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Abstract. A new adaptive cell average spectral element method (SEM) is proposed
to solve the time-dependent Wigner equation for transport in quantum devices. The
proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to
reduce the high-dimensional computational cost of Wigner functions while preserving
exactly the mass conservation for the numerical solutions. The key feature of the pro-
posed method is an analytical relation between the cell averages of the Wigner function
in the k-space (local electron density for finite range velocity) and the point values of
the distribution, resulting in fast transforms between the local electron density and lo-
cal fluxes of the discretized Wigner equation via the fast sine and cosine transforms.
Numerical results with the proposed method are provided to demonstrate its high ac-
curacy, conservation, convergence and a reduction of the cost using adaptive meshes.
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1 Introduction

Ever since its invention in 1932 by Wigner in [1], the Wigner equation has found appli-
cations in many physical fields, such as optics, information theory and statistical physics
and has constituted a new formulation of quantum mechanics [2,3]. The most appealing
characteristic of the Wigner equation is that it describes the evolution of quantum states
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in the same way as the Boltzmann equation does for classical systems. Both of them are
defined in a phase space and a physical interpretation can be given to terms appearing
in their dynamical equations. Although it is not a real probability distribution function
due to possible negative values as a result of the Heisenberg uncertainty principle, the
Wigner function serves the role of a distribution [4,5], for example, in calculating number
densities, current densities and etc. Using the Wigner equation to investigate quantum
transport has become more popular [6, 7] when the quantum behavior of semiconductor
devices can not be neglected as their size is down to nano-scales.

Frensley succeeded in simulating the quantum transport in a resonant tunneling diode
(RTD) by solving the Wigner equation with a first-order upwind scheme finite difference
method (FDM) [8, 9]. Since then, several second-order FDMs have been used [10] (for a
detailed summary about FDMs for the Wigner equation, please refer to [11, 12]). It has
been shown that general FDMs are not very accurate for transient Wigner simulations
and questions have been raised about the effect of the finite difference discretization of
inflow/outflow boundary conditions proposed by Frensley in [9]. Moreover, in order to
include the space charge effect, the Wigner equation should be coupled with a Poisson
equation [13, 14] and a self-consistent iteration is needed to solve the coupled system.
Application of such models with FDM solvers can be found in [15–17] where the time-
independent Wigner-Poisson system is considered. Recently, the Wigner function is ex-
tended to particle modeling accounting for various kinds of scatterings [18], where the
Boltzmann equation and the Wigner equation are coupled in a unified framework so that
simulation of actual quantum transport can be achieved by Monte Carlo methods [19,20].

In [21, 22] a spectral method based on plane waves is used to discretize the transient
Wigner equation in the k-space while FDMs are used in the x-space. In [23, 24] an opera-
tor splitting method is used to calculate the coupled Wigner-Poisson system. The reason
for using plane wave spectral methods is that the plane waves are the eigenfunctions of
the pseudo-differential operator associated with the Wigner potentials. However, there
are several issues in approximating the Wigner distributions in the k-space with peri-
odic plane waves. The periodization in the k-space produces a numerical solution which
resides in a different function space (periodic function) other than the original Wigner
function space L2(−∞,∞) and more importantly, creates an unphysical interaction of
the Wigner distribution with its periodic image frequencies in the k-space. Mathemati-
cally speaking, we need to handle carefully the infinite integral with respect to the dual
variable y appearing in the pseudo-differential operator ΘV [ f ] of (2.4). In [25, 26], af-

ter assuming that f̂ (x,y,t) defined in (2.5) has a compact support in the y-space with a
truncated domain in the y-space as [−1/(2∆k),1/(2∆k)], the authors showed that the
semi-discretized Wigner equation–finite difference discretization in the k-space in a uni-
form mesh–is well-posed and approaches the continuous problem when the mesh size
∆k goes to zero.

Our main objective in this paper is to reduce the cost of computing the Wigner distri-
bution in high-dimensional phase spaces. For this purpose, adaptive meshes will be our
approach which concentrates the computational resources in regions of localized electron



S. Shao, T. Lu and W. Cai / Commun. Comput. Phys., 9 (2011), pp. 711-739 713

density while still maintaining the electron conservation for the numerical solutions. A
new adaptive spectral element method (SEM) is thus proposed by using both cell av-
erages and point values of the Wigner distribution function in the integro-differential
Wigner equation. To achieve the efficiency of the method, we will take advantage of the
fact [27, 28] that, for any function u(k) in the space of the trigonometric plane waves or
the Chebyshev polynomials, there is an exact relation between its cell averages and point
values. This relation allows us to determine the expansion coefficients of the numerical
solution with a Chebyshev collocation method for local continuity equations, in an effi-
cient manner with the help of fast sine and cosine transforms. More importantly, we can
show that the electron conservation for the numerical solution is maintained analytically
even with non-uniform adaptive meshes in the phase space. The proposed cell average
SEM achieves the optimal efficiency with the help of fast Fourier transforms when Gauss-
Chebyshev points in the k-space and Gauss-Lobatto points in the x-space are used in the
collocation approximation of the continuity equations. With the multi-step Runge-Kutta
time discretization [29], high-order, conservative, stable and efficient numerical methods
for the transient Wigner simulation are obtained.

The rest of the paper is organized as follows. In Section 2, we introduce the Wigner
equation with discussion of several issues related to the numerical methods such as trun-
cation of the phase space, mass conservation and boundary conditions. In Section 3, we
construct the conservative cell average SEM and also its p-adaptive strategy. Section 4
conducts numerical experiments to demonstrate the accuracy and capability of the pro-
posed method. Concluding remarks and some discussions are given in Section 5.

