure 2: The energy of the superposition of two orthogonal line solitons.

we present the snapshots of the numerical solution at several different times. The initial
data is the superposition of two orthogonal line solitons along the x-direction and the
y-direction. Then they move away from each other in the direction of y = x, finally the
solitons travel out the computational domain with negligible reflection, which shows
that the proposed boundary conditions are nearly transparent for the wave propagation.
In Fig. 2, we plot the energy of the solitons remaining in the bounded domain. As the
solitons move away from the bounded domain, the energy gradually decays to zero.
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4.1.2 Symmetric perturbation of a static line soliton

A static line soliton is perturbed to produce two symmetric dents moving towards each
other with a constant velocity is called symmetric perturbation of a static line soliton. Ac-
cording to [2], the dents collide and continue to move with the same velocity and no shift
occurs. In this case, the initial data of the sine-Gordon equation (1.1a) is defined by:

ϕ0(x,y)=4tan−1exp
(

x+1−
2

cosh(y+7)
−

2

cosh(y−7)

)

, x,y∈R1,

ϕ1(x,y)=0, x,y∈R1.

In this example, the bounded computational domain is chosen to be [−7,7]×[−7,7].
Fig. 3 depicts the snapshots of the numerical solutions in terms of sin(u/2) at different

times. At time t = 0, the initial wave displacement of the symmetric perturbation of a
static line soliton is shown. Then at time t = 3, one can see that the perturbation move
toward to each other. We point out that part of perturbation has moved out the bounded
computational domain, which can be verified by the energy decreasing in Fig. 4. Around
time t = 7 the two symmetric dents move close to each other and collide. Compare the
solution at time t =11 with that at time t =3, one can see that after the collision, the two

Figure 3: Symmetric perturbation of a static line soliton at time t=0,3,7,11.
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Figure 4: The energy of the symmetric perturbation of a static line soliton.

symmetric dents continue to move with the same velocity and retain their shapes. Fig. 4
also indicates that when the part of the perturbation wave move out of the bounded
computational domain, the remaining energy is conserved.

4.1.3 Circular ring solitons

The two-dimensional sine-Gordon equation also admits the ring soliton solutions. In [2,
3], the authors investigated the pulsating behaviors of the circular ring soliton solutions.
The initial condition of the circular ring soliton is given by:

ϕ0(x,y)=4tan−1exp
(

3−
√

x2+y2
)

, x,y∈R1,

ϕ1(x,y)=0, x,y∈R1.

In this example, the bounded computational domain is chosen to be [−7,7]×[−7,7].

In Fig. 5 and Fig. 6, we present the snapshots of the numerical solution in term of
sin(u/2) at several different times. Initially at time t = 0, the soliton appears as two
homocentric rings, then as time goes on, at time t = 3, the soliton shrinks and appears
like a single ring soliton. At time t = 6, which could be considered as the beginning of
the expansion, a radiation appears, which is followed by oscillations at the boundaries,
as shown at time t=9. This expansion is continued until at time t=11, when in the center
part of the domain, the soliton is almost restored. Finally from t =13, it appears to be in
its shrinking process again. During the whole evolution process, the center of the circular
ring soliton does not move.

Fig. 7 shows that before time t = 9 the energy is conserved, since the movement of
circular ring soliton is restricted in the bounded domain, however after time t =9 as the
radiation process goes on, the circular ring soliton moves out the bounded domain and
the energy decays accordingly.
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Figure 5: The circular ring soliton at time
t=0,3,6.

Figure 6: The circular ring soliton at time
t=9,11,13.
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Figure 7: The energy of the circular ring soliton.

4.1.4 Elliptical breather

The elliptical breather is another kind of ring soliton solution to the two-dimensional sine-
Gordon equation, see [11]. The initial condition of the elliptical breather is given by:

ϕ0(x,y)=4tan−1 2

cosh
(

0.866

√

(x−y)2

3 + (x+y)2

2

)

, x,y∈R1,

ϕ1(x,y)=0, x,y∈R1.

