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Abstract. We present a fast Poisson solver on spherical shells. With a special change
of variable, the radial part of the Laplacian transforms to a constant coefficient differ-
ential operator. As a result, the Fast Fourier Transform can be applied to solve the
Poisson equation with O(N3 logN) operations. Numerical examples have confirmed
the accuracy and robustness of the new scheme.
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1 Introduction

The purpose of this paper is to propose a simple fast solver for the Poisson equation in a
spherical shell





∂ρ(ρ2∂ρu)

ρ2
+

∂θ(sinθ∂θu)

ρ2sinθ
+

∂2
φu

ρ2sin2 θ
= f , in Ω,

u|ρ=ρmin =uL(θ,φ),

u|ρ=ρmax =uR(θ,φ),

(1.1)
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where
Ω=

{
ρmin <ρ<ρmax, 0≤ θ≤π, 0≤φ≤2π

}
.

The Poisson equation in the spherical shell geometry is important in many geophysical
and solar-physical applications [5, 14, 15].

Eq. (1.1) can be put in a more symmetric form





∂ρ

(
ρ2∂ρ sin2θ u

)
+(sinθ∂θ)

2u+∂2
φu=ρ2(sin2θ) f , in Ω,

u|ρ=ρmin =uL(θ,φ),

u|ρ=ρmax =uR(θ,φ).

(1.2)

In this symmetric form (1.2), one can apply Fast Fourier Transform to both the θ and
φ derivatives (see Section 2 for details) to obtain optimal efficiency. The major obstacle
for developing an overall fast solver is the radial derivatives which constitute a variable
coefficient differential operator. The most popular approaches include Poisson solvers
based on FFT in two directions or spherical harmonic functions which requires a Fast
Legendre transform [1,4,6,7,9,12,13,16]. There are also other approaches using different
sets of grids such as the Cubed Sphere grid [11] and the Yin-Yang grid [17].

In this paper, we propose a simple alternative, which provides a more accessible fast
solver to (1.2) via FFT in all three variables. We propose the following simultaneous
change of dependent and independent variables

s=
lnρ−lnρmin

lnρmax−lnρmin
, (1.3a)

v=
√

ρ u. (1.3b)

It is easy to see that, under the transformation (1.3), the Poisson equation (1.1) now takes
the form

sin2 θ
(

α∂2
s −

1

4

)
v+(sinθ∂θ)

2v+∂2
φv= g≡ρ

5
2 sin2 θ f , (1.4)

where

α=(lnρmax−lnρmin)−2, (1.5)

with boundary data

v|s=0 =vL(θ,φ)≡√
ρmin uL(θ,φ), (1.6a)

v|s=1 =vR(θ,φ)≡√
ρmax uR(θ,φ). (1.6b)

The significance of the transformation (1.3) is that the radial part now becomes a constant
coefficient differential operator. As a consequence, the discretized operator for (α∂2

s −
1/4) can be fast-diagonalized via FFT, resulting in an fast solver with total O(N3 logN)
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operation counts. This can be done in the uniform grid setting with second, fourth and
higher order methods. We will elaborate on them in the following sections.

To our knowledge, the transformation (1.3) is new. It should be noted, however, the
transformation only applies to spherical shells but not the whole sphere as s is not well
defined for ρmin =0. In addition, it may be difficult to find similar transformations for the
inhomogeneous Helmholtz equation (or modified Poisson equation) cu−∆u= f .

2 Fourier expansion in θ and φ

A conventional wisdom to avoid confusion caused by the pole singularity is to shift the
θ grids off the pole (θ =0,π) by half a mesh size. The resulting grids is given by

si = i∆s, 0≤ i≤N1, ∆s=
1

N1
, (2.1a)

θj =
(

j− 1

2

)
∆θ, 1≤ j≤N2, ∆θ =

π

N2
, (2.1b)

φk = k∆φ, 1≤ k≤N3, ∆φ=
2π

N3
. (2.1c)

For each i, j, we can expand

v(si,θj,φk)=
N3

∑
n=1

v̂n(si,θj)
exp(inφk)√

2π
, g(si,θj,φk)=

N3

∑
n=1

ĝn(si,θj)
exp(inφk)√

2π
, (2.2)

with

v̂n(si,θj)=∆φ
N3

∑
k=1

v(si,θj,φk)
exp(−inφk)√

2π
, (2.3a)

ĝn(si,θj)=∆φ
N3

∑
k=1

g(si,θj,φk)
exp(−inφk)√

2π
. (2.3b)

Substituting (2.2) back to (1.4), we have

(
α∂2

s −
1

4

)
sin2θv̂n +(sinθ∂θ)

2v̂n−n2v̂n = ĝn, 1≤n≤N3. (2.4)

From (2.3) and the identification v(s,−θ,φ)=v(s,θ,φ±π), it is easy to derive the following
symmetry condition

v̂n(s,−θ)=(−1)n v̂n(s,θ), ĝn(s,−θ)=(−1)n ĝn(s,θ), (2.5)

which turns v̂n(s,·) and ĝn(s,·) into 2N2-periodic functions. As a result, we can expand
them as

v̂n(si,θj)=
2N2

∑
m=1

ˆ̂vm,n(si)
exp(imθj)√

2π
, ĝn(si,θj)=

2N2

∑
m=1

ˆ̂gm,n(si)
exp(imθj)√

2π
, (2.6)
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where θj =
(

j−1/2
)

∆θ, −N2+1≤ j≤N2, and

ˆ̂vm,n(si)=∆θ
N2

∑
j=−N2+1

v̂n(si,θj)
exp(−imθj)√

2π
, (2.7a)

ˆ̂gm,n(si)=∆θ
N2

∑
j=−N2+1

ĝn(si,θj)
exp(−imθj)√

2π
. (2.7b)