2 Wigner equations

The Wigner function f (x,k,t) for a one-dimensional quantum device is defined in the
phase space (x,k)∈R

2 for the position x and the wave number k through a Fourier trans-
form in the difference coordinates of the density operator ρ(x,x′,t). The density operator
is a Gibbs ensemble average (denoted by the overbar) of the wave functions ψ(x,t) for
the quantum system under consideration [30]

ρ(x,x′,t)=ψ(x,t)ψ∗(x′,t), (2.1)

and by using the Weyl-Wigner transform of the density operator, we define

f (x,k,t)=
∫ +∞

−∞
exp(−iky)ρ

(
x+

y

2
,x−

y

2
,t

)
dy. (2.2)

The Wigner function f (x,k,t) satisfies the following transient Wigner equation

∂

∂t
f (x,k,t)+

h̄k

m

∂

∂x
f (x,k,t)=ΘV [ f ](x,k,t), (2.3)
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where the right hand side is the so-called Vlasov-Wigner pseudo-differential operator,

ΘV [ f ](x,k,t)=
i

h̄

∫ +∞

−∞
exp(−iky)DV(x,y) f̂ (x,y,t)dy :=

i

h̄
F [DV f̂ ](x,k,t), (2.4)

and m is the effective mass of the electron, h̄ is the reduced Planck constant. Here, V(x)
is the potential, DV(x,y) is the potential difference in the difference coordinate,

DV(x,y)=V
(

x−
y

2

)
−V

(
x+

y

2

)
,

and f̂ (x,y,t) is just another notation for ρ(x+y/2,x−y/2,t) from (2.2) through another
Fourier transform for the k-variable,

f̂ (x,y,t)=
1

2π

∫ +∞

−∞
exp(iky) f (x,k,t)dk :=F−1 [ f ](x,y,t). (2.5)

It has been shown that in [31], the L2-norm of Wigner function f (x,k,t) is time invariant

for L2 initial data and bounded potential and so does f̂ (x,y,t) due to Parseval’s identity.
For convenience in numerical simulation, we use an equivalent formula for

ΘV [ f ](x,k,t) given by

ΘV [ f ](x,k,t)=−
∫ +∞

−∞
Vw(x,k−k′) f (x,k′,t)dk′, (2.6)

where the non-local Wigner potential Vw(x,k) is calculated from the physical potential by
a Fourier transform as

Vw(x,k)=
1

2πih̄

∫ +∞

−∞
exp(−iky)DV(x,y)dy. (2.7)

The Wigner function can be used to calculate the electron density n(x,t) by

n(x,t)=
1

2π

∫ +∞

−∞
f (x,k,t)dk, (2.8)

and the current density j(x,t) by

j(x,t)=
h̄

2πm

∫ +∞

−∞
k f (x,k,t)dk. (2.9)

In addition, we denote the integration of the potential term with respect to k as

p(x,t)=
1

2π

∫ +∞

−∞
dk

∫ +∞

−∞
dk′Vw(x,k−k′) f (x,k′ ,t). (2.10)

Due to the anti-symmetry of Vw(x,k) in k, p(x,t) vanishes and we obtain a continuity
equation for the electron,

∂

∂t
n(x,t)+

∂

∂x
j(x,t)=−p(x,t)=0. (2.11)

This continuity equation corresponds to conservation of the zeroth moment, i.e., the mass
conservation.
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2.1 Wigner equation in the truncated phase space and mass conservation

For numerical computation of the Wigner equations in the phase space, boundary condi-
tions in both the x and the k spaces will be needed to truncate the infinite phase space.
For the x-space, the popular quantum transitive boundary condition (upwinding one-
way wave conditions) by Frensley [9] can be easily applied. And, there are two ways
to truncate the k-space. One is to use a periodic extension of the distribution function
over a finite interval, which is the approach of plane wave expansion methods [21]. The
plane wave turns out to be the eigen-function of the pseudo-differential operator (2.4)
in the Wigner equation, thus greatly simplifying the calculation of the integral operator.
The other approach, employed in this paper, will be a simple nullification of the distri-
bution outside a sufficiently large k-domain K= [kmin,kmax]. The k-integration range in
(2.8)-(2.10) for the electron density and fluxes will be then changed to K. The size

|K|= kmax−kmin

needed depends on the decay of the Wigner distribution for large wave number k and
affects the accuracy of the numerical solutions. The distribution function will be repre-
sented in the k-space by Chebyshev polynomials (or piecewise Chebyshev polynomials if
K is further sub-divided into elements for adaptivity, giving the Spectral Element Method
in this paper).

Due to the decay of f̂ (x,y,t) as |y|→∞, we only need to consider f̂ (x,y,t) for |y|≤2Y,
for some large Y. As mentioned above, f (x,k,t) is also usually significant or needed for
k∈K (thus negligible for k /∈K), therefore, (2.5) can be replaced by

f̂ (x,y,t)≈
1

2π

∫ kmax

kmin

exp(iky) f (x,k,t)dk, |y|<2Y. (2.12)

In this case, f (x,k,t) can be shown to satisfy a modified version of the Wigner equation
(2.3) for |x|<∞,

∂

∂t
f (x,k,t)+

h̄k

m

∂

∂x
f (x,k,t)+

∫ kmax

kmin

Vw(x,k−k′) f (x,k′,t)dk′ =0, |x|<∞, k∈K, (2.13)

where the Wigner potential Vw(x,k) has been approximated as

Vw(x,k)≈
1

2πih̄

∫ 2Y

−2Y
exp(−iky)DV(x,y)dy

=
2

πh̄

∫ Y

0
sin(2ky)

[
V(x+y)−V(x−y)

]
dy. (2.14)

In actual simulations, we should make sure that the truncation length Y is large enough.
For potentials of compact supports or of exponential decays such as Gauss-type potential
V(x), there is a simple way to choose Y as shown later.
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An important issue of using the SEM with a non-uniform mesh in the k-space is to
ensure the mass conservation of electrons for the numerical solution. As pointed out
in [17], conservation of mass is the most important property that a discretization of the
Wigner equation should fulfill.

First of all, the Wigner potential Vw(x,k) has to be replaced by a discretized version,
say, using a trapezoid rule with a spacing ∆y as follows

Vw(x,k)≈Vh
w(x,k) :=

2∆y

πh̄

Ny

∑
µ=1

sin(2kyµ)
[
V(x+yµ)−V(x−yµ)

]
, (2.15a)

where

Ny∆y=Y, yµ =µ∆y, µ=1,··· ,Ny. (2.15b)

In order to keep the mass conservation, we require
∫

K
dk

∫

K
dk′Vh

w(x,k−k′) f (x,k′,t)=0, (2.16)

for Vh
w(x,k) with k∈K. Frensley suggested in [8, 9] a sufficient condition

|K|∆y=π, (2.17)

which guarantees that Vh
w(x,k) is not only odd but also periodic in k with a period |K|.

