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Abstract. We propose a hierarchy of novel absorbing boundary conditions for the one-
dimensional stationary Schrödinger equation with general (linear and nonlinear) po-
tential. The accuracy of the new absorbing boundary conditions is investigated nu-
merically for the computation of energies and ground-states for linear and nonlinear
Schrödinger equations. It turns out that these absorbing boundary conditions and
their variants lead to a higher accuracy than the usual Dirichlet boundary condition.
Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger
equations.
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1 Introduction

The solution of the Schrödinger equation occurs in many applications in physics, chem-
istry and engineering (e.g., quantum transport, condensed matter physics, quantum
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chemistry, optics, underwater acoustics, ···). The considered problem can appear in dif-
ferent forms: time-dependent or stationary equation, linear or nonlinear equation, inclu-
sion of a variable potential among others. One of the main difficulty when solving the
Schrödinger equation and most particularly from a numerical point of view, is to impose
suitable and physically admissible boundary conditions to solve numerically a bounded
domain equation modeling an equation originally posed on an unbounded domain. Con-
cerning the time-domain problem, many efforts have been achieved these last years. We
refer the interested reader e.g., to the recent review paper [1] and the references therein
for further details.

In this paper, we begin to focus on the solution to the one-dimensional stationary
Schrödinger equation. For a given potential V possibly extending to infinity, eventually
nonlinear (V :=V(x,ϕ)), we want to solve the following equation

(
−α

d2

dx2
+V

)
ϕ=Eϕ, x∈R, (1.1)

or rewritten as ( d2

dx2
+

1

α

[
E−V

])
ϕ=0, x∈R, (1.2)

with some parameter α that allows for some flexibility. More precisely, we study the
extension of the recently derived time-domain boundary conditions [2] to the computation
of stationary states: we determine here the pair (ϕ,E), for a given linear or nonlinear
potential V. This eigenvalue problem is also known as the computation of ground states.
The energy of the system is then the eigenvalue E and the associated stationary state
is the eigenfunction ϕ. In particular, we seek the fundamental stationary state which is
linked to the smallest eigenvalue. In practice, higher order states are also of interest. After
a careful numerical validation of the 1D case, we develop some ABCs for the generalized
N-dimensional case

−α∆u+V(x)u+ f (u)u=Eu

in RN for an unbounded potential V and general nonlinearities. Another related problem
which is not treated here is linear and nonlinear scattering. We refer to our extended
version of the present paper [3] where a thorough study of scattering problems with the
ABCs is developed.

Let us note here that numerical approaches based on solving the stationary
Schrödinger with ABCs is not the only practical possibility. Indeed, other solutions may
be used. The most widely used approach with applications for example in Bose-Einstein
condensation is to bound the infinite space with a sufficiently large computational do-
main and then to impose a Dirichlet boundary condition on this fictitious boundary. The
fact that we may fix the field at zero at the boundary is related to the property that ground
states decay exponentially fast in the far-field. Then, spectrally accurate solutions can be
efficiently obtained following the works by Bao et al. [4,5]. Other solutions include whole
space solutions based on spectral methods (see [6,7]). Let us also note the following other
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strategy [8–10] for solving the linear Schrödinger equation with potential. If you approx-
imate the potential one each subinterval by a constant, linear or quadratic function, then
you get one each subinterval a problem that can be solved explicitly (harmonic oscillator,
Airy equation) and these sub-problems are solved sequentially by some transfer algo-
rithm. For constant potentials this approach was worked out in [8–10] (see the MATLISE
solver available at http://users.ugent.be/∼vledoux/). Obviously, this strategy can be
generalized to linear/quadratic potentials.

For the stationary Schrödinger equation (1.2), boundary conditions for solving linear
scattering problems with a constant potential outside a finite domain have been pro-
posed e.g., by Ben Abdallah, Degond and Markowich [11], by Arnold [12] for a fully dis-
crete Schrödinger equation and in a two-dimensional quantum waveguide by Lent and
Kirkner [13,14]. recent contributions include [15,16] where the case of finite range poten-
tials is treated. The case of bound states can be found for specific one-dimensional linear
Schrödinger equations in [17–21]. These boundary conditions are needed e.g., to improve
existing simulation tools for semiconductors that allows to investigate certain stationary
(and also transient) behavior of the devices, like conductance, capacity, current-voltage
curves. Often the physical relevant effects take place only in a small subregion of the
device and the novel absorbing boundary conditions offer the possibility to confine the
computations to this small domain. We refer the reader to [22–25] for more application
details.

The goal of this work is to propose and numerically validate some new boundary
conditions for modeling linear and nonlinear variable unbounded potentials stationary
one-dimensional Schrödinger equations with application to ground-state computation.
Finally, we extend these absorbing boundary conditions to higher dimensional problems.
The paper is organized as follows. In Section 2, we explain how to obtain the stationary
boundary conditions from the time-dependent case. Sections 3 and 4 are respectively
devoted to their applications to linear and nonlinear eigenstate computation. Section 5
gives an extension of the boundary conditions to the N-dimensional space for nonlinear
stationary Schrödinger equations with unbounded potentials. Finally, Section 6 draws a
conclusion and give an outlook for possible future research directions.

