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Abstract. We perform a comparison in terms of accuracy and CPU time between sec-
ond order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with
high order finite element method. The numerical results show that for polynomials
of degree 2 semi-Lagrangian schemes are faster than Lagrange-Galerkin schemes for
the same number of degrees of freedom, however, for the same level of accuracy both
methods are about the same in terms of CPU time. For polynomials of degree larger
than 2, Lagrange-Galerkin schemes behave better than semi-Lagrangian schemes in
terms of both accuracy and CPU time; specially, for polynomials of degree 8 or larger.
Also, we have performed tests on the parallelization of these schemes and the speed-
up obtained is quasi-optimal even with more than 100 processors.
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1 Introduction

This work is devoted to the study of convection dominated-diffusion problems and in
particular the Navier-Stokes equations. Many efforts have been made by the numerical
analysis community, and the Eulerian-Lagrangian approach has proven to produce very
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good results in many different situations. To fix ideas, we shall consider two models: (i)
the prototype model of convection-diffusion equations















∂w

∂t
+~u·∇w−ν∆w= f , in Ω×(0,T),

w |∂Ω= g,

w(0)=w0,

(1.1)

where Ω ⊂ R
2 is an open bounded subset, ~u is the prescribed velocity vector, f de-

notes the forcing term, ν is the diffusion coefficient whereas w0 and g denote the initial
and Dirichlet boundary conditions respectively; (ii) the time-dependent incompressible
Navier-Stokes equations



























∂~u

∂t
+~u·∇~u−ν∆~u=−∇p+~f , in Ω×(0,T),

div~u=0, in Ω,

~u |∂Ω=~g,

~u(0)=~u0,

(1.2)

where Ω⊂R
2 is an open bounded subset, ~u is the velocity of the fluid, p is the pressure,

~f is the forcing term, ν is the diffusion coefficient, ~u0 ∈ L2(Ω) is the prescribed initial
condition and ~g is the boundary conditions. For the sake of simplicity, we shall consider
homogeneous Dirichlet boundary conditions in the description of the numerical schemes.

In this article we propose a comparative study in terms of accuracy and CPU time of
two of the most popular methods when using the Eulerian-Lagrangian approach, namely
the Lagrange-Galerkin (or Characteristic Galerkin) and the semi-Lagrangian methods,
because so far it is not clear which one of them should be used.

Both methods discretize the material derivative

Dw

Dt
=

∂w

∂t
+~u·∇w,

(in the Navier-Stokes equation, w=~u) along the characteristic curves X(x,tn+1;t) defined
as follows:

{

X′(x,tn+1;t)=~u
(

X(x,tn+1;t),t
)

,

X(x,tn+1;tn+1)= x,
(1.3)

where tn−l ≤ t≤ tn+1, l ∈N∪{0}, x ∈Ω, tj = j∆t, and ∆t the time step in the numerical
scheme. Note that the characteristics curves are discretized backwards in time. This is
one of the main advantages of the Eulerian-Lagrangian approach versus the Lagrangian
one, which allows the mesh to follow the trajectories of the flow and so, the mesh is
subject to large deformations. Another advantage of Eulerian-Lagrangian methods is
that they have a large stability region, so that in the applications the time step can be
chosen taking into account only accuracy considerations.
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Using the definition of the characteristics curves (1.3), the material derivative can be
written as follows:

Dw

Dt

(

X(x,tn+1;t),t
)

=
d

dt

(

w(X(x,tn+1;t),t)
)

,

so that it is possible to discretize the material derivative using any classical formula. In
this work we propose an implicit second order BDF formula for time discretization, first
proposed by [7] for convection-diffusion equations, and latter on used for Navier-Stokes
equation by [2] and [19] among others. Thus for each x∈Ω,

Dw

Dt

(

X(x,tn+1;tn+1),tn+1

)

≃
3wn+1(x)−4wn∗(x)+w(n−1)∗∗(x)

2∆t
, (1.4)

where the following notation has been used for each n:

wn(x)=w(x,tn),

wn∗(x)=w(X(x,tn+1;tn),tn),

wn∗∗(x)=w(X(x,tn+2;tn),tn),

where X(x,tn+1;tn) and X(x,tn+2;tn) are the position at time tn of the points that moving
with the flow velocity will be at x at time instants tn+1 and tn+2 respectively; usually these
points are known as the feet of the characteristics or departure points.