(2.16) can be easily verified by noting that, with the condition (2.17),

∫

K
sin

[
2(k−k′)yµ

]
dk=

cos
[
2yµ(kmin−k′)

]
−cos

[
2yµ(kmax−k′)

]

2yµ

=
cos[2µ∆y(kmin−k′)]−cos[2µ∆y(kmin−k′)+2µ∆y|K|]

2µ∆y
=0. (2.18)

Remark 2.1. It is pointed out in [17] that the condition (2.17) will result in a ”constraint”
on the size of the domain K, while using uniform FDMs to solve the Wigner equation.
(2.17) says that the length of the computational domain K in the k-space should be dou-
bled after halving the y-mesh size. If we use the same spacing in the x-space and the
y-space, then we need four times as many grid points in the k-space and twice as many
grid points in the x-space to double the resolution of f (x,k,t). This results in huge cost
for high-dimensional cases.

To sum up, we have truncated the infinite domains in (2.6) and (2.7) and adopted the
trapezoid rule for the y-integration of the Wigner potential Vw(x,k) in (2.14). Next, we
will present our adaptive conservative SEM for

∂

∂t
f (x,k,t)+

h̄k

m

∂

∂x
f (x,k,t)+

∫

K
Vh

w(x,k−k′) f (x,k′,t)dk′ =0, (x,k)∈X ×K, (2.19)

where X is the computational domain in the x-space.
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2.2 Boundary and initial conditions

The Wigner equation only contains a first-order spatial x-derivative, which means that
we need to specify only one boundary condition in the x-space. In the following, we will
use the inflow boundary conditions [8]

f (xmin,k,t)= fL(k,t), if k>0,

f (xmax,k,t)= fR(k,t), if k<0.

Also, the initial condition is given as

f (x,k,t=0)= f0(x,k), (x,k)∈X ×K. (2.20)

3 Numerical schemes

In this section, we present the conservative cell average SEM in the k-space with Gauss-
Chebyshev collocation points, the traditional SEM in the x-space with Gauss-Lobatto
collocation points and a time discretization with multi-step Runge-Kutta methods. The
cell average SEM in the k-space will allow us to maintain strict electron conservation
of the numerical solution using the fact that there is an analytical relation between the
k-cell averages and the k-point values of the Wigner distribution function represented
by the Chebyshev polynomials of the k-variable. The resulting SEM in the k-space will
keep discrete mass conservation analytically even with a non-uniform mesh, leading to
conservative adaptive solutions in the phase space of high dimensions.

The computational domain X ×K is divided into Q×R non-overlapping elements
(sub-domains) as

X ×K=
Q⋃

q=1

R⋃

r=1

Xq×Kr, Xq =[gq−1,gq], Kr =[dr−1,dr ],

with

g0 = xmin, gQ = xmax, d0 = kmin, dR = kmax.

In an element Xq×Kr (q=1,··· ,Q and r=1,··· ,R), the collocation points are
{
(xi;q,r,kj;q,r)

}

with i=0,1,··· ,Mq,r and j=1,··· ,Nq,r, so we have (Mq,r+1)×Nq,r collocation points. Here,
we set xi;q,r to be Gauss-Lobatto points and kj;q,r to be Gauss-Chebyshev points to take
advantage of the fast Fourier transforms [32]

(Gauss-Lobatto) xi;q,r = gq−1+
Gq

2

(
1+cos

iπ

Mq,r

)
, (3.1a)

(Gauss-Chebyshev) kj;q,r =dr−1+
Dr

2

[
1+cos

(
j−

1

2

) π

Nq,r

]
, (3.1b)
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where
Gq = gq−gq−1 and Dr =dr−dr−1.

Denote by fq,r(x,k,t) the restriction of the Wigner function f (x,k,t) on the element Xq×Kr

and f j,i;q,r(t) := fq,r(xi;q,r,kj;q,r,t).
A uniform mesh means choosing the same (Mq,r,Nq,r) for all q and r, i.e., Mq,r and Nq,r

are two constants, while the non-uniform mesh allows different (Mq,r,Nq,r) in different
elements. The total number of unknowns is denoted by N

N =
Q

∑
q=1

R

∑
r=1

(Mq,r+1)×Nq,r. (3.2)

In the rest of this section, we will take the element Xq×Kr as an example to illustrate the
adaptive conservative cell average SEM and the subscripts q and r for the (q,r)-element
under consideration will be dropped from xi;q,r, kj;q,r, Mq,r, Nq,r, fq,r(x,k,t), f j,i;q,r(t).

dr dr−1

+1/2
kj

jI

kj−1/2
kj

Figure 1: k-mesh in the sub-domain Kr =[dr−1,dr]. The black points are Gauss-Chebyshev collocation points,
denoted by kj. The ends of cells are kj∓1/2 displayed in small circles.

3.1 Cell average spectral element method in the k-space

A cell Ij in the k-space is given as (see Fig. 1) Ij =
[
kj+ 1

2
,kj− 1

2

]
, with

kj∓ 1
2
=dr−1+

Dr

2

[
1+cos

(
j−

1

2
∓

1

2

) π

N

]
.

Obviously, we have

Kr =
N⋃

j=1

Ij.

We define local quantities corresponding to n(x,t), j(x,t) and p(x,t) in each computa-
tional cell as follows

nj(x,t) :=
1

2π

∫

Ij

f (x,k,t)dk, (3.3a)

jj(x,t) :=
h̄

2πm

∫

Ij

k f (x,k,t)dk, (3.3b)

pj(x,t) :=
1

2π

∫

Ij

∫

K
Vh

w(x,k−k′) f (x,k′ ,t)dk′dk. (3.3c)
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Then, a local continuity equation for the cell Ij is defined as

∂

∂t
nj(x,t)+

∂

∂x
jj(x,t)+pj(x,t)=0. (3.4)

From (3.3a)-(3.3c), we can see that both cell averages and point values of the Wigner
function f (x,k,t), expressed in terms of the Chebyshev polynomials of the k-variable over
each cell, are involved in (3.4). Fortunately, in the Chebyshev polynomial space, there is
an analytical relation between the expansions for nj(x,t), jj(x,t) and pj(x,t) as shown
below.

For k∈Kr , η∈ [−1,1] and θ∈ [0,π], we use the following transform:

k=dr−1+
Dr

2
(1+η), η =cosθ,

to define

Cl(k)=Tl(η)=coslθ, Sl(k)=sin(l+1)θ, (3.5)

with l = 0,1,··· ,N−1, where Tl(η) is the Chebyshev polynomial of the first kind. Then,
we have a spectral approximation

f (x,k,t)≈ f̃ (x,k,t) :=
N−1

∑
l=0

al(x,t)Cl(k), k∈Kr . (3.6)

Consequently, plugging the approximation for the Wigner function into (3.3a)-(3.3c), we
have spectral approximations for nj, jj and pj, which are denoted by ñj, j̃j and p̃j, respec-
tively.