2 Absorbing boundary conditions: from the time-domain to

the stationary case: the one-dimensional case

In order to derive some absorbing boundary conditions (ABCs) for the stationary Schrö-
dinger equation (1.2), let us first start with the time-domain situation. In case of the
time-dependent Schrödinger equation with a linear or nonlinear potential Ṽ

{
i∂tu+∂2

xu+Ṽu=0, ∀(x,t)∈R×R+,

u(x,0)=u0(x), x∈R,
(2.1)
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the following second- and fourth-order ABCs on the boundary Σ×R+

ABC2
2: ∂nu= i

√
i∂t+Ṽu, (2.2a)

ABC4
2: ∂nu= i

√
i∂t+Ṽu− ∂nṼ

4
(i∂t+Ṽ)−1u, (2.2b)

were derived recently in [2]. Here, for an operator A,
√

A denotes the square-root opera-
tor of A [26] with respect to its spectral decomposition. The fictitious boundary Σ is given
by the two interval endpoints xℓ and xr. The outwardly directed unit normal vector to
the bounded computational domain Ω=[xℓ;xr] is denoted by n.

To obtain some ABCs for the stationary equations (1.1) or (1.2), we consider these
equations supplied with a new potential: Ṽ :=−V/α. Moreover, we are seeking some
time-harmonic solutions

u(x,t) := ϕ(x)e−i E
α t.

Since

i∂tu=
E

α
ϕ(x)e−i E

α t,

we have √
i∂t+Ṽu=

1√
α

√
E−V(ϕe−i E

α t).

These considerations yield some stationary ABCs that we designate by SABCM (”S”
stands for stationary and M denotes the order of the boundary condition):

SABC2: ∂n ϕ= i
1√
α

√
E−Vϕ, on Σ, (2.3a)

SABC4: ∂n ϕ= i
1√
α

√
E−Vϕ+

1

4

∂nV

E−V
ϕ, on Σ. (2.3b)

The second- and fourth-order ABCs for the time-dependent Schrödinger equation (2.2a),
(2.2b) were developed under a high frequency assumption [2]. This relation can be trans-
lated to the stationary case in terms of links between E and V. The new relations will be
given for the eigenvalues problems in the next dedicated sections.

Remark 2.1. For the time-dependent case [2], we constructed two families of ABCs, de-
noted by ABCM

1 and ABCM
2 . These ABCs all coincide if the potential is time-independent.

In the stationary case, all the potentials fall into this category and thus the ABCs are
equivalent. Hence, we get the unique class of stationary ABCs, SABCM (without sub-
script index). For convenience, the form of the boundary conditions (2.3a)-(2.3b) is based
on ABCM

2 (we refer to [2] for more technical details).
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3 Application to the computation of stationary states: the

linear case

Let us consider the Hamiltonian H

H =−α
d2

dx2
+V(x), x∈R, (3.1)

defined through α and V. The task here is to determine the pair (φE,E) solution to the
eigenvalue problem:

HφE =EφE, x∈R. (3.2)

This problem can also be formulated as follows: find the eigenvalues (En)n∈N (energies)
and the associated real-valued eigenfunctions (φn)n∈N (eigenstates or ground states) as
solutions of: Hφn = Enφn, x ∈ R. To fix the eigenfunction, it is necessary to impose a
normalization condition: ‖φE‖L2(R)=1. Let us begin with the case where the potential does
not depend on the eigenfunction (called linear case here). The nonlinear case will be
treated later in Section 4.

3.1 Square-root ABCs

Before discussing the difficulties related to the ABCs, let us consider the numerical solu-
tion of our problem with a homogeneous Dirichlet boundary condition. The variational
formulation of (3.2) reads

−α
[
∂nφEψ

]xr

xℓ

+α
∫

Ω

∂xφE∂xψdx+
∫

Ω

VφEψdx=E
∫

Ω

φEψdx, (3.3)

for some test-functions ψ∈H1
0(Ω) [27]. S0, M0 and M0

V be respectively the stiffness ma-
trix, mass and generalized mass matrices associated with the potential V for P1 finite
element and a homogeneous Dirichlet boundary condition (these matrices are some ele-
ments of Mnh−1(R)). The discrete problem can be classically formulated as the following
generalized eigenvalue problem: find the pair (E,φE) as solution to

{ (
αS0+M0

V

)
φE =EM0φE,

‖M0φE‖2 =1,
(3.4)

which is a generalized eigenvalue problem with an equality constraint. Here, φE is a vec-
tor in Rnh−1 which is normalized by: ‖M0φE‖2 =1 (‖·‖2 being the usual Euclidian norm
in Rnh−1). The global algorithm complexity is essentially the sum of the complexities
for building the sparse finite element matrices and for computing the eigenvalue prob-
lem. In this paper, we use Matlab’s eigs function which provides the p smallest positive
eigenvalues corresponding to the generalized eigenvalue problem. This function auto-
matically normalizes the eigenvectors in the Euclidian norm hence fulfilling the normal-
ization constraint in (3.4). eigs is associated with the software ARPACK. In the case where
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the potential is not always positive, we use the property that the smallest eigenvalue E0

is larger than the minimum of the potential Vmin and solve (3.4) by a translation of −Vmin.
Finally, the solution to (3.4) generates the sequence of the p first eigenvalues (E0

n)0≤n≤p−1,
eigenvectors (φ0

n)0≤n≤p−1 and finite element eigenfunctions (φ0
n)0≤n≤p−1 associated with

the Dirichlet boundary condition. Since this eigenvalue problem is linear with respect to
E, we can solve it without using e.g., a fixed point algorithm, unlike the case of including
a square-root ABC as it is explained below. For this reason, the solution is called ”direct”
in the sequel of the paper.

Let us consider now the SABC2 boundary condition

∂nφE =
i√
α

√
E−VφE, on Σ. (3.5)

The main difficulty with this boundary condition is its nonlinear dependence on E. As a
consequence, we cannot isolate the terms (E,φE) in the right-hand side of (3.3) in a linear
way, that is under the form EφE. More precisely, the nonlinear eigenvalue problem to solve
is { (

αS+MV +BM(EM)
)
φM =EMMφM,

‖MφM‖2 =1,
(3.6)

using the matrix notations of the scattering problem. We precise that both the eigenvalues
and eigenfunctions depend on the chosen boundary condition SABCM by the notation:
(EM,φM). The first p eigencomponents are indexed as follows: (EM

n ,φM
n ), with 0≤n≤p−1.