As we describe below, semi-Lagrangian schemes calculate wn∗(x) and wn∗∗(x) by in-
terpolation for x= xi, xi being the mesh points; whereas Lagrange-Galerkin schemes cal-
culate the functions wn∗ and wn∗∗ by L2-projection into the finite element space. Hence,
apparently semi-Lagrangian schemes are easier to implement and faster than Lagrange-
Galerkin schemes, but Lagrange-Galerkin schemes have proven to be less dissipative and
more accurate than semi-Lagrangian methods. In this work, an exhaustive study of both
methods will be carried out in the hp finite element framework to ascertain which one of
them can be better considering the type (modal or nodal) and the degree of polynomials
to be used.

The paper is organized as follows. The numerical schemes are presented in Section 2,
firstly the discretization in time for both, the convection-diffusion model and the Navier-
Stokes equations, and secondly the spatial discretization using the hp finite element
method. We finish the section by describing the semi-Lagrangian and the Lagrange-
Galerkin method as well as a p-adaptive version of the Lagrange-Galerkin method. In
Section 3 the numerical examples are presented with the Gaussian bell test and the cav-
ity problem. Finally, some notes about parallelization referred to the convective step are
given.

2 Numerical schemes

This section is devoted to the description of the numerical schemes to discretize Eqs. (1.1)
and (1.2). We use the following notation related to the L2-norm throughout this paper.
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Let u,v∈L2(Ω), then

(u,v)=
∫

Ω
uv and ‖u‖2 =

∫

Ω
|u|2,

and analogously, if ~u,~v∈L2(Ω)2,

(~u,~v)=
∫

Ω
~u·~v and ‖~u‖2 =

∫

Ω
|~u|2.

Let ∆t > 0 be the time step, and tn = n∆t. Then when Eulerian-Lagrangian approach is
used to discretize (1.1) combined with (1.4), we have to solve for each n,







3wn+1−4wn∗+w(n−1)∗∗

2∆t
−ν∆wn+1 = f , in Ω,

w |n+1
∂Ω

=0,

or in variational formulation,

3

2
(wn+1,v)+ν∆t(∇wn+1,∇v)=

(

2wn∗−
1

2
w(n−1)∗∗,v

)

+∆t( f ,v), (2.1)

for all v∈H1
0(Ω).

Following the idea used in the discretization of problem (1.1), the numerical scheme
for the Navier-Stokes equations would be



















3~un+1−4~un∗+~u(n−1)∗∗

2∆t
−ν∆~un+1 =−∇pn+1+~f , in Ω,

div~un+1 =0, in Ω,

~u |n+1
∂Ω

=0.

(2.2)

Then, for each n, a Stokes problem must be solved. In the literature there are some pos-
sibilities to solve the Stokes problem in (2.2), using, for instance, the conjugate gradient
algorithm [4] or the Uzawa one [3]. Nevertheless, some of the most popular are the split-
ting schemes because they decouple the velocity and the pressure which results in a very
efficient scheme from the computational point of view. One of the main disadvantages of
the splitting schemes consists in the error committed when decoupling the velocity and
the pressure. But in the past years there have been proposed several splitting schemes
that lead to a priori error estimates of O(∆t2), see [11] or [10] for instance. In this work we
split the pressure and the velocity based on the scheme (2.2) via extrapolation of the term
un+1 in the first step of the scheme, and using the so called rotational formulation [12].
Specifically, in variational formulation we have the following equations:

1. Set ~un+1
e =2~un−~un−1, and find pn+1∈H1(Ω), such that

(∇pn+1,∇v)=(~f ,∇v)−
1

2∆t
(3~un+1

e −4~un∗+~u(n−1)∗∗,∇v)

−ν(∇×∇×~un+1
e ,∇v), (2.3)

for all v∈H1(Ω).
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2. Find ~un+1∈H1
0(Ω)2, such that

3

2
(~un+1,~v)+ν∆t(∇~un+1,∇~v)=

(

2~un∗−
1

2
~u(n−1)∗∗,~v

)

+∆t(−∇pn+1+~f ,~v), (2.4)

for all ~v∈H1
0(Ω)2.