Using the following identities

sin2(θ)exp(imθ)=−1

4

(
exp

(
i(m−2)θ

)
−2exp(imθ)+exp

(
i(m+2)θ

))
, (2.8a)

(sinθ∂θ)
2exp(imθ)=

m

4

(
(m−1)exp

(
i(m−2)θ

)
−2mexp(imθ)

+(m+1)exp
(
i(m+2)θ

))
, (2.8b)

one can recast (2.4) as
(

α∂2
s −

1

4

)
(S ˆ̂v)m,n+(P ˆ̂v)m,n−n2 ˆ̂vm,n = ˆ̂gm,n, (2.9)

where S and P are 2N2×2N2 matrices acting on the index m,

(S ˆ̂v)m ≡ ˆ̂vm−2−2 ˆ̂vm + ˆ̂vm+2, (2.10a)

(P ˆ̂v)m ≡ (m−1)(m−2) ˆ̂vm−2−2m2 ˆ̂vm+(m+1)(m+2) ˆ̂vm+2. (2.10b)

Here the subscript n has been omitted in (2.10a) and (2.10b).
Let D be a discrete approximation of ∂2

s acting on the index ℓ. Suppose that D can be
diagonalized by Q

D=Q−1ΛQ, (2.11)

one can rewrite (2.9) as
(((

αΛ− 1

4
I

)
⊗S

)
ˆ̂̂v

)

ℓ,m,n

+(P ˆ̂̂v)ℓ,m,n−n2 ˆ̂̂vℓ,m,n = ˆ̂̂gℓ,m,n, (2.12)

where
ˆ̂̂vℓ,m,n =(Q ˆ̂v)ℓ,m,n, ˆ̂̂gℓ,m,n =(Q ˆ̂g)ℓ,m,n.

In other words, we end up with a tri-diagonal system

(
αλℓ−

1

4

)
(S ˆ̂̂v)m +(P ˆ̂̂v)m−n2 ˆ̂̂vm = ˆ̂̂gm, (2.13)

for each subscript (ℓ,n), which is omitted in (2.13).
With the transformation (1.3), the diagonalization D =Q−1ΛQ can be achieved with

fast evaluation of the matrix multiplications Q ˆ̂g and Q−1 ˆ̂̂v in several different settings.
We will explain them in details in the next section.
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3 Fast diagonalization of ∂2
s using FFT

To explain the procedure of the diagonalization (2.11) with fast evaluation of matrix mul-
tiplication by Q and Q−1, it suffices to consider the 1D model problem

{
w′′−γw= z, in (0,1),

w(0)=wL, w(1)=wR,
(3.1)

where γ is a non-negative constant. We will use this 1D model problem to demonstrate
high order finite difference methods with the uniform grids (2.1).

3.1 2nd order and compact 4th order differencing

Without loss of generality, we may assume homogeneous data

wL =0=wR,

in (3.1). The general inhomogeneous case only requires minor modification.
The second order scheme for (3.1) with homogeneous data wL =0=wR is given by

D2
s
′
wi−γwi = zi, 1≤ i≤N−1, (3.2)

where the reduced difference operator

D2
s
′
wi =





−2w1+w2

(∆s)2
, i=1,

D2
s wi≡

wi−1−2wi+wi+1

(∆s)2
, 2≤ i≤N−2,

wN−2−2wN−1

(∆s)2
, i= N−1,

(3.3)

is adopted to reflect the fact that w0=0=wN are homogeneous boundary data rather than
active variables.

Note that
{(√

2sin(ℓπs1),··· ,
√

2sin(ℓπsN−1)
)T

, 1≤ ℓ≤N−1
}

, (3.4)

constitutes an orthonormal eigen-basis for D2
s
′
,

(
D2

s
′
sin(ℓπs)

)
i
=λℓsin(ℓπsi), (3.5)

with eigenvalues

λℓ =
−4sin2(ℓπ∆s/2)

(∆s)2
. (3.6)
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We can then diagonalize D2
s
′

by expanding w and z with respect to the basis (3.4)

wi =
√

2
N−1

∑
ℓ=1

ŵℓsin(ℓπsi), zi =
√

2
N−1

∑
ℓ=1

ẑℓsin(ℓπsi), i=1,··· ,N−1, (3.7a)

where

ŵℓ =
√

2∆s
N−1

∑
i=1

wisin(ℓπsi), ẑℓ =
√

2∆s
N−1

∑
i=1

zi sin(ℓπsi), ℓ=1,··· ,N−1. (3.7b)

In other words, (3.2) can be diagonalized as

(Λ−γI)Qw=Qz, (3.8a)

or

(λℓ−γ)ŵℓ = ẑℓ, ℓ=1,··· ,N−1. (3.8b)

Here in (3.8a),

Λ=diag(λ1,··· ,λN−1), Qℓ,i =
√

2sin(ℓπsi), Q−1
i,ℓ =∆s

√
2sin(ℓπsi). (3.9)

Multiplication by Q and Q−1 are given by the discrete sine transform (3.7a) and (3.7b),
which can be evaluated via FFT with O(N logN) operations.

For inhomogeneous data w0 = wL, wN = wR, one simply replaces z1 by z1−wL/(∆s)2

and zN−1 by zN−1−wR/(∆s)2 at the right hand side of (3.2), then proceed as the homoge-
neous case.

The procedure for diagonalizing the compact 4th order differencing operator is simi-
lar. The compact 4th order approximation of ∂2

s is formally given by [2]

∂2
s w=

(
1+

(∆s)2

12
D2

s

)−1
D2

s w+O
(
(∆s)4

)
. (3.10)

Thus, with homogeneous data wL =0=wR, the compact 4th order difference approxima-
tion for (3.1) is given by

D2
s
′
wi−γ

(
1+

(∆s)2

12
D2

s
′)

wi =
(

1+
(∆s)2

12
D2

s

)
zi ≡ z̄i, i=1,··· ,N−1. (3.11)

Note that the right hand side of (3.11) involves the full difference operator D2
s . The eval-

uation of the source term z̄1 and z̄N−1 requires z0 and zN , respectively.