The nonlinear dependence on the boundary term is given by the presence of BM(EM). To
solve the eigenvalue problem with SABCM, we have to apply an iterative scheme like a
fixed point method (with a prescribed tolerance ǫ) and update EM at each iteration step
j.

This procedure implies that we have to a priori choose an eigenvalue of index n (de-
noted by EM

n ) that we wish to calculate. This is an important drawback since we have to
a priori compute successively all the eigenvalues and associated eigenvectors. In fact,
it appears that eigs is also able to provide an approximation of the first p eigenval-

ues (E
M,j
n )0≤n≤p−1 of (EM

n )0≤n≤p−1 and the corresponding eigenvectors φM
n . As a con-

sequence, we also have to recompute the boundary terms arising in BM(E
M,j
n ). Hence,

the fixed point algorithm reads

{ (
αS+MV +BM(E

M,j
n )

)
φM,j+1 =EM,j+1MφM,j+1,

‖MφM,j+1‖2 =1,
(3.7)

each linear problem being solved by using the Matlab routine eigs. More generally, for a
boundary condition with a nonlinear dependence on the energy E, we use an associated
fixed point algorithm. Even if we iterate through a fixed point algorithm, it appears that
the algorithm also simultaneously gives some approximations of the other eigenvalues
and eigenvectors (see the numerical section). This approach is therefore designated by
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”direct” if we only iterate on one a priori fixed eigenvalue. This algorithm can be applied
successively by iteration using the fixed point algorithm and keeping only the computed
eigenvalue and eigenvector related to the current iteration. Of course, the resulting algo-
rithm is more expensive but at the same time more accurate. This approach is designated
by ”loop” in the sequel. Let us remark that there is no difference between both approaches
for the Dirichlet problem.

3.2 Linearized ABCs

Unlike the case of the Dirichlet problem, we previously saw that the algorithm related to
the square-root ABCs is iterative because of the nonlinearity. To avoid this problem, we
can linearize SABC2 and SABC4. The principle is based on a Taylor’s expansion in the
regime E≪V. This asymptotic regime is justified in particular for an harmonic potential
V(x)=0.5x2 since V grows quickly as soon as we do not place the boundary too close to
the origin and we restrict our computations to relatively not too high energies. For the
boundary condition SABC2 (3.5), this leads to the approximation of SABC2 by SABC2

lin
given by

∂nφ̃E =−
√

Vℓ,r√
α

φ̃E+
1

2

E√
α
√

Vℓ,r

φ̃E. (3.8)

Next we can isolate the linear part according to E as ∂nφ̃E =β2
ℓ,rφ̃E+Eγ2

ℓ,rφ̃E, with β2
ℓ,r and

γ2
ℓ,r defined by (3.8). Including these ABCs in the weak formulation (3.3) leads, after dis-

cretization by the P1 finite element method, to the following linear eigenvalue problem
(M=2) { (

αS+MV +CM

)
φ̃

M
= ẼM(M+DM)φ̃

M
,

‖Mφ̃
M‖2 =1.

(3.9)

We have defined the two matrices (M=2)

CM =




αβM
ℓ

0 0 0
0 ··· ··· 0
0 ··· ··· 0
0 ··· ··· 0
0 0 0 αβM

r




, BM =




−αγM
ℓ

0 0 0
0 ··· ··· 0
0 ··· ··· 0
0 ··· ··· 0
0 0 0 −αγM

r




. (3.10)

Problem (3.9) is directly solved without iteration by using eigs. The computational
cost is therefore the same as for a Dirichlet boundary condition. Furthermore, since
we do not have to iterate, the algorithm provides simultaneously the first p eigenval-

ues (ẼM
n )0≤n≤p−1 and associated eigenvectors (φ̃

M
n )0≤n≤p−1. The resulting algorithm is

called direct. In the case of SABC4, a similar strategy of linearization of (2.3b) leads to the
approximation

∂nφ̃E = β4
ℓ,rφ̃E+Eγ4

ℓ,rφ̃E, (3.11)
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with β4
ℓ,r and γ4

ℓ,r respectively given by

β4
ℓ,r = β2

ℓ,r−
1

4

∂nV|x=xℓ,r

Vℓ,r
, γ4

ℓ,r =γ2
ℓ,r−

1

4

∂nV|x=xℓ,r

V2
ℓ,r

(3.12)

by using the approximation

1

4

∂nV

E−V
≈−1

4

∂nV

V
− 1

4

∂nV

V2
E. (3.13)

Adapting the functions, our problem can be written as (3.9).

3.3 Numerical examples

Example 3.1 (Harmonic potential). We first consider the well-known (positive) harmonic
potential V(x)=0.5x2, i.e., the equation to solve is

−1

2
φ′′

E+
1

2
x2φE =EφE, x∈R, (3.14)

with α = 1/2. The square-integrable normalized solutions of (3.14) are the Hermite func-
tions

φex
n (x)=

π− 1
4√

2nn!
e

x2

2
dn

dxn

(
e−x2)

, n≥0 (3.15)

and the corresponding eigenvalues (energies) are: Eex
n = n+1/2. The eigenfunctions

φex
n (x) vanish for |x|→∞, but this decay is slower and slower as n grows.