In fact, this splitting is equivalent to the one proposed in [13] and [12] when solving the
Navier-Stokes equations with spectral/hp element method and finite element method
respectively and also in [19] where the authors apply the semi-Lagrangian method com-
bined with this splitting.

Now, we follow with the spatial discretization where we propose the hp-finite ele-
ment method.

2.1 The hp-finite element method generalities

Suppose that Ω⊂R
2 is an open bounded subset with a sufficiently smooth boundary and

Dh is a partition of Ω̄ such that

Dh ={Qj}
NE
j=1⊂ Ω̄,

where Qj is a quadrilateral element and NE denotes the total number of elements. We
assume that there exists a real constant σ >0 such that the next hypotheses hold for any
Dh:

1. Ω̄=
⋃NE

j=1Qj.

2. Any face of Qj is either a subset of ∂Ω or any other face of other Qi, with i 6= j.

3. Let hj =diamQj, and ρj =sup
{

diamS : S a ball contained in Qj}. Then hj/ρj <σ, for
all 1≤ j≤NE.

Hereafter, h=max1≤j≤NEhj.
We define the finite element subspaces Vh and Vh0 associated to the partition Dh by

Vh =
{

vh ∈C(Ω̄) : vh|Q j
∈Pm(Qj), for all 1≤ j≤NE

}

,

Vh0 =Vh∩H1
0(Ω),

where Pm(Qj) is defined as follows for a fixed m∈N. Let Q̂ = [−1,1]2 be the reference

element, and let Tj :Q̂→Qj be the continuous bijective transformation between Q̂ and Qj.
Then,

Pm(Qj)=
{

p∈C(Qj) : p= p̂◦T−1
j , p̂∈Pm([−1,1])⊗Pm([−1,1])

}

,

where Pm([−1,1]) is the set of polynomials of degree ≤m in the interval [−1,1].
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Figure 1: Basis of Pm([−1,1]) for m=5 using nodal polynomials, (a), and modal polynomials, (b).

Depending on the implementation of the algorithm used in the hp finite element
method, there are two choices for the basis of Pm([−1,1]), usually known as modal and
nodal expansion.

In the nodal expansion, the basis of Pm([−1,1]) consists of m+1 Lagrange polynomi-
als associated to m+1 nodal points. Clearly, the choice of the nodal points is crucial in
terms of the oscillations of the polynomials as well as the condition number of both the
mass and stiffness matrices. Perhaps the most popular nodal expansion is the so called
”spectral elements” that use the zeros of the Gauss-Lobatto polynomials as nodal points,
for instance, see [14] as a general reference on spectral methods and [9] as a particular
reference on the application of spectral finite elements combined with a first order LG
scheme to calculate a numerical solution of the convection-diffusion equation.

On the other hand, in the modal expansion the polynomials of the basis in Pm([−1,1])
are not associated to nodal points, instead, a hierarchical set of polynomials is used to
generate the basis, in the sense that if Bm = {li}

m
i=0 is the basis of Pm([−1,1]), then Bm ⊂

Bm+1 for all m. Again there are different choices, but the Lobatto functions is a nice
possibility (obtained as the integral of the Legendre polynomials or also as a specific
family of the Jacobi polynomials, see [14,18]). Using this basis, the first two polynomials,
l0 and l1 are linear with value 0 or 1 at x=±1, and the (j+1)-th polynomial in the basis, lj,
is a polynomial of degree j. One of the main advantages of the polynomials of this basis
is that

∫ 1

−1
l′i l

′
j =0, if i 6= j and i>1 or j>1;

so that the stiffness matrix maintains a good condition number. This property is impor-
tant when solving Poisson type problems as, for example, the one in (2.3). In Fig. 1(b) we
show the modal basis for m=5 where we can compare with the nodal basis also for m=5.