Using the same diagonalizing matrices (3.9), one can put (3.11) into diagonal form

ΛQw−γ
(

I+
(∆s)2

12
Λ
)

Qw=Qz̄, (3.12)
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or componentwise as

λℓŵℓ−γ
(

1+
(∆s)2

12
λℓ

)
ŵℓ = ˆ̄zℓ, 1≤ ℓ≤N−1. (3.13)

For inhomogeneous data w0 = wL, wN = wR, one replaces z̄1 by z̄1−wL/(∆s)2 +γwL/12
and z̄N−1 by z̄N−1−wR/(∆s)2+γwR/12 at the right hand side of (3.11), then proceed as
the homogeneous case.

This compact fourth order scheme can be naturally incorporated into the Navier-
Stokes solvers [3, 8].

3.2 Higher order finite difference approximation

In this section, we continue with an FFT based higher order scheme for the 1D model
problem (3.1). To achieve high order accuracy, we split the solution of (3.1) into two
parts,

w=W̃+W,

the homogeneous part
{

W ′′−γW =Z, in (0,1),

W(0)=0, W(1)=0,
(3.14)

and the inhomogeneous part
{

W̃ ′′−γW̃ = Z̃, in (0,1),

W̃(0)=wL, W̃(1)=wR.
(3.15)

The splitting is performed in such a way that the inhomogeneous solution W̃ can be con-
structed easily and explicitly, while the homogeneous part (3.14) can be solved with high
accuracy via discrete sine transform. This calls for an additional higher order compat-
ibility condition on the source term Z. For a (2ν)-th order scheme, this compatibility
condition is given by

Z(0)=0=Z(1), Z′′(0)=0=Z′′(1), ··· , Z(2ν−4)(0)=0=Z(2ν−4)(1). (3.16)

To be definite, we shall present the 6th order scheme in the rest of this section. General-
ization to higher order scheme is straight forward.

3.2.1 The homogeneous part for the 6th order scheme

The exact solution to (3.14) can be obtained by expanding both W and Z in sine series.
Let

Z(s)=
√

2
∞

∑
ℓ=1

Ẑℓsin(ℓπs), (3.17a)
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where

Ẑℓ =
√

2
∫ 1

0
Z(s)sin(ℓπs)ds (3.17b)

denotes the continuous sine transform of Z. Thus a solution to (3.14) is given by

W(s)=
√

2
∞

∑
ℓ=1

Ŵℓsin(ℓπs), with Ŵℓ =
Ẑℓ

−ℓ2π2−γ
. (3.18)

The procedure can be implemented numerically by replacing continuum sine transform
with discrete sine transform. That is, we take

Wh
i =

√
2

N−1

∑
ℓ=1

Ŵh
ℓ

sin(ℓπsi), (3.19a)

where

Ŵh
ℓ
=

Ẑℓ

−ℓ2π2−γ
, (3.19b)

Ẑℓ =
√

2∆s
N−1

∑
i=1

Z(si)sin(ℓπsi). (3.19c)

Note the difference between the hat (ˆ) and the widehat ( ̂ ) in (3.17a)-(3.19c). Ẑℓ and
Ŵℓ, 1≤ ℓ<∞, in (3.17a)-(3.18) refer to the continuous Fourier-sine transform of the func-
tions Z(s) and W(s), respectively. While Ẑℓ and Ŵh

ℓ
, 1≤ ℓ≤N−1, in (3.19a)-(3.19c) refer

to the discrete Fourier-sine transform of the grid functions {Z(si)}N−1
i=1 and {Wh

i }N−1
i=1 ,

respectively.
The discrete L2-error of the numerical solution is given by

∥∥W−Wh
∥∥2

L2
h(0,1)

=∆s
N−1

∑
i=1

∣∣Wi−Wh
i

∣∣2 =
N−1

∑
ℓ=1

∣∣Ŵℓ−Ŵh
ℓ

∣∣2

=
N−1

∑
ℓ=1

(
√

2∆s
N−1

∑
i=1

(
W(si)−

Z(si)

−ℓ2π2−γ

)
sin(ℓπsi)

)2

, (3.20)

where we have used Plancherel’s identity in the second equality of (3.20). Note that

√
2∆s

N−1

∑
i=1

(
W(si)−

Z(si)

−ℓ2π2−γ

)
sin(ℓπsi) (3.21)

is the trapezoidal approximation of

√
2
∫ 1

0

(
W(s)− Z(s)

−ℓ2π2−γ

)
sin(ℓπs)ds=

(
Ŵℓ−

Ẑℓ

−ℓ2π2−γ

)
=0. (3.22)

Thus, to estimate ‖W−Wh‖L2
h(0,1), it suffices to estimate the quadrature error of the trape-

zoidal rule. This is given by the following
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Proposition 3.1. [10] Let TN be the trapezoidal rule approximation of I =
∫ 1

0 f (s)ds,

TN =∆s
(1

2
f (0)+

N−1

∑
i=1

f (si)+
1

2
f (1)

)
,

where ∆s=1/N and si = i∆s. If f ∈C2ν[0,1], then

I =TN−
ν

∑
µ=1

(∆s)2µ

(2µ)!
B2µ

(
f (2µ−1)(1)− f (2µ−1)(0)

)

+(∆s)2ν
∫ 1

0
B̃2ν(Ns) f (2ν)(s)ds, (3.23)

where the coefficients B2µ are the Bernoulli numbers and B̃2ν(x) :R→R are given by