Let us recall that, for the case of the square-root ABCs, we have the direct and loop
strategies. In the sequel, when we present an error calculation with respect to xr or h,
this is clearly obtained by the direct approach since n is fixed. When we compute a range
of eigenvalues (curves with n as abscissa), we report the results for both strategies to
compare the respective accuracies.

A first numerical test consists in presenting the error on both the energy and eigen-
functions depending on the computational domain size. For the harmonic potential, we
always consider a symmetric domain Ω = [−xr;xr]. For a fixed n, the value of an eigen-
function is closer to zero as xr becomes larger. This means that we should observe the
impact of the ABCs compared to the homogeneous Dirichlet boundary condition de-
pending on the location of xr. Fig. 1 reports, for the fundamental state n=0 and in loga-
rithmic scale, the absolute error on the eigenvalue |∆E|= |Enum

n −Eex
n | and the error in the

L2-norm of the eigenfunction ||∆φ||L2(Ω) = ||φnum
n −φex

n ||L2(Ω) when the right endpoint xr

varies between 1 and 7.
Fig. 2 presents similar results for n = 4 and xr varying between 3 and 10. The cal-

culations are obtained for the numerical eigenvalues Enum
n equal to EM

n (for SABCM) or
ẼM

n (for SABCM
lin), depending on the order M of the ABC and its type (square-root or lin-

earized). In the nonlinear case, corresponding to SABCM, the number of iterations is 50
to reach convergence with ε=10−12. The spatial step size is h=1×10−3.
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Figure 1: Example 3.1: Error (n=0).
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(b) Eigenvector

Figure 2: Example 3.1: Error (n=4).
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(b) Loop approach

Figure 3: Example 3.1: Error on the eigenvalue depending on n (Ω=[−4;4]).

For n fixed, we observe an accuracy improvement for both boundary conditions when
xr grows. When xr is close to the origin (for example xr = 1 for n = 0, xr < 3 for n = 4),
all the conditions lead to inaccurate results. However, even for these small values of xr,



P. Klein, X. Antoine, C. Besse and M. Ehrhardt / Commun. Comput. Phys., 10 (2011), pp. 1280-1304 1289

the linearized ABCs already give an approximation of the eigenvalue while this is not
the case for the Dirichlet boundary condition as well as for SABC2,4. Indeed for xr = 3

and n = 4, the ABCs SABC2,4
lin give Ẽn with an error equal to 10−2 when the error for the

homogeneous Dirichlet boundary condition is about 10−1 and 1 for the square-root ABCs.
The same remark holds for n=0.

It seems from these tests that the linearized ABCs are the most robust boundary con-
ditions concerning the size of the computational domain. From a general point of view,
the ABCs always provide a better precision, at least about the same as with the Dirichlet
boundary condition but often far better. The ABCs of different orders generally give a
similar accuracy with however a better accuracy behaviour of the square-root ABCs but
at a higher computational cost. They improve the accuracy of the Dirichlet boundary
condition from a factor between 10 and 103 according to the configuration, before attain-
ing the saturation zone. After a certain value of xr, all the boundary conditions lead to
the same accuracy which only depends on the spatial mesh size. For the computation of
the eigenfunctions, this value can be estimated to xr =6 for n=0 and to xr =6.5 for n=4.

We also remark that we must increase xr as n grows to get the same accuracy. To
confirm this, we compute the variation of the error when Ω = [−xr ;xr] is fixed and n
varies. We set xr =4 and for n∈ [0,10] we report the error on the eigenvalues En (Fig. 3)
for both the ”direct” and ”loop” approaches.

For all the boundary conditions, we can clearly see that the accuracy decays as n
increases. Indeed, the ABCs have been built in the high frequency regime. In our context,
this means that we require that:

En−Vr ≪0 (3.16)

holds for a given point xr and for a fixed potential V. As a consequence, this limits the
calculation of energies under the condition En ≪ x2

r /2 for example in the harmonic case.
In the proposed simulation, setting xr =4 leads to En ≪8, which is coherent with the ob-
servations in Fig. 3. Another way to interpret this property is that increasing the accuracy
and the range of eigenvalues must be a priori guided by relation (3.16). To visualize this,
we show in Fig. 4 the potential V as well as the first energies En. We can read from this
figure the abscissa x where E−V becomes negative and we can have a first idea of the
choice of the minimal abscissa xr to choose to get a sufficiently large gap between E and
V(xr) according to (3.16).

For example, for the fundamental state n = 0, the energy associated with E0 is the
lowest level red curve. From the intersection with the curve of V(x), we can see that
E0−V(x) is negative for x ≥ 1 and we can estimate that the difference between E0 and
V(x) will be enough starting from about x ≥ 2. Coming back to Fig. 1 confirms these
values since choosing xr = 1 provides a possible computation but does not necessarily
converge towards E0 while setting xr =2 gives a correct approximation of E0. We can do
the same analysis for n = 4 (fifth red curve from the bottom). We see that E4−V(x) is
negative from x≥3 and ”very negative” after x≥4. These values must be connected with
the curves of Fig. 2.
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Figure 4: Example 3.1: Harmonic potential and the energies En for 0≤n≤9.

On this example (n = 4), we also remark that the linearized ABCs are more accurate
than the original square-root ABCs, with a gain of a factor 10 in precision. This remark
could also have been made on Fig. 2 corresponding to n = 4, most particularly for the
computation of the eigenvalue. The precision obtained for xr ≥ 4.5 with the linearized
boundary conditions is the same as for the square-root boundary conditions but the lin-
earization yields an accuracy improvement on smaller computational domains while the
iterative algorithm for the square-root conditions does not converge (2≤ xr ≤ 3). More-
over, let us note that the spectrum is simultaneously obtained in the linear case without
iterating which is a crucial gain compared to the ”loop” approach, showing hence the
need of linearizing. As a consequence, the ABCs SABCM

lin are, for a similar computational
cost, to privilege to the Dirichlet boundary condition for accuracy purpose and/or for
reducing the computational domain. Let us also finally remark that the gain in terms
of accuracy of the ”loop” approach is interesting as we can see it in Fig. 2(a) but for a
relatively higher computational complexity.