Figure 8: Elliptical breather at time t=0,2,5,10.
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Figure 9: The contours of the elliptical breather. The left is at time t=0 and the right is at time t=10.
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Figure 10: The energy of the elliptical breather.

In this example, the bounded computational domain is chosen to be [−7,7]×[−7,7].

In Fig. 8, we present the snapshots of the numerical solution of the elliptical breather
in term of sin(u/2) at several different times. The major axis of the breather from its initial
direction y=−x seems to be turned clockwise. The same as the circular ring solitons, the
shrinking and expansion process are observed from time t = 2 to t = 10. Around time
t = 10, the elliptical breather seems to recover its initial shape, however the major axis
changes to y=x, which is verified in the contour plot in Fig. 9. From time t=10 when the
second shrinking process begins, part of the solitary wave will move out of the bounded
computational domain, hence the energy plot begins to decay, which has been shown in
Fig. 10.

4.1.5 Collision of four expanding circular solitons

Finally, we observe an interesting phenomena of the solitary solution to the two-
dimensional sine-Gordon equation, namely, the collision of four expanding circular solitons.
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First of all, we introduce some function notations. Let

φ0(x,y;x0,y0)=4tan−1exp
[ 1

0.436

(

4−
√

(x+x2
0)+(y+y0)2

)]

, x,y∈R1,

denote the initial displacement of a circular ring soliton centered at the point (x0,y0), and
the corresponding initial velocity is given by

φ1(x,y;x0,y0)=4.13
[

cosh
( 1

0.436

(

4−
√

(x+x2
0)+(y+y0)2

))]−1
, x,y∈R1.

Then the initial conditions of the collision of four expanding circular ring solitons are
given by,

ϕ0(x,y)=φ0(x,y;5,5)+φ0(x,y;5,−5)+φ0(x,y;−5,5)+φ0(x,y;−5,−5), x,y∈R1,

ϕ1(x,y)=φ1(x,y;5,5)+φ1(x,y;5,−5)+φ1(x,y;−5,5)+φ1(x,y;−5,−5), x,y∈R1,

which are the superposition of four circular ring solitons.
In this example, the bounded computational domain is chosen to be [−12,12]×

[−12,12].

Figure 11: The collision of four expanding circular solitons at time t=0,3,7,14.
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Figure 12: The energy of the collision of four expanding circular solitons.

In Fig. 11, we present the snapshots of the numerical solution in term of sin(u/2) at
several different times. Initially, at time t=0 four circular ring solitons are isolated from
each other on the bounded domain. Then they expand quickly, collide with each other
and move out of the bounded domain. Then at time t = 3, t = 7 and t = 14, respectively,
we give the snapshots of this interesting phenomena obtained by our proposed method.

Fig. 12 shows that before time t = 3 the energy is conserved, since the movement of
circular ring solitons are restricted in the bounded domain, however after time t=3 as the
circular ring solitons move out the bounded domain and the energy decays accordingly.

4.2 Accuracy of the proposed method

In this section, we consider the numerical accuracy of the proposed method for the sine-
Gordon equation. Numerical experiments show that for these solitary solutions to the
two-dimensional sine-Gordon equation, the proposed method has the same accuracy.
To avoid tautology, we only choose some results in the line soliton and ring soliton as
example. In the computations, we set τ = h/2. To evaluate the accuracy of numerical
solution, we define the error functions as following

Error∞(t)=max|uexa(·,·,t)−unum(·,·,t)|,

Error1(t)=‖uexa(·,·,t)−unum(·,·,t)‖L1
,

Error2(t)=‖uexa(·,·,t)−unum(·,·,t)‖L2
.