B̃2ν(x)=2(−1)ν−1
∞

∑
k=1

cos(2πkx)

(2πk)2ν
. (3.24)

From (3.20), (3.22) and Proposition 3.1,

‖W−Wh‖2
L2

h(0,1)
=

N−1

∑
ℓ=1

∣∣∣∆s
N−1

∑
i=1

ξℓ(si)
∣∣∣
2

=
N−1

∑
ℓ=1

(
(∆s)2B2

2

(
ξ′
ℓ
(1)−ξ′

ℓ
(0)
)
− (∆s)4B4

24

(
ξ
(3)
ℓ

(1)−ξ
(3)
ℓ

(0)
)
+O

(
(∆s)6

))2

, (3.25)

where

ξℓ(s)=
√

2

(
W(s)− Z(s)

−ℓ2π2−γ

)
sin(ℓπs). (3.26)

Then the homogeneous Dirichlet condition in (3.14) and the compatibility condition (3.16)
with ν=3 translates to

W(0)=W(1)=W ′′(0)=W ′′(1)=W(4)(0)=W(4)(1)=0. (3.27)

Therefore it is easy to see that

ξ′ℓ(0)=0= ξ′ℓ(1), ξ
(3)
ℓ

(0)=0= ξ
(3)
ℓ

(1). (3.28)

Consequently,

‖W−Wh‖L2
h(0,1) =O

(
(∆s)6

)

to leading order. A rigorous error estimate in L2
h and L∞ norm can be found in Section 5.
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3.2.2 The inhomogeneous part for 6th order scheme

The homogeneous boundary condition in (3.14) and the 6th order compatibility condition
(3.16) with ν=3, or equivalently the condition (3.27), gives rise to the following condition
for the inhomogeneous solution

W̃(0)=w(0), W̃(1)=w(1), (3.29a)

W̃ ′′(0)=w′′(0), W̃ ′′(1)=w′′(1), (3.29b)

W̃(4)(0)=w(4)(0), W̃(4)(1)=w(4)(1), (3.29c)

which also imply the following identities:

Z̃(0)= z(0), Z̃(1)= z(1), (3.30a)

Z̃′′(0)= z′′(0), Z̃′′(1)= z′′(1). (3.30b)

It suffices to construct a function W̃(s) satisfying (3.29a)-(3.29c) and then generate the
source term Z̃ from (3.15). This can be done easily by taking

W̃(s)= a0 p0(s)+b0q0(s)+a2 p2(s)+b2q2(s)+a4 p4(s)+b4q4(s), (3.31)

where p2µ(s) and q2µ(s) are elementary functions satisfying

p0(0)=1, p0(1)=0; (3.32a)

q0(0)=0, q0(1)=1; (3.32b)

p2(0)=0, p2(1)=0, p′′2 (0)=1, p′′2 (1)=0; (3.32c)

q2(0)=0, q2(1)=0, q′′2 (0)=0, q′′2 (1)=1; (3.32d)

p4(0)=0, p4(1)=0, p′′4 (0)=0, p′′4 (1)=0, p
(4)
4 (0)=1, p

(4)
4 (1)=0; (3.32e)

q4(0)=0, q4(1)=0, q′′4 (0)=0, q′′4 (1)=0, q
(4)
4 (0)=0, q

(4)
4 (1)=1. (3.32f)

The coefficients a2µ and b2µ can be systematically calculated as follows.
First, from (3.29a), (3.31) and the first two columns of (3.32a)-(3.32f), we obtain

a0 =W̃(0)=w(0)=wL, b0 =W̃(1)=w(1)=wR. (3.33)

Next, we evaluate W̃ ′′(0) and W̃ ′′(1). From (3.31), (3.29b), (3.30a) and the third and fourth
columns of (3.32c)-(3.32f), we obtain

a2 =w′′(0)−a0 p′′0 (0)−b0q′′0 (0)=γwL+z(0)−a0 p′′0 (0)−b0q′′0 (0), (3.34a)

b2 =w′′(1)−a0 p′′0 (1)−b0q′′0 (1)=γwR+z(1)−a0 p′′0 (1)−b0q′′0 (1). (3.34b)

In a similar way, we evaluate W̃(4)(0) and W̃(4)(1) using the last two columns of (3.32e)-
(3.32f) to get

W̃(4)(0)= a0 p
(4)
0 (0)+b0q

(4)
0 (0)+a2 p

(4)
2 (0)+b2q

(4)
2 (0)+a4, (3.35a)

W̃(4)(1)= a0 p
(4)
0 (1)+b0q

(4)
0 (1)+a2 p

(4)
2 (1)+b2q

(4)
2 (1)+b4. (3.35b)
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In view of (3.29c), we obtain

a4 =w(4)(0)−a0 p
(4)
0 (0)−b0q

(4)
0 (0)−a2 p

(4)
2 (0)−b2q

(4)
2 (0), (3.36a)

b4 =w(4)(1)−a0 p
(4)
0 (1)−b0q

(4)
0 (1)−a2 p

(4)
2 (1)−b2q

(4)
2 (1). (3.36b)

Here, w(4)(0) and w(4)(1) can be expressed in terms of the boundary data and the source
term by taking ∂2

s on both sides of (3.1)

w(4)(0)=γw′′(0)+z′′(0)=γ2wL+γz(0)+z′′(0), (3.37a)

w(4)(1)=γw′′(1)+z′′(1)=γ2wR+γz(1)+z′′(1). (3.37b)

In practice, one can simplify the expressions a2µ, b2µ by further imposing

p
(2µ+2)
2µ (s)=0, q

(2µ+2)
2µ (s)=0, for µ=0,1,2, (3.38)

which, together with (3.32a)-(3.32f), determines the functions p2µ and q2µ uniquely. The
answer is given by

p0(s)=1−s, q0(s)= s, (3.39a)

p2(s)=
1

6

(
(1−s)3−(1−s)