Of course, depending on the problem it can be more convenient to use a nodal or
modal basis in the finite element formulation. We shall inspect how they perform in both
the semi-Lagrangian and Lagrange-Galerkin methods.
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Hereafter we shall denote {ϕi}
NN
i=1 ⊂Vh as the basis of Vh when using nodal polynomi-

als whereas {φi}
NN
i=1 ⊂Vh will denote the basis when modal polynomials are to be used,

where NN = dimVh. Note that when using {ϕi}
NN
i=1 , there is a set of nodes {xi}

NN
i=1 ⊂ Ω̄

associated to Dh such that ϕi(xj)=δij, where δij is the Kronecker delta. Let {zi}
m
i=0⊂[−1,1]

be the zeros of the Gauss-Lobatto polynomials of degree m, then for all 1≤ k≤ NN and
for any 1≤ j≤NE and 0≤ i,i′≤m, one defines the nodes xk =Tj(zi,zi′). On the other hand,

no nodes are associated to the basis {φi}
NN
i=1 .

Once the finite element subspaces are defined, the full discretization of (1.1) becomes:
for each n, find wn+1

h ∈Vh0, such that

3

2

(

wn+1
h ,vh

)

+ν∆t
(

∇wn+1
h ,∇vh

)

=
(

2wn∗
h −

1

2
w

(n−1)∗∗
h ,vh

)

+∆t( f ,vh), (2.5)

for all vh∈Vh0. Analogously, the Navier-Stokes equations (1.2) are discretized in two steps
using the splitting (2.3)-(2.4) as follows. For each n:

1. Set ~un+1
he =2~un

h−~un−1
h , and find pn+1

h ∈Vh, such that

(∇pn+1
h ,∇vh)=(~f ,∇vh)−

1

2∆t
(3~un+1

he −4~un∗
h +~u

(n−1)∗∗
h ,∇vh)

−ν(∇×∇×~un+1
he ,∇vh), (2.6)

for all vh∈Vh.

2. Find ~un+1
h ∈Vh×Vh, such that

3

2
(~un+1

h ,~vh)+ν∆t(∇~un+1
h ,∇~vh)=

(

2~un∗
h −

1

2
~u

(n−1)∗∗
h ,~vh

)

+∆t(−∇pn+1
h +~f ,~vh), (2.7)

for all ~vh∈Vh0×Vh0.

In Eqs. (2.5)-(2.7), we have to compute an L2-inner product involving any of wn∗
h ,w

(n−1)∗∗
h ,~un∗

h

or ~u
(n−1)∗∗
h with υh ∈Vh, ~vh ∈Vh×Vh or ∇vh, with vh ∈Vh. We must note that in general

wn∗
h ,w

(n−1)∗∗
h /∈Vh and ~un∗

h ,~u
(n−1)∗∗
h /∈Vh×Vh, so that the computations of these inner prod-

ucts are not trivial. One way to overcome this difficulty is substituting wn∗
h by either

Phwn∗
h or Ihwn∗

h (and analogously for w
(n−1)∗∗
h ,~un∗

h and ~u
(n−1)∗∗
h ), where Ph : L2(Ω)→Vh is

the L2-projector operator onto Vh, i.e., for each w∈L2(Ω),

{

Phw∈Vh,

(Phw,vh)=(w,vh), for all vh ∈Vh,

and Ih : C(Ω̄)→Vh is the interpolant operator, i.e., for each w∈C(Ω̄),

{

Ihw∈Vh,

Ihw(xi)=w(xi), for all xi, where {xi}
NN
i=1 is a set of nodes in Dh.



P. Galán del Sastre and R. Bermejo / Commun. Comput. Phys., 9 (2011), pp. 1020-1039 1027

When the L2-projection is used, the resulting scheme is the so called Lagrange-
Galerkin, whereas it is called semi-Lagrangian when the interpolant operator is applied.
In the next two subsections, we discuss the advantages and disadvantages of both meth-
ods.