We proceed by substituting the above expansion (3.6) into (3.3a) and (3.3b) and using
the following two identities for θ, θ±∆θ/2∈ [0,π]:

∫ cos(θ+∆θ/2)

cos(θ−∆θ/2)
dηTl(η)=





−
sin∆θ

2
sin2θ, l =1,

sin[(l−1)∆θ/2]

l−1
sin(l−1)θ−

sin[(l+1)∆θ/2]

l+1
sin(l+1)θ, l 6=1,

∫ cos(θ+∆θ/2)

cos(θ−∆θ/2)
dηηTl(η)=






−
sin2∆θ

8
sin4θ, l =2,

sin[(l−2)∆θ/2]

2(l−2)
sin(l−2)θ−

sin[(l+2)∆θ/2]

2(l+2)
sin(l+2)θ, l 6=2,

and Eqs. (3.3a), (3.3b) and (3.5), obtain

nj(x,t)≈ ñj(x,t) :=
1

2π

N−1

∑
l=0

al(x,t)
[∫

Ij

Cl(k)dk
]
=−

1

2π

N−1

∑
l=0

bl(x,t)Sl(kj), (3.7a)

jj(x,t)≈ j̃j(x,t) :=
h̄

2πm

N−1

∑
l=0

al(x,t)
[∫

Ij

kCl(k)dk
]
=−

h̄

2mπ

N

∑
l=0

cl(x,t)Sl(kj). (3.7b)
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Here, the expansion coefficients bl and cl can be expressed in terms of al recursively as
follows:

bl =





σ0(a2−2a0), l =0,

σl(al+2−al), l =1,··· ,N−3,

−σlal , l = N−2,N−1,

al =





−bl/σl , l = N−1,N−2,

al+2−bl/σl , l = N−3,··· ,1,
1
2 (a2−b0/σ0), l =0,

(3.8a)

cl =






d̄rb0+
Drσ0

4
(a3−a1), l =0,

d̄rb1+
Drσ1

4
(a4−2a0), l =1,

d̄rbl +
Drσl

4
(al+3−al−1), l =2,3,··· ,N−4,

d̄rbl−
Drσl

4
al−1, l = N−3,N−2,N−1,

−
DrσN

4
aN−1, l = N,

(3.8b)

where d̄r denotes the center of Kr and

σl =
Dr sin[(l+1)π/2N]

2(l+1)
, l =0,1,··· ,N. (3.9)

It is easily seen that we can transform bl(x,t) to ñj(x,t) in (3.7a) via a fast sine transform

(FST) and cl(x,t) to j̃j(x,t) in (3.7b) via another FST.
Meanwhile, substituting (3.6) into (3.3c) and through some careful algebraic calcula-

tion, we can show that
pj(x,t)≈ p̃j(x,t),

with

p̃j(x,t) :=
∆y

π2h̄

Ny

∑
µ=1

[V(x+yµ)−V(x−yµ)]
R

∑
r′=1

∫

Kr′

dk′

×
{∫

Ij

sin[2yµ(k−k′)]dk
}Nq,r′−1

∑
l=0

al;q,r′(x,t)Cl;q,r′(k′)

= −
∆y

π2h̄

Ny

∑
µ=1

sin(yµ∆kj)χ(x,yµ)
R

∑
r′=1

Dr′×
{

sin[2yµ(k̄j− d̄r′)]Re[λ(x,yµ,t,r′)]

−cos[2yµ(k̄j− d̄r′)]Im[λ(x,yµ,t,r′)]
}

, (3.10)

where

χ(x,yµ) :=
V(x+yµ)−V(x−yµ)

2yµ
, (3.11a)

λ(x,y,t,r′) :=

Nq,r′−1

∑
l=0

al;q,r′(x,t)Ol(Dr′y), (3.11b)
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k̄j is the middle point of the cell Ij and we have used the spectral expansion in the element
Xq×Kr′ , i.e.,

fq,r′(x,k,t)≈

Nq,r′−1

∑
l=0

al;q,r′(x,t)Cl;q,r′(k).

Here r′ comes from the integral with respect to k′ in the sub-domain Kr′ , ∆kj = kj−1/2−
kj+1/2 and Ol(z) is an oscillatory integral given in (A.1) of the Appendix, where an ana-
lytical calculation is given.

In order to determine the expansion coefficients al in (3.6), we solve the approximated
local continuity equation

∂

∂t
ñj(x,t)+

∂

∂x
j̃j(x,t)+p̃j(x,t)=0, (3.12)

with the spectral approximations (3.7a), (3.7b) and (3.10). It is noted that there are only
spectral errors associated with the Chebyshev polynomial expansion of f (x,k,t) in (3.6),
since all the integrals in (3.3a), (3.3b) and (3.3c) are calculated analytically.

Remark 3.1. (Exact Mass Conservation) The cell equation (3.12) involves the cell aver-
ages of the Wigner function, the cell fluxes involving the point values of f (x,k,t) over the
whole cell and the local Wigner potential term pj involving f (x,k,t) and the Wigner po-
tential, where all integrals are carried out exactly. If our primary unknowns are selected
to be the cell averages ñj(x,t), such an exact calculation is only possible if the distribu-
tion function f (x,k,t) is represented by a global (Chebyshev) polynomial in the domain

Kr due to the analytical relation between the cell averages of f̃ (x,k,t) (ñj(x,t)) and the
point values without numerical errors. As a result, we can sum all cell equations for the

f̃ (x,k,t) and the summation of p̃j(x,t) for all elements will be zero, i.e.,

Θ(x,t) :=
R

∑
r=1

Nq,r

∑
j=1

p̃j;q,r(x,t)=
∫

K
dk

∫

K
dk′Vh

w(x,k−k′) f̃ (x,k′,t)=0, ∀x∈X , (3.13)

thanks to (2.18). Therefore, we can see that the proposed cell average SEM is capable

of maintaining the mass conservation exactly for the spectral solution f̃ (x,k,t) in a non-
uniform mesh.