)
, q2(s)=

1

6

(
s3−s

)
, (3.39b)

p4(s)=
(1−s)5

120
− (1−s)3

36
+

7(1−s)

360
, q4(s)=

s5

120
− s3

36
+

7s

360
. (3.39c)

With (3.38), the coefficients in (3.34) and (3.36) can be further simplified as

a2 =w′′(0)=γwL+z(0), b2 =w′′(1)=γwR+z(1), (3.40a)

a4 =w(4)(0)=γ2wL+γz(0)+z′′(0), b4 =w(4)(1)=γ2wR+γz(1)+z′′(1). (3.40b)

The right hand side of (3.15) can now be explicitly calculated

Z̃(s)=W̃ ′′(s)−γW̃(s), for s∈ [0,1]. (3.41)

The right hand side of the homogeneous part (3.14) is therefore given by

Z(s)= z(s)−Z̃(s), s∈ [0,1]. (3.42)

The above procedure can be applied to the full equation

(
α∂2

s −
1

4

)
sin2 θv̂n(s,θ)+(sinθ∂θ)

2v̂n(s,θ)−n2v̂n(s,θ)= ĝn(s,θ), 1≤n≤N3. (3.43)

For each n, we first split v̂n and ĝn into inhomogeneous and homogeneous parts by

v̂n = ˜̂Vn+V̂n and ĝn = ˜̂Gn+Ĝn, (3.44)
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with
˜̂Gn(0,θ)= ĝn(0,θ) and ˜̂Gn(1,θ)= ĝn(1,θ).

The equation for inhomogeneous part is given by





(
α∂2

s −
1

4

)
sin2θ ˜̂Vn+(sinθ∂θ)

2 ˜̂Vn−n2 ˜̂Vn = ˜̂Gn,

˜̂Vn(0,θ)= v̂L
n(θ), ˜̂Vn(1,θ)= v̂R

n (θ).

(3.45)

As in (3.31), the inhomogeneous part of (3.43) for the 6th-order scheme is given by

˜̂Vn(s,θ)=
2

∑
µ=0

(
a2µ(θ)p2µ(s)+b2µ(θ)q2µ(s)

)
. (3.46)

Note that the coefficients a2µ and b2µ in (3.46) are now functions of θ. With p2µ(s) and
q2µ(s) given by (3.39), the coefficients can be solved explicitly as





a0(θ)= v̂L
n(θ),

b0(θ)= v̂R
n (θ),

a2(θ)=∂2
s v̂n(0,θ)=(αsin2θ)−1

(
ĝn(0,θ)+

(
n2+

sin2θ

4

)
a0(θ)−(sinθ∂θ)

2a0(θ)
)

,

b2(θ)=∂2
s v̂n(1,θ)=(αsin2θ)−1

(
ĝn(1,θ)+

(
n2+

sin2θ

4

)
b0(θ)−(sinθ∂θ)

2b0(θ)
)

,

a4(θ)=∂
(4)
s v̂n(0,θ)=(αsin2θ)−1

(
∂2

s ĝn(0,θ)+
(

n2+
sin2θ

4

)
a2(θ)−(sinθ∂θ)

2a2(θ)
)

,

b4(θ)=∂
(4)
s v̂n(1,θ)=(αsin2θ)−1

(
∂2

s ĝn(1,θ)+
(

n2+
sin2θ

4

)
b2(θ)−(sinθ∂θ)

2b2(θ)
)

.

The equation for the homogeneous part is





(
α∂2

s −
1

4

)
sin2θV̂n+(sinθ∂θ)

2V̂n−n2V̂n = Ĝn,

V̂n(0,θ)=0, V̂n(1,θ)=0,
(3.47a)

with

Ĝn = ĝn− ˜̂Gn = ĝn−
((

α∂2
s −

1

4

)
sin2 θ ˜̂Vn+(sinθ∂θ)

2 ˜̂Vn−n2 ˜̂Vn

)
. (3.47b)

Following the same derivation as (2.4)-(2.12), one can transform (3.47a) to the following
system:

(((
αΛ− 1

4
I

)
⊗S

) ˆ̂̂
V

)

ℓ,m,n

+(P
ˆ̂̂

V)ℓ,m,n−n2 ˆ̂̂
Vℓ,m,n =

ˆ̂̂
Gℓ,m,n, (3.48)
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which is a tri-diagonal system

(
−αℓ

2π2− 1

4

)
(S

ˆ̂̂
V)m+(P

ˆ̂̂
V)m−n2 ˆ̂̂

Vm =
ˆ̂̂

Gm, (3.49)

for each fixed (ℓ,n).
We summarize the 6th-order scheme for (1.4) as the following algorithm.

Algorithm 3.1: The 6th-order solver for
(
α∂2

s −1/4
)
(sin2 θv)+(sinθ∂θ)

2v+∂2
φv= g

1. Compute ĝn(si,θj), v̂L
n(θj), v̂R

n (θj) by forward FFT in φ using (2.3),

2. Extend ĝn(si,θj), v̂L
n(θj), v̂R

n (θj) using (2.5),

3. Solve
(
α∂2

s −1/4
)
(sin2 θ v̂n)+(sinθ∂θ)

2v̂n−n2v̂n = ĝn:

for n=1,··· ,N3 do

(i) Compute the inhomogeneous part ˜̂Vn from v̂L
n(θ), v̂R

n (θ) and ĝn(s,θ) using (3.46),

(ii) Compute Ĝn(si,θj), the source term for the homogeneous part, using (3.47b),

(iii) Solve the homogeneous part V̂n(si,θj) using (3.47a):