2.2 The semi-Lagrangian method

We shall describe in this section the computation of Ihwn∗
h , Ihw

(n−1)∗∗
h , Ih~u

n∗
h and Ih~u

(n−1)∗∗
h .

The set of nodes {xi}
NN
i=1 in Dh, associated to the interpolant operator Ih, are the nodes

of the set of nodal basis {ϕi}
NN
i=1 . Note that the modal basis {φi}

NN
i=1 are not associ-

ated with any set of nodal points, however, when using this modal basis with semi-
Lagrangian methods we propose that the set of nodes associated to the interpolant oper-
ator is the same as the one of the nodal basis. Thus, the function Ihwn∗

h ∈Vh (analogously

Ihw
(n−1)∗∗
h , Ih~u

n∗
h and Ih~u

(n−1)∗∗
h ) can be univocally determined once

wn∗
h (xi)=wn

h

(

X(xi,tn+1;tn)
)

has been calculated for all 1≤ i≤NN. Then, we first have to compute X(xi,tn+1;tn) as the
solution of (1.3) for each node xi. Usually the ODE system (1.3) can not be solved analyt-
ically, and in particular, in the case of the Navier-Stokes equations where the velocity is
not known at time tn+1. So that, the ODE (1.3) is usually solved numerically for each node
xi using an ODE solver. Some of the most popular ODE solvers when implementing the
semi-Lagrangian scheme are the fourth order Runge-Kutta and the second order fix point
method [17]. These solvers have proven to give accurate results when combined with the
semi-Lagrangian method. While the fourth order Runge-Kutta gives very accurate re-
sults, the second order fix point performs also very good results (second order, while the
Runge-Kutta is fourth order) while maintaining a very cheap implementation in terms of
CPU time. Some other solvers, as the second order Runge-Kutta method, are also second
order accurate, nevertheless computations do not maintain the same accuracy as the fix
point solver [17]. In this work, we choose the forth order Runge-Kutta solver, although
more expensive than the fix point solver, more accurate.

Remark 2.1. The Runge-Kutta method of order four we use is as follows. At time tn+1,
n≥3, given ~un,~un−1,~un−2 and ~un−3, calculate

~K1 =∆t~un+1
h (x), ~K2 =∆t~u

n+ 1
2

h

(

x−
1

2
~K1

)

,

~K3 =∆t~u
n+ 1

2

h

(

x−
1

2
~K2

)

, ~K4 =∆t~un
h(x−~K3),

X(x,tn+1;tn)= x−
1

6

(

~K1+2~K2+2~K3+~K4

)

,

where ~un+1
h (·) and ~un+1/2

h (·) are extrapolated by formulas of order four. However, for
n = 1,2 and 3 we use extrapolation formulas of lower order. Nevertheless, in many nu-
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merical experiments we have observed that extrapolation formulas of order two give
similar results of those obtained with extrapolation formulas of order two.

Note that when computing Ihwn∗
h ∈Vh we have to compute the coefficients {αi}

NN
i=1 or

{βi}
NN
i=1 such that

Ihwn∗
h (x)=

NN

∑
i=1

αi ϕi(x)=
NN

∑
i=1

βiφi(x) (2.8)

depending on the polynomials chosen in the basis of Vh.

From the implementation view point the simplest way for the interpolation is to use
nodal polynomials because the coefficients αi = wn∗

h (xi), which are easy to compute by
interpolation of wn

h at the points X(tn+1,xi;tn).

In the case of modal polynomials we have to compute the coefficients βi. This can
be done element by element. The description of the algorithm can be summarized as
follows:

(i) For all i=1,2,··· ,NN, compute wn∗
h (xi).

(ii) If xi is a vertex of any Qj, then βi =wn∗
h (xi).

(iii) For any edge of any element Qj, let p(x)=∑
m
i=0γili(x), x∈ [−1,1], such that p(zk)=wn∗

h (xik
),

with (zk,1), (zk,−1), (1,zk) or (−1,zk)∈ Q̂ mapped into xik
for k=0,1,··· ,m. The coefficients

γi can be computed easily inverting an (m−1)×(m−1) matrix and using the fact that γ0 =βi0
and γ1 = βi1 computed in (ii).