We now wish to compare the performances of the linearized and square-root ABCs.
The previous curves illustrated the question of accuracy. Generally speaking, the square-
root ABCs provide a better accuracy but at a higher computational cost even for the ”di-
rect” approach since a fixed point is required. We show in Fig. 5 the number of iterations
when using SABC2 and SABC4, with respect to xr, for two situations: n = 0 and n = 4.
Figs. 5(a) and 5(b) must be connected to Figs. 1 and 2 which are their equivalent in terms
of accuracy.

For the first value of xr, we often observe the divergence of the algorithm (the max-
imal number of iterations of the fixed point algorithm is 20). Again, this is one of the
interesting property of the linear ABCs since, if we go back to Figs. 1 and 2, they also give
a rough estimate of the eigenvalue.

For a slightly larger value of xr, the number of iterations stagnates to 5. Finally, when
the maximal accuracy is reached, the algorithm needs 2 or 3 iterations. Globally, the com-
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Figure 5: Example 3.1: Number of iterations needed for the algorithms associated with the different ABCs,
with respect to xr for n=0 and n=4.
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Figure 6: Example 3.1: Error (xr =3.5 and n=0) with respect to h.
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Figure 7: Example 3.1: Error (xr =4 and n=4) with respect to h.

putational costs for the square-root ABCs are roughly 5 times the costs for the linear ones
and the Dirichlet boundary condition. At the same time, a higher accuracy is obtained by
the square-root ABCs.
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Finally, we present in Figs. 6 (n = 0) and 7 (n = 4) the influence of the discretization
on the accuracy for a given computational domain [−xr ;xr]. We fix xr and report the
errors |∆E| and ‖∆φ‖L2(Ω) depending to the mesh size h, for h between h=5×10−2 and

h = 1×10−4. The value of xr is chosen such that the saturation of the error has not been
reached yet so that we can see an effect of the ABCs compared to the Dirichlet boundary
condition.

One remarkable property is that for n = 0 (Fig. 6) the accuracy remains increasing
with the ABCs by refining the mesh while this is not the case for the Dirichlet boundary
condition. Indeed, we cannot gain more accuracy after h = 10−2 if we do not increase
the size of the computational domain. Concerning the ABCs (which are already more
accurate than the Dirichlet boundary condition for h = 10−2), we can still improve the
solution by refining, most particularly with SABC4. Note that this remark holds for both
the eigenvalues and eigenvectors.

Example 3.2 (Pöschl-Teller potential). The potential that we analyze now has the prop-
erty to lead to negative eigenvalues. A necessary condition to justify the application of
the previous approach is that

V(xr)−E≥0. (3.17)

Hence, according to n and the rank of the eigenvalue that we are looking for, we have
to choose xr sufficiently large so that condition (3.17) is fulfilled. Since V is negative
and even if we have E ≪ V, then linearizing SABC2,4 by using a Taylor’s expansion
with respect to E/V is no longer relevant since V can be equal to zero. Let us set
Vmin = minx∈R V(x) and using the property that the Schrödinger equation is linear, we
define a new positive potential W = V−Vmin and Fn = En−Vmin. Problem (3.1)-(3.2) is
then equivalent to

−αφ′′
E+WφE = FnφE. (3.18)

The boundary conditions SABC2,4
lin are so the linearized versions of SABC2,4 according to

1/(V−Vmin) (and not 1/V) by using the equivalent assumption: E−Vmin≪V−Vmin.
The Pöschl-Teller potential [28] is given by

V(x)=− λ(λ+1)

cosh2(x)
, (3.19)

and α = 1 in (3.1). This potential is always negative (see Fig. 8(a)). For λ = 9, it leads
to nine eigenvalues: En =−(9−n)2, 0≤ n≤ 8. In Fig. 8(b), we plot the different energy
levels, compared to the potential. To take into account the translation, we rather present
V(x)−Vmin and En−Vmin.

For a given eigenstate, we can a priori estimate the size of the computational domain
to consider that the high frequency hypothesis is satisfied and that the convergence of
the iterative algorithm occurs. We set h=5×10−4 and analyze, for n fixed, 0≤n≤8, the
error on En for the different ABCs depending on the position of xr. We depict the results
in Fig. 9 for n =0, n =4 and n =8. The ABCs always improve the accuracy compared to
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Figure 8: Example 3.2: Pöschl-Teller potential and its first nine energy levels.
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Figure 9: Example 3.2: Error of the
eigenvalues for the different ABCs
and the Pöschl-Teller potential.

the Dirichlet boundary condition. This is most particularly clear for large n. For n = 8
and [−5;5], the accuracy obtained with the Dirichlet boundary condition is less than 10−2

and about 5×10−5 for SABC2,4. To get a similar precision with the Dirichlet boundary
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Figure 10: Example 3.2: Error on the eigenvalues according to n for the Pöschl-Teller potential.

condition, we would have to choose xr =10 leading therefore to a significant larger com-
putational domain. The effect of the linearized ABCs is variable. For n = 0 the ABCs

SABC2,4
lin are almost as precise as the ABCs SABC2,4, but when n increases, the accuracy is

similar to the one obtained by using the Dirichlet boundary condition.