3.2 Spectral element method in the x-space

After forming the above conservative cell average SEM in the k-space, we will solve the
local continuity equation (3.12) to get the expansion coefficients in (3.6) by using a tradi-
tional collocation SEM with Gauss-Lobatto points in the x-space for easy implementation
of boundary conditions and fast cosine transforms.
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For x∈Xq, η∈ [−1,1] and θ∈ [0,π], the transform

x= gq−1+
Gq

2
(1+η), η =cosθ,

is used to define
φν(x)=Tν(η)=cosνθ, ν=0,1,··· ,M. (3.14)

Then, we have the spectral expansion for the coefficients in (3.6) as

al(x,t)≈
M

∑
ν=0

βl,ν(t)φν(x), x∈Xq, (3.15)

where βl,ν are the expansion coefficients. Based on such an expansion, we can obtain the
first derivative by a recurrence [32,33] with O(M) operations. Namely, if a function is ex-
pressed in terms of the Chebyshev polynomials, then, its first derivative can be obtained
directly as

∂al(x,t)

∂x
≈

M

∑
ν=0

β̃l,ν(t)φν(x), x∈Xq, (3.16)

where

β̃l,ν(t)=
2

Gq
×





0, ν= M,

2Mβl,M(t), ν= M−1,

β̃l,ν+2(t)+2(ν+1)βl,ν+1(t), ν= M−2,··· ,1,

1

2
β̃l,2(t)+βl,1(t), ν=0.

(3.17)

Hence, we could obtain the convection term via a fast cosine transform (FCT) and a re-
currence and the total cost is O(MlogM).

3.3 Time discretization

For the time discretization, we employ explicit multi-step Runge-Kutta methods. If a
system of the ODEs is given in a compact operator form

d

dt
U(t)= L(U), (3.18)

then, the fourth-order Runge-Kutta scheme is given as [29]

U(1) =Un+
1

2
∆tL(Un), (3.19a)

U(2) =Un+
1

2
∆tL(U(1)), (3.19b)

U(3) =Un+∆tL(U(2)), (3.19c)

Un+1 =
1

3

[
U(1)+2U(2)+U(3)−Un+

1

2
∆tL(U(3))

]
. (3.19d)
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Let
tn =n∆t, n=0,1,··· , and f n

j,i := f j,i(tn).

The time step ∆t is restricted by the Courant-Friedrichs-Levy (CFL) condition as

∆t

mini{∆xi}
≤

m

h̄maxk∈K{|k|}
, (3.20)

where ∆xi = |xi+1−xi|. After discretization in both the k-space and the x-space, we have
the spectral element approximation at time step tn,

f n
j,i ≈ f̃ n

j,i =
N−1

∑
l=0

an
l,iCl(kj)=

N−1

∑
l=0

M

∑
ν=0

βn
l,νφν(xi)Cl(kj). (3.21)

Once the coefficients βn
l,ν are obtained, we are able to compute the Wigner function at any

position (x,k) in the element Xq×Kr at tn through the global spectral approximation

f (x,k,tn)≈
N−1

∑
l=0

M

∑
ν=0

βn
l,νφν(x)Cl(k). (3.22)

When evolving from tn to tn+1, we need boundary conditions in Xq×Kr. These bound-
ary conditions are given according to the inflow rule, from the solution in the adjacent
elements at tn, i.e.,

(a) if k<0, then

fq,r(gq,k,tn+1)=

{
fq+1,r(gq,k,tn), 1≤q<Q,

fR(k,tn), q=Q,
(3.23)

(b) if k>0, then

fq,r(gq−1,k,tn+1)=

{
fq−1,r(gq−1,k,tn), 1<q≤Q,

fL(k,tn), q=1.
(3.24)

Here, we set k=0 to be the end point of an element, so k=0 is not a collocation point.
By using the special collocation points given in (3.1a) and (3.1b), we are able to take

the full advantage of FST and FCT to improve the computational efficiency [32]. The
related relations are shown in Fig. 2 and the cost is listed as follows:

(a) an
l,i ⇔ f n

j,i: O(MN logN),

(b) an
l,i ⇔nn

j,i and an
l,i ⇒ jnj,i: O(MN logN),

(c) an
l,i ⇒

∂
∂x an

l,i: O(NMlog M),

(d) an
l,i ⇒pn

j,i: O(Ny MNk),

(e) an
l,i ⇒

∂
∂x jnj,i: O(NMlog M)+O(MN logN).
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k
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k
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k
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k
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k

bl,i
ks FST

(3.7a)
+3 nj,i

∂
∂x al,i

cl,i
FST (3.7b)

+3 jj,i

Figure 2: The transformation relation graph in the element Xq×Kr. ”FCT” denotes the fast cosine transform
while ”FST” the fast sine transform. ”Rec” is the abbreviation of recurrence and ”⇔” represents the reversible
transform. Here, the recurrence needs O(S) operations and O(S logS) for FCT or FST, where S is the size of
the sequence to be transformed.

Here, Ny and Nk are the number of total mesh points in the y-space and the k-space,
respectively. In practice, the summation with respect to µ in (3.10) can be reduced by a
large amount for localized potentials, for example, the Gaussian barrier shown in Fig. 6.
The detailed discussion on this issue can be found in Section 4, where we will exploit
further the local support property to find a way to determine the truncation domain in
the y-space.

In our simulations, we use related subroutines in FFTPACK [34], i.e., COST,
SINQF/SINQB, COSQF/COSQB, to implement FCT and FST mentioned above. And
the calculation of the spherical Bessel functions of the first kind in (3.11b) and (A.8) is
done with the subroutine BESSJY in [33].

3.4 p-adaptive methods

As shown in (3.21), we approximated the Wigner function in the element Xq×Kr with a
spectral expansion. Generally, if the approximated function is smooth enough, we could
expect its spectral approximation to have spectral convergence, i.e., the expansion coeffi-
cients decay exponentially to zero as the expansion order increases [32]. This forms the
mathematical foundation for developing p-adaptive SEMs. In the following, we delineate
the p-adaptive method for a given tolerance ǫT .

Assuming that we have known the solution f n
j,i with the expansion order (M̌n,Ňn),

according to the spectral expansion (3.21), we then obtain the coefficients βn
l,ν through

FCTs and denote

un
ν = max

0≤l≤Ňn−1
|βn

l,ν|, vn
l = max

0≤ν≤M̌n
|βn

l,ν|. (3.25)

Next, we examine un
ν in a reversed order, i.e., from ν= M̌n to 0 and record the first index

M̂n, such that un
M̂n−1

> ǫT and un
M̂n ≤ ǫT . Similarly, we can also get N̂n by examining vn

l .