(iv) Similarly to (iii), for any element Qj, let q(x,y) = ∑
m
k,l=0ηkk′ lk(x)lk′(y), −1 ≤ x,y ≤ 1, with

Tj(zk,zk′) = xikk′
∈ Qj. We compute q(x,y) such that q(zk,zk′) = wn∗

h (xikk′
), for 0≤ k,k′ ≤m.

Again, ηkk′ = βikk′
that has already been computed in (ii) and (iii) for k≤1 or k′≤1. Thus, the

coefficients ηkk′ can be calculated inverting an (m−1)2×(m−1)2 matrix.

Nevertheless, in order to compute the coefficients βi we still have to compute wn∗
h (xi) for

all i and then solve one linear system for each element.

Though this procedure seems to be more expensive than the one needed in the
nodal case, we must note that the computation of wn∗

h (xi) is much cheaper in the modal
case. The point is that the interpolation of the velocity required when solving the ODE
(1.3) at points located at the interior of any element, and also the interpolation of wn

h
at X(tn+1,x;tn) is much cheaper in the modal case because the modal basis is hierar-
chical with increasing polynomial degree, whereas in the nodal case all the polynomi-
als of the basis have the same degree. When performing the interpolation we have
to evaluate (m+1)2 polynomials of degree m (say m⊗m in x and y directions respec-
tively) in the nodal case whereas we have (m+1)2 polynomials of degree ≤ m in the
modal case (specifically, if φi(x,y) |Q j

= lk(x̂)lk′(ŷ),with (x,y) ∈ Qj ⊂ Ω and (x̂,ŷ) ∈ Q̂,

deg(lk(x̂)lk′(ŷ))=max{1,k}⊗max{1,k′}). In the numerical examples we shall show that
when m is large, the modal polynomial basis is much more efficient than the nodal one.
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2.3 The Lagrange-Galerkin method

From the computational point of view it is not necessary to calculate explicitly the pro-
jection Phwn∗

h because what one needs is to compute (wn∗
h ,vh), see (2.5), due to the fact

that

(Phwn∗
h ,vh)=(wn∗

h ,vh), for all vh ∈Vh.

Note that Phwn∗
h is the L2-projection of wn∗

h onto Vh and may be necessary for the conver-
gence analysis of the methods [5, 16].

Thus, we focus on the calculation of (wn∗
h ,vh) that is performed by a Gauss quadrature

rule of high order,

(wn∗
h ,vh)=

NE

∑
j=1

∫

Q j

wn∗
h vh =

NE

∑
j=1

∫

Q̂
ŵn∗

h v̂h|Jj|,

where ŵn∗
h =wn∗

h ◦Tj, v̂h =vh◦Tj and Jj being the Jacobian determinant of the transforma-
tion Tj. Finally, we approximate

∫

Q̂
ŵn∗

h v̂h|Jj|≃
NPG

∑
i=1

ωiŵ
n∗
h (x̂i)v̂h(x̂i)|Jj(x̂i)|,

where ωi and x̂i∈ Q̂ are the weights and points respectively of the numerical quadrature
in the reference element and NPG is the number of points used in the quadrature for-
mula. In this paper we use the Gauss-Legendre quadrature rule of order (m+2)×(m+2)
points, m being the degree of polynomials in Vh. Note that the scheme requires the com-
putation of (wn∗

h ,vh) for all vh in the finite element space, or equivalently, for vh = ϕk or
vh=φk for all k. The computation of v̂h(x̂i)=vh(Tj x̂i) can be done once for all. On the other
hand, the computation of ŵn∗

h (x̂i)= wn∗
h (Tj x̂i) can be done using the same methodology

explained for the semi-Lagrangian method.
In [15] it is pointed out that in Lagrange-Galerkin methods it is convenient to use

high order quadrature rules to maintain the stability and convergence properties that the
method has when the integrals are calculated exactly. The rules we are using calculates
exactly for polynomials of degree 2m+3 in each coordinate direction.