For the same potential, we observe in Fig. 10 the error on En for xr fixed. For xr = 2,
we notice a factor 10 to 100 between the Dirichlet boundary condition and the ABCs for
the states 2≤n≤6. The second- and fourth-order ABCs have a similar accuracy. At xr =4,
all the boundary conditions are equivalent for the first eigenstates but when n grows the
ABCs remain accurate while the Dirichlet boundary condition is less precise (n=6, n=7).
Indeed, they yield an accuracy of the eigenvalue about 10−3 while the Dirichlet boundary
condition gives only 10−1 (n=8).

Remark 3.1. In [3,29], we also study the case of the Morse potential as well as the Woods-
Saxon potential. This extends our conclusions to these two situations.
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4 Application to the computation of ground states: the

nonlinear case

4.1 Problem and numerical scheme

We are interested in computing ground states for nonlinear Schrödinger equations. Most
particularly, we consider a nonlinear potential which is the sum of a cubic nonlinearity
and a harmonic potential. This kind of nonlinearity arises e.g., in Bose-Einstein conden-
sates [30–32]. The dimensionless one-dimensional Gross-Pitaevskii equation [33–35] reads

i
∂ψ

∂t
=−1

2
∂2

xψ+Vψ+β|ψ|2ψ, x∈R, (4.1)

setting V(x)=0.5x2 and where the nonlinearity coefficient β can be negative or positive.
We restrict ourselves to this special nonlinearity but all results can be directly extended to
other cases. In view of computing the stationary solutions we write: ψ(x,t)= e−iEtφE(x),
where E is the chemical potential of the condensate and φE is a real-valued function inde-
pendent of time. Let us note that the stability of exactly this kind of problems was studied
analytically in [36–38] and hence can be checked numerically using our proposed ABCs.

Function φE is then solution to

−α∂2
xφE+VφE+β|φE|2φE =EφE, x∈R, (4.2)

where α=1/2, under the normalization constraint

‖φE‖L2(R) =1. (4.3)

Finally, the function φE of the problem (4.2)-(4.3) satisfies the boundary conditions
φ′

E(0) = 0 and φE(±x)→ 0 for x →+∞. The resulting system is a nonlinear eigenvalue
problem under constraint. The eigenfunction φE being known, we can determine the
associated eigenvalue E by

E=
∫

R

α|∂xφE|2+Vφ2
E+βφ4

E dx. (4.4)

The problem (4.2)-(4.3) is solved on a symmetric computational domain Ω=[−R;R],
with R > 0 and Σ = {−R;R}. We keep on denoting this domain by Ω = [−xℓ;xr]. We
introduce (E0,φ0) as a solution to the boundary value problem with Dirichlet boundary
condition 




−α∂2
xφE+VφE+β|φE|2φE =EφE, in Ω,

φE =0, on Σ,

‖φE‖L2(Ω) =1.

(4.5)
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Analogously, we designate by (EM,φM) the solution computed with a M-th order
nonlinear ABC obtained from the linear stationary ABCs (2.3a)-(2.3b). To this end, we re-
place formally the potential V by the new nonlinear potential V+β|φ|2 to get the second-
order ABC

∂nφE =
i√
α

√
E−V−β|φE|2φE, on Σ, (4.6)

and fourth-order ABC

∂nφE =
i√
α

√
E−V−β|φE|2φE+

1

4

∂n

(
V+β|φE|2

)

E−V−β|φE|2
φE, on Σ. (4.7)

For the sake of clarity, we keep on designating by SABCM the above M-th order ABC.
The interior equation is discretized by the semi-implicit scheme

−α∂2
xφM,j+1+VφM,j+1+β|φM,j|2φM,j+1 =EM,j+1φM,j+1, (4.8)

for j≥0 and M=0,2,4. Now and independently of the boundary condition, the algorithm
must be iterative since the interior scheme is nonlinear. As a consequence, we system-
atically use the fixed point method on the n-th eigenvalue EM

n and eigenfunction φM
n for

solving the eigenvalue problem. The variational formulation reads

−α
[
∂nφ

M,j+1
n ψ

]xr

xℓ

+α
∫

Ω

∂xφ
M,j+1
n ∂xψdx+

∫

Ω

Vφ
M,j+1
n ψdx

+β
∫

Ω

|φM,j
n |2φ

M,j+1
n ψdx=E

M,j+1
n

∫

Ω

φ
M,j+1
n ψdx, (4.9)

for any test-function ψ. In the Dirichlet case, by choosing ψ∈ H1
0(Ω), which makes the

first term of the equation vanish, the discrete problem is, for M=0,





(
αS0+M0

V +βM0

|φM,j
n |2

)
φ

M,j+1
n =E

M,j+1
n M0φ

M,j+1
n ,

‖M0φ
M,j+1
n ‖2 =1.

(4.10)

For the ABCs, we use for ∂nφ
M,j+1
n the fixed point version

∂nφ
M,j+1
n =

i√
α

√
E

M,j
n −V−β|φM,j

n |2 φ
M,j+1
n (4.11)

for the second-order ABC (4.6) and

∂nφ
M,j+1
n =

( i√
α

√
E

M,j
n −V−β|φM,j

n |2+
1

4

∂n(V+β|φM,j
n |2)

E
M,j
n −V−β|φM,j

n |2
)

φ
M,j+1
n (4.12)

for the fourth-order condition (4.7). Hence, the term −α[∂nφ
M,j+1
n ϕ]xr

xℓ
leads, from a dis-

crete point of view, to a matrix contribution B
j
MφM,j+1 for the M-th order ABC, where the
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matrix coefficients B
j
M only depend on the values of φ

M,j
n and E

M,j
n . By applying the fixed

point algorithm on the n-th eigenvalue EM
n and eigenvector leads to the iterative scheme

φM
n 




(
αS−αBM,j+MV +βM|φM,j

n |2
)

φ
M,j+1
n =E

M,j+1
n Mφ

M,j+1
n ,

‖Mφ
M,j+1
n ‖2 =1.