Tables 1 and 2 list the corresponding errors for the superposition of two orthogonal line
solitons and the collision of four circular solitons at time t = 8, respectively. The same as
the previous section, the bounded spatial computational domain is chosen to be [−6,6]×
[−6,6] for the superposition of two orthogonal line solitons and [−12,12]×[−12,12] for the
collision of four circular solitons.

Fig. 13 shows that when we vary the mesh size h = 1/4, 1/8, 1/16, 1/32, 1/64, the
error functions Error∞ , Error1 and Error2 converge. The reference solution u(·,·,t)exa for
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Table 1: The errors for the superposition of two orthogonal line solitons at time t=8.

Mesh Error∞(8) Error1(8) Error2(8)

h= 1
4 1.7854e-1 5.2452e-0 7.2354e-1

h= 1
8 7.5990e-2 2.2464e-0 3.1367e-1

h= 1
16 3.3188e-2 9.8453e-1 1.3832e-1

h= 1
32 1.3760e-2 4.0868e-1 5.7596e-2

h= 1
64 4.5127e-3 1.3405e-1 1.8921e-2

Table 2: The errors for the collision of four circular solitons at time t=8.

Mesh Error∞(8) Error1(8) Error2(8)

h= 1
4 2.8463e-1 4.2045e1 2.2075e0

h= 1
8 1.3413e-1 1.9353e1 1.0061e0

h= 1
16 6.4796e-2 8.8584e0 4.6075e-1

h= 1
32 2.8301e-2 3.7682e0 1.9643e-1

h= 1
64 9.5293e-3 1.2522e0 6.5379e-2
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Figure 13: The errors of the proposed method at time t = 8, when varying the mesh size h =
1/4,1/8,1/16,1/32,1/64. The left is for the superposition of two orthogonal line solitons and the right is
for the collision of four circular solitons. The dashed lines converge in the order O(h).

the superposition of two orthogonal line solitons (collision of four circular solitons) is obtained
on the bounded spatial domain [−10,10]×[−10,10] ([−18,18]×[−18,18]) with the mesh
size h = 1/128. These bounded spatial domains are large enough, so that during all the
computational times, the waves do not touch the boundaries.

The choice of the splitting control parameter α is quite important in the split local
artificial boundary conditions method, however how to get the α in an analytic way is
still open. Through numerical experiments, we find that a larger α will have a better per-
formance for the split local ABC. Fig. 14 gives the numerical errors of different splitting
control parameter α for the circular ring solitons at time t = 8. Here the error function is
defined by the L1 norm, with mesh size h=1/16 and h=1/32 respectively.
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Figure 14: The errors of different splitting control parameter α for the circular ring soliton at t = 8. Left is
h=1/16, right is h=1/32. τ =h/2.
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Figure 15: The energy decays of different mesh size. The left is for the superposition of two orthogonal line
solitons and the right is for the circular ring solitons. The exact energy is obtained on the mesh size h=1/128.

The energy conservation of the sine-Gordon equation has been proven to be a char-
acteristic property of the nonlinear solitary waves. Fig. 15 plots the energy decaying on
the bounded domain between the numerical solution and the ”exact” solution for the
purpose of comparison. The ”exact” solution is obtained on the mesh size h=1/128.

5 Conclusions

The numerical solution to the two-dimensional sine-Gordon equation on R2 is studied in
this paper. Split local artificial boundary conditions are obtained by the operator splitting
method, then the original initial value problem is reduced to an initial boundary value
problem on a bounded computational domain. Numerical examples about the propaga-
tion and collision of solitary wave solutions are tested, which indicates that the proposed
split local artificial boundary conditions are nearly transparent for the wave propagation.

The proposed artificial boundary conditions are valid under the assumptions that
during the propagation process only the waves in the interior domain will move out of
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the domain through the artificial boundaries and there will be no waves traveling from
the exterior domain into the interior domain. For general cases, where both the out-
going and in-going waves travel through the artificial boundaries, the artificial boundary
conditions are complicated and will be our further consideration.
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