Note that while the implementation in the semi-Lagrangian method depends on
whether the polynomial basis of Vh is nodal or modal, the Lagrange-Galerkin method
has no differences in the implementation in this respect. As we pointed out before, modal
polynomials are more efficient in interpolating, so that we carry out all the numerical ex-
amples using modal polynomials with the Lagrange-Galerkin method.

2.4 Some computation aspects about the semi-Lagrangian and
Lagrange-Galerkin methods

In both methods the function wn∗
h has to be evaluated either at the nodes associated to Dh

or at the points of the numerical quadrature. In the case of the semi-Lagrangian method
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the number of evaluations is dimVh, whereas in the Lagrange-Galerkin method the num-
ber of evaluations is NPG×NE. Therefore, the number of evaluations in the case of
Lagrange-Galerkin method is larger than in the semi-Lagrangian method. Nevertheless,
the Lagrange-Galerkin method has proven to be more accurate than semi-Lagrangian
method, see [1] for instance, because the interpolation procedure of the latter introduces
an additional artificial diffusion in the numerical calculation.

2.5 The adaptive Lagrange-Galerkin method

Modal hierarchical bases make easier the implementation of p-adaptivity, see [18] for
instance. Our procedure to implement p-adaptivity in Lagrange-Galerkin method for the
convection-diffusion equations (1.1) is as follows:

1. When solving wn+1
h using the variational formulation (2.5), we assign an interpolation order

mj≤m to each element Qj.

2. If X(tn+1,xi;tn)∈Qj, then wn∗
h (xi) is computed via interpolation using only the polynomials in

Qj of degree ≤mj.

Note that X(tn+1,xi;tn) is computed solving the ODE (1.3), and, as we mentioned above,
this also requires the interpolation of the velocity ~u at points located in the interior of any
element of Dh. Thus, defining an order m′

j in Qj for the velocity

un
h(x)=

NN

∑
p=1

un
pφp(x),

and supposing that X(tn+1,xi;tn)∈Qj for any j, then

un
h

(

X(tn+1,xi;tn)
)

=

m′
j

∑
k,k′=0

un
kk′(lk⊗lk′)

(

T−1
j (X(tn+1,xi;tn))

)

,

where
un

kk′ =un
p, if φp =(lk⊗lk′)◦T−1

j .

Similarly, in the Navier-Stokes equations (1.2) the p-adaptivity can be implemented using
the same procedure. Note that in this case m′

j =mj.

3 Numerical results

To ascertain the behavior of the schemes considered in this paper in terms of CPU time
and accuracy, we run two numerical tests, the first one for problem (1.1) and the second
one for the Navier-Stokes equations. The test for the convection-diffusion equation is
the so called Gaussian bell problem; we choose this test for the following reasons. First,
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we know the analytical solution, so that we can calculate the error of the schemes; sec-
ond, although simple, this problem with a small diffusion coefficient ν possesses all the
ingredients to make the Eulerian methods have a hard time.

The test for the Navier-Stokes equations is the so called driven cavity problem that,
for high Reynolds numbers, has become a benchmark problem for numerical methods
used in the integration of the incompressible Navier-Stokes equations.

3.1 The Gaussian bell problem

In this problem we shall compare four different discretizations of the convective terms,
namely, two semi-Lagrangian schemes, one using nodal interpolation and the other one
using modal interpolation, and two Lagrange-Galerkin schemes, one without adaptivity
and the other one with adaptivity. Hereafter, we denote these schemes as nodal-SL, modal-
SL, LG and adap-LG respectively. We consider problem (1.1) defined on the domain

Ω=
{

(x,y)∈R
2 : x2+y2 ≤4

}

,

with velocity ~u(x,y)=(−y,x) and initial condition

w0(x,y)=exp

(

−
(x−x0)2+(y−y0)2

2σ2

)

,

where (x0,y0)=(1/2,0) and σ2 =0.0078. The exact solution is

w(x,y,t)=
σ2

σ2+2νt
exp

(

−
x̄2+ ȳ2

2(σ2+2νt)

)

,

where
x̄= x−x0cost+y0sint and ȳ=y−x0 sint−y0cost.