(4.13)

The matrix coefficients BM,j are given by

(B
M,j)1,1 =

i√
α

√
E

M,j
n −Vℓ−β|φM,j

n,ℓ |2+
1

4

∂n

(
V+β|φM,j

n |2
)
|x=xℓ

E
M,j
n −Vℓ−β|φM,j

n,ℓ |2
(4.14)

and

(B
M,j)nh+1,nh+1 =

i√
α

√
E

M,j
n −Vr−β|φM,j

n,r |2+
1

4

∂n

(
V+β|φM,j

n |2
)
|x=xr

E
M,j
n −Vr−β|φM,j

n,r |2
(4.15)

for SABC4 (M =4). For SABC2 (M =2), it is sufficient to retain only the first term of each

of the above expressions. We have set here: φ
M,j
n,ℓ =φ

M,j

n,|x=xℓ
and φ

M,j
n,r =φ

M,j

n,|x=xr
.

As in the linear case, we can formulate the linearized versions of the second- and
fourth-order ABCs. These ABCs are then designated by SABC2,4

lin . Doing so, we have the
second-order ABC

∂nφ
M,j+1
n =−

√
V√
α

φ
M,j+1
n − β

2

1√
α
√

V
|φM,j

n |2φ
M,j+1
n +

1

2

1√
α
√

V
E

M,j+1
n φ

M,j+1
n (4.16)

and the fourth-order ABC

∂nφ
M,j+1
n =−

√
V√
α

φ
M,j+1
n − β

2

1√
α
√

V
|φM,j

n |2φ
M,j+1
n +

1

2

1√
α
√

V
E

M,j+1
n φ

M,j+1
n

+
(
− 1

4

∂n(V+β|φM,j
n |2)

V
+

β

4

|φM,j
n |2∂n(V+β|φM,j

n |2)
V2

)
φ

M,j+1
n

−E
M,j+1
n

∂n(V+β|φM,j
n |2)

V2
φ

M,j+1
n . (4.17)

The iterative scheme then reads





(
αS−αBM,j+MV +βM|φM,j

n |2
)

φ
M,j+1
n =E

M,j+1
n

(
M+αB

j
E,M

)
φ

M,j+1
n ,

‖Mφ
M,j+1
n ‖2 =1.

(4.18)
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The matrix coefficients BM,j end B
M,j
E are given by

(B
M,j)1,1 =−

√
Vℓ√
α
− β

2

1√
α
√

Vℓ

|φM,j
n,ℓ |2−

1

4

∂n

(
Vℓ+β|φM,j

n,ℓ |2
)

Vℓ

+
β

4

|φM,j
n,ℓ |2∂n

(
Vℓ+β|φM,j

n,ℓ |2
)

V2
ℓ

, (4.19)

(B
M,j
E )1,1 =

1

2

1√
α
√

Vℓ

−
∂n

(
Vℓ+β|φM,j

n,ℓ |2
)

V2
ℓ

(4.20)

for the fourth-order ABC. The expression of the coefficients of index (nh+1,nh+1) is
the same but taking its value at x = xr. We can easily extract the coefficients associated
with the second-order ABC by keeping only the first term of each expression. Unlike the
linear situation, there is no gain in terms of computational time since the problem is fully
nonlinear.

4.2 Numerical results

We consider (4.2) for different values of the parameter β. For each value, we uniquely de-
termine the fundamental state n=0. To get some reference eigenvalues, we numerically
compute them on the domain [−30;30], with a step size h = 10−4 and SABC2 (4.7). This
method provides some values reported in Table 1 which are conform with the ones given
in [34]. Let us note here that we do not give some results for larger values of β because
the fixed point algorithm then diverges. It would be necessary at this point to use another
numerical algorithm (a Newton method or a continuation method) for solving the prob-
lem with an ABC. Finally, we present in the sequel the absolute errors: ∆E= |Enum−Eref|
and ∆φ(0)= |φnum(0)−φref(0)|, where ”ref” refers to the values in Table 1 and ”num” to
the ones computed with the proposed method.

Table 1: Numerical values Eref and φref
E (0) computed on a larger domain for different β.

β φE(0) E
−6.2742 1.265512713848083 −4.956873352670034
−2.5097 0.913230941756339 −0.806257128073956
3.1371 0.645961493829006 1.526594842533555

For the simulations, the initialization of the fixed point algorithm uses the exact har-

monic potential solution (β = 0): φM,0
0 (x) = π−1/4e−x2/2. The fixed point algorithm tol-

erance is ε = 10−12 and the mesh size of the linear finite element method is h = 10−3.
Figs. 11, 12 and 13 report the error on both the eigenvalue and eigenfunction at the origin
depending on the right endpoint xr, for the values β=−6.2742, β=−2.5097 and β=3.1371,
respectively.
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Figure 11: Errors ∆E and ∆φ(0) for β=−6.2742.
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Figure 12: Errors ∆E and ∆φ(0) for β=−2.5097.
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Figure 13: Errors ∆E and ∆φ(0) for β=3.1371.