(a) Compute ˆ̂Gm,n(si) by forward FFT in θ using (2.7),

(b) Compute
ˆ̂̂

Gℓ,m,n by forward FST (Fast Sine-Transform) in s using (3.19c):

for ℓ=1,··· ,N1 do

Solve { ˆ̂̂
Vℓ,m,n}2N2

m=1 from (3.49) with a tri-diagonal solver,

end for

(c) Compute ˆ̂Vm,n(si) from { ˆ̂̂
Vℓ,m,n}N1

ℓ=1 by backward FST in s using (3.19a),

(d) Compute V̂n(si,θj) from { ˆ̂Vm,n(si)}2N2
m=1 by backward FFT in θ using (2.6),

end for

4. Compute v(si,θj,φk) from
{˜̂Vn(si,θj)+V̂n(si,θj)

}N3

n=1
by backward FFT in φ using (2.2).

4 Numerical results

In this section, we report standard accuracy check for the 6th order scheme. In both
examples below, we take Ω={2≤ρ≤4}.

Example 4.1.

ue(x,y,z)= xy2 sinz+exp
( x2

16

)
+x3, (4.1a)

f (x,y,z)=∇2ue(x,y,z)=(2x−xy2)sinz+
(1

8
+

x2

64

)
exp

( x2

16

)
+6x. (4.1b)



662 Y.-L. Huang, J.-G. Liu and W.-C. Wang / Commun. Comput. Phys., 9 (2011), pp. 649-667

Example 4.2.

ue(x,y,z)= x2y3cosz+exp(xz), (4.2a)

f (x,y,z)=∇2ue(x,y,z)=(2y3 +6x2y−x2y3)cosz+(x2+z2)exp(xz). (4.2b)

The relative errors and orders of convergence are reported in Tables 1 and 2. Note
that the discretization in θ and φ variables have spectral accuracy, therefore N2 and N3

are held fixed in Tables 1 and 2.

Table 1: Relative error and rate of convergence for Example 4.1.

N1×N2×N3 ‖ue−uh‖∞

/
‖ue‖∞ Order ‖ue−uh‖L2

/
‖ue‖L2 Order

32×32×64 2.33E−9 1.58E−9
64×32×64 3.96E−11 5.83 2.63E−11 5.88

128×32×64 6.45E−13 5.92 4.23E−13 5.94

Table 2: Relative error and rate of convergence for Example 4.2.

N1×N2×N3 ‖ue−uh‖∞

/
‖ue‖∞ Order ‖ue−uh‖L2

/
‖ue‖L2 Order

64×64×64 3.86E−7 4.40E−7
128×64×64 6.66E−9 5.73 7.68E−9 5.78
256×64×64 1.10E−10 5.86 1.27E−10 5.89

5 Error estimate for the 6th order scheme

In this section, we give an error estimate of our scheme (3.19) for the homogeneous prob-
lem (3.14) with 6th order compatibility condition (3.16) with ν=3. The argument gener-
alizes easily to higher order cases.

Theorem 5.1. Let {Wh
i }N−1

i=1 be the numerical solution of the homogeneous equation (3.14) given
by (3.19), with Z∈H6[0,1] satisfying

Z(0)=Z(1)=Z′′(0)=Z′′(1)=0. (5.1)

Then there exits a constant C independent of N and Z, such that

sup
1≤i≤N−1

|W(si)−Wh
i |≤C

(
‖Z‖C4 [0,1] lnN+‖Z‖H6(0,1)

)
N−6, (5.2a)

‖W(si)−Wh
i ‖L2

h(0,1)≤C‖Z‖H6(0,1)N−6. (5.2b)

Proof. We start with the proof of (5.2a). Without loss of generality, we may assume Z∈
C6[0,1]. The H6(0,1) case follows from standard density argument. From (3.18), (3.19a)



Y.-L. Huang, J.-G. Liu and W.-C. Wang / Commun. Comput. Phys., 9 (2011), pp. 649-667 663

and (3.19b), we have

|W(si)−Wh
i |=

∣∣∣∣∣
√

2
∞

∑
ℓ=1

Ŵℓsin(ℓπsi)−
√

2
N−1

∑
ℓ=1

Ŵh
ℓ

sin(ℓπsi)

∣∣∣∣∣

≤
√

2
N−1

∑
ℓ=1

∣∣∣Ŵℓ−Ŵh
ℓ

∣∣∣+
√

2
∞

∑
ℓ=N

∣∣∣Ŵℓ

∣∣∣

=
√

2
N−1

∑
ℓ=1

∣∣∣∣∣
Ẑℓ−Ẑℓ

ℓ2π2+γ

∣∣∣∣∣+
√

2
∞

∑
ℓ=N

∣∣∣∣∣
Ẑℓ

ℓ2π2+γ

∣∣∣∣∣≡ (I)+(II). (5.3)

From (3.17b) and (3.19c), we see that Ẑℓ is the trapezoidal approximation of Ẑℓ. In view
of Proposition 3.1, we take

f (s)= ζℓ(s),Z(s)
√

2sin(ℓπs)∈C6[0,1],

and ν=3 to get

|Ẑℓ−Ẑℓ|
ℓ2π2+γ

≤N−6 B6

6!

∣∣ζ(5)
ℓ

(1)−ζ
(5)
ℓ

(0)
∣∣

(ℓ2π2+γ)
+N−6

∣∣∣∣
∫ 1

0

∞

∑
k=1

2cos(2πkNs)

(2πk)6(ℓ2π2+γ)
ζ
(6)
ℓ

(s)ds

∣∣∣∣, (5.4)

where we have used (3.24) and the fact that

ζ′ℓ(0)= ζ′ℓ(1)= ζ
(3)
ℓ

(0)= ζ
(3)
ℓ

(1)=0.