The mesh associated with the expansion order (M̂n,N̂n) in the element Xq×Kr has the
minimal size among those satisfying the accuracy tolerance ǫT at the time tn.
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The p-adaptive method introduces an index buffer, the size of which could be dy-
namically adjusted by a restarting strategy. As we have shown in the element Xq×Kr,
the minimal expansion order for satisfying the prescribed accuracy tolerance ǫT at the
time tn is (M̂n,N̂n). In actual adaptive calculations, we will adjust dynamically the ex-
pansion order to maintain the accuracy. For example, if the expansion order happens to
increase from tn to tn+1, i.e., M̂n+1

> M̂n, then we should reserve an index buffer at tn

for a possible longer expansion in the x-space at tn+1. Denoting by An the buffer size
for the Chebyshev expansion in the x-space and by Bn the buffer size for the Chebyshev
expansion in the k-space, we have the expansion orders at the time step tn+1 as

M̌n+1 = M̂n+An, Ňn+1 = N̂n+Bn. (3.26)

Here, (M̂n,N̂n) is obtained by examining βn
l,ν as before for l = 0,1,··· ,Ňn−1 and ν =

0,1,··· ,M̌n.

The buffer size (An,Bn) is dynamically adjusted through the following restarting pro-
cedure. Intuitively, we are able to judge whether the buffer size should be adjusted
through examining un

M̌n or vn
Ňn with ǫT . If un

M̌n > ǫT, the buffer is not large enough to
maintain accuracy at the instant tn in the x-space, then, we should restart the computation
from an earlier time tn0 with a larger buffer size An0 : An0 = An+1; otherwise An = An−1.
Bn is updated in a similar way by considering whether vn

Ňn >ǫT holds. To implement this
strategy, we set

n0 =αZ0
(n), (3.27)

where Z0 is a prescribed largest backward restarting time step and the function αZ0
(n) is

defined by

αZ0
(n)=

{
n−Z0, if MOD(n,Z0)=0,

n−MOD(n,Z0), if MOD(n,Z0) 6=0,
(3.28)

with MOD(n,Z0) giving the remainder of n divided by Z0. For example, we have n0 =
n−1 if taking Z0 = 1, which means that we need to restart from the previous step. The
total size of collocation points at tn is Ň n given in (3.2). Once the mesh for the (n+1)-th
time step, i.e., {M̌n+1,Ňn+1}, is known, we march time from f n

j,i to f n+1
j,i in the new mesh

after f n
j,i on the mesh {M̌n,Ňn} is interpolated into f̌ n

j,i over the (n+1)-th time step new

mesh. The interpolation is straightforward as the spectral approximation

f (x,k,tn)≈
Ňn−1

∑
l=0

M̌n

∑
ν=0

βn
l,νφν(x)Cl(k),

is global within the element Xq×Kr. The flowchart of the restarting p-adaptive method
is shown in Fig. 3.
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Initialization: n=0

M̌n,Ňn,An,Bn,ǫT ,Z0,T

f n
j,i

(3.21)
+3 an

l,i,β
n
l,ν

(3.25)
+3 un

ν ,vn
l

Begin

un
M̌n >ǫT?

or
vn

Ňn >ǫT?

n
(3.27)

+3 n0

An0 = An+1
or

Bn0 = Bn+1
Restart from n0: n=n0

un
ν ,vn

l
+3 M̂n,N̂n

(3.26)
+3 M̌n+1,Ňn+1

Interpolation: f n
j,i ⇒ f̌ n

j,i

f̌ n
j,i

(3.19)
+3 f n+1

j,i

(3.21)
+3 an+1

l,i ,βn+1
l,ν

An+1 = An,Bn+1 = Bn

tn+1 =T? End

NO

YES

YESNO

n=n+1

Figure 3: The flowchart of p-adaptive methods in the element Xq×Kr.

4 Numerical results

The physical units and quantities in our numerical experiments are listed in Table 1. Fol-
lowing [11, 14, 35], we simulate the motion of a Gauss wave packet (GWP) to investigate
the performance of the proposed SEM. The GWP in the free space is

f (x,k,t)=2exp
[
−

(x−x0−v0t)2

2a2(1+β2t2)

]
·exp

{
−2a2(1

+β2t2)
[
(k−k0)−

βt(x−x0−v0t)

2a2(1+β2t2)

]2
}

, (4.1)

where x0 is the center of the GWP at t=0, a is the minimum position spread, v0=h̄k0/m is
the average velocity and β= h̄/2ma2. The kinetic energy of such a GWP is E0 = h̄2k2

0/2m.
Actually, the GWP (4.1) is the analytical solution to the Wigner equation without a Wigner
potential [11, 12]. In our numerical simulations, we take a=2.825 and m=0.0665me.

We employ the L2 error and the L∞ error to study the convergence rate of our algo-
rithm. Let f ref(x,k,t) denote the reference solution which could be the exact solution or
the numerical solution on a relatively fine mesh and f num(x,k,t) the numerical solution.
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Table 1: Units and parameters.

Meaning Unit Value
Time femtosecond (fs) –
Length nanometer (nm) –
Energy electron volt (eV) –
Temperature Kelvin (K) –

Electron mass me eV·fs2 ·nm−2 5.68562966
Planck constant h̄ eV·fs 0.658211899

Boltzmann constant kB eV·K−1 8.61734279×10−5

Then, the errors at a given time are written as

ε2 =
[∫

X×K

(
∆ f (x,k)

)2
dxdk

] 1
2
, (4.2a)

ε∞ = max
(x,k)∈X×K

∆ f (x,k), (4.2b)

where
∆ f (x,k,t)= | f num(x,k,t)− f ref(x,k,t)|,

and the integrals above are evaluated using a simple rectangular rule over a uniform
mesh,

xi = xmin+
(

i−
1

2

)
∗hx , kj = kmin+

(
j−

1

2

)
∗hk,

with i=1,2,··· ,200, j=1,2,··· ,400, where

hx =
xmax−xmin

200
and hk =

kmax−kmin

400
.

In the following experiments, we set the final time T = 20 to calculate the errors. Two
kinds of meshes are used.

(a) A uniform mesh: the expansion order {Mq,r,Nq,r}; the total size N .

(b) An adaptive mesh: the expansion order {M̌n
q,r,Ň

n
q,r}, M̌max :=maxq,r,n M̌n

q,r, Ňmax :=

maxq,r,n Ňn
q,r; the buffer size {An

q,r,B
n
q,r}, Amax :=maxq,r,n An

q,r, Bmax :=maxq,r,n Bn
q,r; the total

size Ň n, Ňmax := maxnŇ n; the ratio Ňmax/N ref, where N ref is the size of the uniform
mesh for the reference solution.