Generally speaking, for a given case, all the algorithms converge with about the same
number of iterations, independently of the boundary condition. We also note that, for
negative values of β, the linearized ABCs lead to the same accuracy as the nonlinear
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ABCs (not reported here) for a similar computational time. In Figs. 11 and 12, we only
present the results for the Dirichlet boundary condition and SABC2,4. For β>0 (Fig. 13),
the linearized ABCs possess an accuracy at least equal to the one with SABC2,4. We do
not have any explanation about this fact. For β =−6.2742 (Fig. 11), all the algorithms
converge in 23 iterations. The ABCs improve the accuracy from a factor 10 compared
with the Dirichlet boundary condition for xr = 1.5 and almost 100 when xr = 2, then for
xr ≥2.5, all the boundary conditions have the same accuracy: 10−5. The precision of the
second-order ABC is slightly better than the fourth-order ABC. There is no explanation
here about this behavior but we recall that ABCs for the nonlinear case where obtained
by the formal argument: ”the potential is replaced by the nonlinearity”. For β=−2.5097
(Fig. 12), the convergence takes 14 iterations. The ABCs again provides a gain of precision
compared with the Dirichlet boundary condition for xr between 1.5 and 3.5, with a better
accuracy for the second-order ABC (see the points xr = 3 and xr = 2.5 for example). For
β = 3.13712, the situation is quite similar but requires 77 iterations to converge. Unlike,
the two previous cases, the linearized ABCs give a slightly better accuracy than for the
original ABCs.

5 Extension to N-dimensional stationary problems

In the N-dimensional linear time-dependent case, the ABCs take the following form

ABC1
2 : ∂nu−iOp

(√
−τ+∆Σ+Ṽ

)
u=0 (5.1)

for the first-order condition and

ABC2
2 : ∂nu−iOp

(√
−τ+∆Σ+Ṽ

)
u+HOp

(
(−τ+∆Σ+Ṽ)−1

)(
i∂t+Ṽ

)
u=0 (5.2)

for the second-order one on Σ×R+. The Schrödinger equation under consideration is the
following {

i∂tu+∆u+Ṽ(x)u=0, ∀(x,t)∈RN×R+,

u(x,0)=u0(x), x∈RN .
(5.3)

Here, the computational domain Ω is a bounded set of the RN dimensional space. Its
boundary Σ is supposed to be a (N−1)-dimensional convex and compact manifold. Its
mean curvature H is defined by: H= trace(R)/(N−1), where R is the curvature tensor
of the surface. For example, for a two-dimensional surface, we have: H=κ/2, where κ is
the local curvature at a point of the surface. For a 2-sphere of radius R, we get H=1/R.
The operator ∆Σ is the Laplace-Beltrami operator over the surface. For the sphere it is
defined by

∆Σ f :=
1

r2sinϕ

∂

∂ϕ

(
sinϕ

∂ f

∂ϕ

)
+

1

r2sin2 ϕ

∂2 f

∂θ2
,
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for a function f expressed in spherical coordinates (r,ϕ,θ). Other expressions exist for the
hypersphere and other manifolds. The asymptotics behind the construction of the ABCs
is somewhat different which results in a different definition of the order of an ABC. We
do not develop the whole theory and refer to [29] for more details in the 2-dimensional
case.

To get the ABCs for the N-dimensional stationary case

−α∆u+V(x)u=Eu, in Ω,

we make the substitutions: −τ→E/α and Ṽ →−V/α. This leads to the first-order Sta-
tionary ABC:

SABC1 : ∂nu+
1√
α

√
V−(α∆Σ+E)u=0 (5.4)

and

SABC2 : ∂nu+
1√
α

√
V−(α∆Σ+E)u+H(V−E)

(
V−(α∆Σ+E)

)−1
u=0. (5.5)

As in the one-dimensional case, both conditions are nonlinear with respect to the energy
E. Furthermore, the square-root involves now the surface Laplace-Beltrami operator ∆Σ.
Here, we propose the formal asymptotics: V≫α∆Σ+E which can be justified by theoreti-
cal arguments of operator theory [29]. Using a second-order Taylor expansion, we obtain
the approximate linearized SABC

SABC1
lin : ∂nφ̃E+

√
V√
α

φ̃E−
√

α

2
√

V
∆Σφ̃E+

√
α

2
√

V
Eφ̃E =0 (5.6)

on Σ. For the second-order SABC, we do not really have to linearize the corrective term
which can be considered linearly through the introduction of an auxiliary function ΨE.
More precisely, we have

SABC2
lin : ∂nφ̃E+

√
V√
α

φ̃E−
√

α

2
√

V
∆Σφ̃E+

√
α

2
√

V
Eφ̃E+H(V−E)ΨE =0 (5.7)

coupled to the surface equation: −α∆ΣΨE+(V−E)ΨE−φ̃E=0. With such a trick, the cou-
pled system with unknowns (φ̃E,ΨE) remains linear and is well-adapted to a symmetrical
weak formulation for instance. Moreover, each term can be very easily implemented in
usual numerical codes based for example on finite difference, finite element or spectral
methods. The adaptation to the nonlinear stationary Schrödinger equation (for a smooth
nonlinearity like f (u)=β|u|2): −α∆u+V(x)u+ f (u)u=Eu, in Ω, can be made by simply
replacing V(x) by V(x)+ f (u) in the above ABCs.

6 Conclusions

We have proposed some accurate and physically admissible absorbing boundary condi-
tions for modeling linear and nonlinear stationary Schrödinger equations with variable
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potentials. Based on numerical schemes, these boundary conditions have been validated
for many configurations including linear and nonlinear ground-state computations. Fur-
thermore, the extension to N-dimensional problems that can be used in scattering prob-
lems like [39, Section 12.1], is given.

Future extensions would include variable mass Schrödinger equations [40] among
others. It might also be valuable to extent the presented work to systems of Schrödinger
equations that arise as so-called multiband effective mass approximations (MEMAs) to model
electronic states in modern semiconductor nanostructures, cf. [41–43]. Let us finally re-
mark that applications to generalized Schrödinger equations could also be developed by
adapting the methods developed in [2, 44].
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