Since

∣∣ζ(5)
ℓ

(1)−ζ
(5)
ℓ

(0)
∣∣=
∣∣(−1)ℓ5

√
2ℓπZ(4)(1)−5

√
2ℓπZ(4)(0)

∣∣≤10
√

2ℓ‖Z‖C4 [0,1], (5.5)

the first term on the right hand side of (5.4) can be estimated by

N−1

∑
ℓ=1

N−6B6

6!

∣∣ζ(5)
ℓ

(1)−ζ
(5)
ℓ

(0)
∣∣

(ℓ2π2+γ)
≤C‖Z‖C4 [0,1]N

−6
N−1

∑
ℓ=1

∣∣∣ ℓ

ℓ2π2+γ

∣∣∣

≤C‖Z‖C4 [0,1]N
−6 lnN. (5.6)

We now continue on the second term on the right hand side of (5.4). We first expand

ζ
(6)
ℓ

(s)=
√

2
3

∑
µ=0

cµℓ
6−2µZ(2µ)(s)sin(ℓπs)+

√
2

2

∑
µ=0

dµℓ
5−2µZ(2µ+1)(s)cos(ℓπs), (5.7)

where cµ,dµ ∈R. Then use the identities

2cos(2πkNs)sin(ℓπs)=sin
(
(2kN+ℓ)πs

)
−sin

(
(2kN−ℓ)πs

)
, (5.8a)

2cos(2πkNs)cos(ℓπs)=cos
(
(2kN+ℓ)πs

)
+cos

(
(2kN−ℓ)πs

)
, (5.8b)
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to obtain

√
2
∫ 1

0
2cos(2πkNs)Z(2µ)(s)sin(ℓπs)ds=

(
Ẑ(2µ)

2kN+ℓ−Ẑ(2µ)
2kN−ℓ

)
, (5.9a)

√
2
∫ 1

0
2cos(2πkNs)Z(2µ+1)(s)cos(ℓπs)ds=

(
Ẑ(2µ+1)

2kN+ℓ+Ẑ(2µ+1)
2kN−ℓ

)
, (5.9b)

where

Ẑ(ν)
ℓ≡





√
2
∫ 1

0
Z(ν)(s)sin(ℓπs)ds, if ν is even,

√
2
∫ 1

0
Z(ν)(s)cos(ℓπs)ds, if ν is odd.

(5.10)

In view of (5.7), it suffices to estimate for 0≤µ≤3,

N−1

∑
ℓ=1

∣∣∣∣∣
√

2
∫ 1

0

∞

∑
k=1

2cos(2πkNs)

k6(ℓ2π2+γ)
ℓ

6−2µZ(2µ)(s)sin(ℓπs)ds

∣∣∣∣∣

=
N−1

∑
ℓ=1

∣∣∣∣∣
√

2
∞

∑
k=1

ℓ6−2µ

k6(ℓ2π2+γ)

∫ 1

0
2cos(2πkNs)Z(2µ)(s)sin(ℓπs)ds

∣∣∣∣∣

=
N−1

∑
ℓ=1

∣∣∣∣∣
∞

∑
k=1

ℓ6−2µ

k6(ℓ2π2+γ)

(
Ẑ(2µ)

2kN+ℓ−Ẑ(2µ)
2kN−ℓ

)∣∣∣∣∣

≤
N−1

∑
ℓ=−N+1

∞

∑
k=1

ℓ6−2µ

k6(ℓ2π2+γ)

∣∣∣∣Ẑ(2µ)
2kN+ℓ

∣∣∣∣, (5.11)

and for µ=0,1,2,

N−1

∑
ℓ=1

∣∣∣∣∣
√

2
∫ 1

0

∞

∑
k=1

2cos(2πkNs)

k6(ℓ2π2+γ)
ℓ

5−2µZ(2µ+1)(s)cos(ℓπs)ds

∣∣∣∣∣

≤
N−1

∑
ℓ=−N+1

∞

∑
k=1

|ℓ|5−2µ

k6(ℓ2π2+γ)

∣∣∣∣Ẑ(2µ+1)
2kN+ℓ

∣∣∣∣. (5.12)

To proceed with the above estimates, we note from (5.10) and integration by parts that

Ẑ(0)
ℓ =

1

ℓπ
Ẑ(1)

ℓ =
−1

(ℓπ)2
Ẑ(2)

ℓ =
−1

(ℓπ)3
Ẑ(3)

ℓ =
1

(ℓπ)4
Ẑ(4)

ℓ, (5.13a)

Ẑ(4)
ℓ =

1

ℓπ

(
Ẑ(5)

ℓ−
√

2
(
(−1)ℓZ(4)(1)−Z(4)(0)

))
, (5.13b)

Ẑ(5)
ℓ =

−1

ℓπ
Ẑ(6)

ℓ. (5.13c)

Consequently,

∣∣Ẑ(ν)
ℓ

∣∣≤ 1

(ℓπ)6−ν

∣∣Ẑ(6)
ℓ

∣∣+ C

(ℓπ)5−ν
‖Z‖C4 [0,1], 0≤ν≤4, (5.14a)

∣∣Ẑ(5)
ℓ

∣∣= 1

ℓπ

∣∣Ẑ(6)
ℓ

∣∣. (5.14b)



Y.-L. Huang, J.-G. Liu and W.-C. Wang / Commun. Comput. Phys., 9 (2011), pp. 649-667 665

We now substitute (5.14) back to (5.11) and (5.12). Since |ℓ|<2kN+ℓ, we have for 0≤ν≤4,

N−1

∑
ℓ=−N+1

∞

∑
k=1

|ℓ|6−ν

k6(ℓ2π2+γ)