Example 4.1. In order to test the accuracy, we consider three cases given in Table 5.1
of [11], where GWP is the exact solution to the Wigner equation with V ≡ 0, i.e., in the
free space. We take the parameters: xmin=−30, xmax=30, kmin=−2.8, kmax=2.8, R=Q=10,
Nq,r =Mq,r≡N, for r=1,··· ,R, q=1,··· ,Q. In Table 5.1 of [11], three different initial setups
are considered: x0 = 0 and k0 = 0 for Case I; x0 =−15 and k0 = 0.7 for Case II; x0 =−30
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Figure 4: Example 4.1. The time evolution of a Gauss wave packet (GWP) in the free space.
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Figure 5: Example 4.1. (a): the convergence history with respect to N; (b): ∆ f (x,k) with N =10, log10(ε2)≃
−1.37 and log10(ε∞)≃−1.34.

and k0 =1.4 for Case III. By employing the mesh of the same size as here (i.e., N =10), it
was found that the errors for the FDMs are (see Table 5.1 in [11]): 2.90%−10.7% for Case
I; 15.6%−40.0% for Case II; and 19.3%−47.3% for Case III. For comparison, the proposed
conservative cell average SEM produces errors under 1% for all three cases. Taking Case
III as an example, we plot the GWP at t = 0 and t = 20 in Fig. 4. We observe there that,
the GWP is broadened in the free space due to dispersion, i.e., the packet increases its
spatial size. The absolute difference ∆ f (x,k) at t = 20 is presented in the right plot of
Fig. 5, from which we can see that the biggest errors exist in the area where the peak of
GWP is located. By refining the mesh, we obtain the spectral convergence of ε2 and ε∞

shown in the left plot of Fig. 5. For those three cases, our method has achieved an error
under 10−4.5 at t=20 with the mesh N =20.

Therefore, we conclude that the accuracy of FDMs is far lower than that of the conser-
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vative cell average SEM for the transient Wigner equation in the free space. In addition,
the proposed SEMs deal with the inflow/outflow boundary conditions with high accu-
racy as usual for spectral collocation methods and the numerical solutions are free of
pollution coming from the boundary treatments.

Example 4.2. In this example, we let a GWP with kinetic energy E0≈1.12 (corresponding
to the GWP used in Case III of Example 4.1) to hit a Gaussian barrier with three different
heights H. The Gaussian barrier with a width w is given in Fig. 6

V(x)= Hexp
(
−

x2

2w2

)
. (4.3)

We investigate the capability of our algorithm in simulating the scattering of the GWPs
by the barriers. Take xmin =−30, xmax =30, R=20 and Q=10.

−30 −20 −10 0 10 20 30
0

0.5

1

1.12

1.5

2

2.5

 x

 V
(x

)

 H=0.3
 H=1.3
 H=2.3

 GWP E0 ≈ 1.12 

Figure 6: Example 4.2. The Gaussian barrier with the three kinds of height H=0.3,1.3 and 2.3. The energy of
the incident GWP, saying E0, is about 1.12 and w=1.

First, we conduct a uniform mesh simulation with Nq,r = Mq,r ≡ N for all r and q.
As mentioned in Section 2, we should be very careful in evaluating (3.10), as we do not
know before hand how large the truncation length Y should be used in (2.14). According
to (2.17), we need to set the computational domain in the k-space as kmin=−π/(2∆y) and
kmax =π/(2∆y), if ∆y=0.3. The question is how to find out a suitable value of Ny which
defines the truncation length Y = Ny∆y. For the potential barrier considered here, there
is a simple way to find this out. For a given mesh point {xi;q,r,yµ},1≤ i≤ N,1≤ µ≤ Ny

defined in (2.15b) and (3.1a), we can consider the matrix χ(xi;q,r,yµ) given in (3.11a). It is
noted that for barrier potentials with a local support, the matrix

(
χ(xi;q,r,yµ)

)
1≤i≤N,1≤µ≤Ny

,
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will be sparse and its entries become zero for compact potentials or extremely small for
fast decaying potentials as µ goes to infinity. Therefore, we can relate the number of
nonzero elements to the size of the support by observing how this number behaves if
increasing µ. Once this number keeps unchanged, we will know we have a large enough
Ny. Taking H=0.3 as an example, we show the curves of the number of nonzero elements
of χ(xi;q,r,yµ) ,1 ≤ i ≤ N,1 ≤ µ ≤ Ny with respect to µ for different expansion orders in

Fig. 7, where a matrix entry less than 10−16 is regarded as zero. We find there that the
number of nonzero elements becomes unchanged if µ≥ 127. Hence we set Ny = 127 for
the case H=0.3. However, for more general potentials with global support such as a fixed
bias for electronic devices, we should make sure that the numerical solution converges
as Ny →+∞, which means even larger Ny will be taken so that the resulting numerical
solution is almost unchanged if increasing Ny.
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Figure 7: Number of nonzeros vs Ny.

Now, the numerical solution on the finest mesh is chosen to be the reference one. The
mesh size of the reference solution for the case H = 0.3 is N = 25 and N = 30 for both
H = 1.3 and 2.3. We observe during the interaction: (a) the GWP travels through the
barrier easily in Fig. 8; (b) it is separated into two wave packets which move away from
each other in Fig. 9; (c) it is almost completely reflected by the barrier in Fig. 10; and (d)
in all three cases, many small oscillations appear around k = 0 and the Wigner function
takes negative values in some areas [14,19]. Three different scattering phenomena appear
corresponding to three barrier heights.

We plot the convergence history with respect to N in Fig. 11. It is easily seen that
the SEM converges rapidly for all three cases. Taking the case H =2.3 as an example, we
plot ∆ f (x,k) with the numerical solution calculated in a uniform mesh with an expansion
order N =25, where we find that the biggest errors exist in the area around k =0, which
corresponds to the small oscillations observed in Figs. 8, 9 and 10.

Next, we present the numerical results of the p-adaptive conservative SEMs. The ini-
tialization parameters are ǫT = 10−4,Z0 = 1,T = 20; ∀q,r,A0

q,r = 2,B0
q,r = 1,M̌0

q,r = Ň0
q,r ≡ N,
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Figure 8: Example 4.2. The Wigner functions at different instants for the GWP interacting with the Gauss
barrier. Since the barrier hight (H=0.3) is far less than the energy of GWP (E0≈1.12), the GWP travels across
the barrier easily.

where we set N=25 for the case H=0.3 and N=30 for both H=1.3 and 2.3. Conveniently,
we use a fixed time step ∆t. The results are listed in Table 2. We could observe the fol-
lowing: (a) the errors are under 10−2 as we expected while setting the tolerance ǫT =10−4;
(b) the ratio Ňmax/N ref is about 6.92%, 8.17% and 7.95% for H =0.3,1.3,2.3, respectively,

Table 2: Example 4.2. Numerical results for the p-adaptive conservative SEMs. ∆t is the time step and Ť is

the total steps needed in time with the final time T=20; Ňmax =maxn Ň n and ŇT is the total cost at the final
time step; M̌max =maxq,r,n M̌n

q,r and Ňmax =maxq,r,n Ňn
q,r; Amax =maxq,r,n An

q,r and Bmax =maxq,r,n Bn
q,r.

H ∆t Ť Ňmax ŇT M̌max Ňmax Amax Bmax log10(ε2) log10(ε∞)

0.3 1
300 6137 8994 8990 20 24 6 4 −2.42 −2.31

1.3 1
500 10264 15193 15031 25 29 6 6 −2.25 −2.39

2.3 1
500 10305 14781 14588 25 30 8 7 −2.06 −2.16
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Figure 9: Example 4.2. The Wigner functions at different instants for the GWP interacting with the Gauss
barrier. Since the barrier height (H = 1.3) is comparable with the energy of GWP (E0 ≈ 1.12), the GWP is
separated into two wave packets: one traveling across the barrier while the other being reflected by the barrier.

which means that no more than 8.2% of collocation points from the uniform mesh for the
reference solution are needed; (c) due to the restarting procedure for adjusting the buffer
size {An

q,r,B
n
q,r}, the price we pay for this adjustment method is the extra restarting steps
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Figure 10: Example 4.2. The Wigner functions at different instants for the GWP interacting with the Gauss
barrier. Since the barrier height (H=2.3) is far greater than the energy of GWP (E0≈1.12), the GWP is almost
completely reflected by the barrier.

needed in time, which are under 3.1% of the steps

T :=
T

∆t
,

for those three cases, i.e., Ť /T < 1.031; and (d) the mesh size for the case H = 1.3 is the
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Figure 11: Example 4.2. Convergence history with respect to N.
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Figure 12: Example 4.2. H = 2.3. ∆ f (x,k) at
t = 20 with the numerical solution calculated
with the truncation order N =25. log10(ε2)≈
−3.77 and log10(ε∞) ≈ −3.72. The biggest
errors appear around k=0.
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Figure 13: Example 4.2. (a): the curves for the total mesh size Ň n vs time tn; (b): ∆ f (x,k) at T =20 for the
case H =1.3 with log10(ε2)≈−2.25 and log10(ε∞)≈−2.39.

biggest among those three, which possibly reflects the separation of the GWP, i.e., more
collocation points needed for two diverging wave packets. The increasing of the mesh
size for the separation is confirmed in the left plot of Fig. 13 and this separation appears
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Figure 14: Example 4.2. The meshes used at different instants for the case H = 1.3. The related Wigner
functions are shown in Fig. 9.

at around t =16 (see (c–f) of Fig. 9). We also plot the error distribution ∆ f (x,k) at T =20
for the case H = 1.3 in Fig. 13, where we find that the biggest errors cluster in about
three regions containing two wave packets and small oscillations around k = 0 (refer to
(f) of Fig. 9). The meshes at different instants for the case H = 1.3 are shown in Fig. 14,
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while the related Wigner functions are plotted in Fig. 9, from which we conclude that our
p-adaptive methods capture the movement of GWP accurately and efficiently.

Remark 4.1. In all above numerical simulations, we find that the quantity Θ(x,t) in (3.13)
is around the machine resolution, for example, 10−15 for double precision. This is ex-
pected from our conservative schemes, which maintains the mass conservation of the
numerical solution exactly.

5 Discussions and conclusions

A strictly conservative adaptive spectral element method based on cell averages and
point values of the Wigner distribution is proposed. Due to the analytical relation be-
tween the cell averages (local electron density) and point values, the proposed method
ensures the exact mass conservation of electrons for the numerical solutions. With the
help of fast sine and cosine transforms, efficient and highly accurate numerical results on
adaptive meshes show potential of the proposed method in reducing the cost of comput-
ing the high-dimensional Wigner equations while maintaining electron conservation to
high accuracy.

It should be noted that the overall accuracy of the proposed spectral method is lim-
ited by the smoothness of the Wigner distribution functions in the phase space and also
the accuracy from the quadrature discretization of the Wigner potential in (2.15a). The
strict electron conservation of the cell average spectral solution is obtained only for the
discretized Wigner potential Vh

w in (2.15a).
By exploiting tensor product basis functions, the extension of the present adaptive

conservative SEM into high-dimensional cases is straightforward and will be reported in
a future work.
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Appendix: Calculation of the oscillatory integrals On(z)

The oscillatory integrals are defined as

On(z)=
∫ 1

−1
eizxTn(x)dx. (A.1)
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First, we exploit the expansion of eizx in terms of the spherical Bessel functions of the first
kind jk(z) and the Legendre polynomials Pk(x) (see [36, Eq. (10.1.47)])

eizx =
∞

∑
k=0

(2k+1)ik jk(z)Pk(x), (A.2)

and then we have ∫ 1

−1
eizxPn(x)dx=2in jn(z), (A.3)

where we have used the orthogonality relation

∫ 1

−1
Pn(x)Pk(x)=

2

2n+1
δn,k. (A.4)

Second, we can express the Chebyshev polynomials Tn(x) using the Legendre polynomi-
als Pk(x) as

Tn(x)=
n

∑
k=0

ck,nPk(x), (A.5)

where the coefficient ck,n is defined by

ck,n =
2k+1

2

∫ 1

−1
Tn(x)Pk(x)dx, (A.6)

and has a recurrence relation

c0,n =





0, n=1,

1

2
·
1+(−1)n

1−n2
, n 6=1,

c1,n =





0, n=2,

3

2
·
−1+(−1)n

n2−4
, n 6=2,

(A.7a)

ck+2,n =





0, k=n−3,

2k+5

2k+1
·

n2−k2

n2−(k+3)2
·ck,n, k=0,1,2,··· ,n−4,n−2.

(A.7b)

Therefore, we get the final formula [37]

On(z)=
∫ 1

−1
eizx

[ n

∑
k=0

ck,nPk(x)
]
dx=

n

∑
k=0

ck,n

∫ 1

−1
eizxPk(x)dx=2

n

∑
k=0

ikck,n jk(z). (A.8)
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