∣∣∣Ẑ(ν)
2kN+ℓ

∣∣∣

≤
N−1

∑
ℓ=−N+1

∞

∑
k=1

|ℓ|6−ν

k6(ℓ2π2+γ)

(
1

((2kN+ℓ)π)6−ν

∣∣∣Ẑ(6)
2kN+ℓ

∣∣∣+ C

((2kN+ℓ)π)5−ν
‖Z‖C4 [0,1]

)

≤
N−1

∑
ℓ=−N+1

∞

∑
k=1

1

k6((2kN+ℓ)π)2

∣∣∣Ẑ(6)
2kN+ℓ

∣∣∣+
N−1

∑
ℓ=−N+1

∞

∑
k=1

C

k6((2kN+ℓ)π)
‖Z‖C4 [0,1]

≤C

( N−1

∑
ℓ=−N+1

∞

∑
k=1

∣∣∣ 1

((2kN+ℓ)π)2

∣∣∣
2
) 1

2
( N−1

∑
ℓ=−N+1

∞

∑
k=1

∣∣∣Ẑ(6)
2kN+ℓ

∣∣∣
2
) 1

2

+C
N−1

∑
ℓ=−N+1

∞

∑
k=1

‖Z‖C4 [0,1]

k6Nπ

≤C
(
‖Z‖H6(0,1)+‖Z‖C4 [0,1]

)
≤C‖Z‖H6 (0,1). (5.15)

Similarly, for ν=5,6, we also have

N−1

∑
ℓ=−N+1

∞

∑
k=1

|ℓ|6−ν

k6(ℓ2π2+γ)

∣∣∣Ẑ(ν)
2kN+ℓ

∣∣∣≤C‖Z‖H6(0,1). (5.16)

Therefore

N−1

∑
ℓ=1

∣∣∣
∫ 1

0

∞

∑
k=1

2cos(2πkNs)

(2πk)6(ℓ2π2+γ)
ζ
(6)
ℓ

(s)ds
∣∣∣≤C‖Z‖H6(0,1). (5.17)

From (5.4), (5.6) and (5.17), we obtain

(I)≤CN−6
(
‖Z‖C4 [0,1] lnN+‖Z‖H6(0,1)

)
. (5.18)

On the other hand,

(II)=
√

2
∞

∑
ℓ=N

∣∣∣ Ẑℓ

ℓ2π2+γ

∣∣∣≤
√

2
( ∞

∑
ℓ=N

∣∣∣ 1

(1+ℓ2)3(ℓ2π2+γ)

∣∣∣
2) 1

2
( ∞

∑
ℓ=N

(1+ℓ
2)3
∣∣Ẑℓ

∣∣2
) 1

2

≤C‖Z‖H3(0,1)N−7. (5.19)

In view of (5.3), (5.18) and (5.19), the proof for (5.2a) is complete.
The proof for (5.2b) is similar. From (3.19b), (3.19c) we have

‖W(si)−Wh
i ‖2

L2
h(0,1)

=
N−1

∑
ℓ=1

∣∣Ŵℓ−Ŵh
ℓ

∣∣2 =
N−1

∑
ℓ=1

∣∣∣∆s
N−1

∑
i=1

ξℓ(si)
∣∣∣
2
, (5.20)

where

ξℓ(s)=
(

W(s)− Z(s)

−ℓ2π2−γ

)(√
2sin(ℓπs)

)
.
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Applying Proposition 3.1 with f (s)= ξℓ(s), we get

∆s
N−1

∑
i=1

ξℓ(si)=
3

∑
µ=1

(∆s)2µB2µ

(2µ)!

(
ξ
(2µ−1)
ℓ

(1)−ξ
(2µ−1)
ℓ

(0)
)

−(∆s)6
∫ 1

0
B̃6(Ns)ξ

(6)
ℓ

(s)ds. (5.21)

From the homogeneous Dirichlet condition in (3.14), the compatibility condition (3.27)
and (3.16) with ν=3, we see that

ξ′
ℓ
(0)= ξ

(3)
ℓ

(0)= ξ′
ℓ
(1)= ξ

(3)
ℓ

(1)=0.

Thus

‖W(si)−Wh
i ‖2

L2
h(0,1)

≤CN−12

(N−1

∑
ℓ=1

(B6

6!

)2∣∣ξ(5)
ℓ

(1)−ξ
(5)
ℓ

(0)
∣∣2+

N−1

∑
ℓ=1

∣∣∣
∫ 1

0
B̃6(Ns)ξ

(6)
ℓ

(s)ds
∣∣∣
2
)

. (5.22)

Moreover,

ξ
(5)
ℓ

(0)=
5
√

2ℓπ

ℓ2π2+γ
Z(4)(0), ξ

(5)
ℓ

(1)=
(−1)ℓ5

√
2ℓπ

ℓ2π2+γ
Z(4)(1). (5.23)

Therefore

N−1

∑
ℓ=1

(B6

6!

)2∣∣∣ξ(5)
ℓ

(1)−ξ
(5)
ℓ

(0)
∣∣∣
2

≤C‖Z‖2
C4 [0,1]

N−1

∑
ℓ=1

(
ℓ

ℓ2π2+γ

)2
≤C‖Z‖2

C4 [0,1]≤C‖Z‖2
H6(0,1). (5.24)

Using the same argument as in the proof of (5.2a), one can estimate the second term on
the right hand side of (5.22) to get

N−1

∑
ℓ=1

∣∣∣
∫ 1

0
B̃6(Ns)ξ

(6)
ℓ

(s)ds
∣∣∣
2

≤C
(
‖W‖2

H6(0,1)+‖Z‖2
C4 [0,1]+‖Z‖2

H6(0,1)

)
≤C‖Z‖2

H6(0,1). (5.25)

Thus the proof for (5.2b) is complete. So, the theorem is proved.
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