Note that the exact solution represents a Gaussian bell rotating around the point (0,0).
To calculate the numerical solution we shall use the boundary conditions obtained from
the exact solution. In the numerical calculations we take the parameter ν=6.2070×10−4

and the time step ∆t =2π/100, so that, we need 100 time steps to complete a revolution
(T = 2π). We perform numerical tests with different meshes (see Fig. 2) and degrees of
polynomials. Table 1 shows the parameters NE (number of elements in the mesh), NN
(number of nodes in the mesh) and IN (number of nodes in the inner circle of radius 1)
that we use in the numerical experiments. We must remark two items: (i) the mesh in
the unit circle is more refined than in the rest of the domain because outside this circle
the values of the solution are ≤10−4, so that the error of the numerical solution basically
depends on IN; (ii) we keep the outer region to avoid numerical noise.

In Figs. 3-5 we represent for different values of m the average CPU time (upper panel)
per time step versus the number of degrees of freedom (d.o.f.) NN, and the L2-norm
error after one revolution versus the number of d.o.f IN (lower panel). The reason to
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Figure 2: Mesh number 3 and 5 as an example of the refinement in the unit circle depending on the density.

Table 1: Details about the meshes used to solve the Gaussian bell.

mesh # 1 2 3 4 5 6 7
NE 55 74 162 435 1263 4104 14854

m=2 NN 249 331 691 1799 5115 16487 59495
IN 39 63 208 805 3195 12878 52512

m=4 NN 937 1253 2677 7077 20333 65805
IN 155 235 823 3214 12792 51492

m=6 NN 2065 2767 5959 15835 45655 147955
IN 346 532 1851 7248 28760 115847

m=8 NN 3633 4873 10537 28073
IN 617 943 3281 12885

m=10 NN 5641 7571 16411 43791
IN 951 1469 5134 20137

plot the L2-norm error in terms of IN is due to the fact, as we mention above, that the
solution basically depends on the d.o.f. of the unit circle (IN), whereas the CPU time
depends on the total number of d.o.f. The CPU time bars consist of two parts, the lower
part corresponds to the CPU time spent in the calculation of the convective terms (the
calculation of the feet of the characteristics plus the interpolations for the SL schemes
or the quadrature rules for the LG schemes) and the upper part indicates the CPU time
needed to solve the symmetric system of equations yielded by (2.5); the system is solved
by the Incomplete Cholesky Conjugate Gradient method. Note that the upper part of the
CPU time bars is much smaller than the lower part because the matrix is very well condi-
tioned. Furthermore, we remark that when using adap-LG the degree of the polynomials
mj varies between 2 and m in all the experiments whereas m′

j =2 because the velocity ~u is

linear in this example.

For m = 2 (see Fig. 3) SL schemes require less CPU time than LG schemes. The rea-
son for this behavior is that the number of departure points to be calculated in the SL
schemes is smaller than the one in the LG schemes and also the calculation of the quadra-
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Figure 3: CPU time and L2 error for meshes #2-#7 and m=2.

ture rules requires more number of operations than the pure interpolation performed in
the SL schemes; however, the error of the SL schemes is larger than the error of the LG
schemes, although both SL and LG schemes have, at least for this example, the same
asymptotic rate of convergence. Note that the CPU time is the same for both SL methods,
and similarly the CPU time is also the same for both LG methods. For m=4, 6, 8 and 10
(see Figs. 4 and 5) things change significantly. First, as the number of d.o.f. increases the
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Figure 4: CPU time and L2 error for meshes #1-#6 for m=4 and m=6.
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Figure 5: CPU time and L2 error for meshes #1-#4 for m=8 and m=10.

nodal-SL scheme becomes more expensive than any other of the schemes. The modal-SL
scheme is the least expensive of all for m=4, but for m>4, both LG and adap-LG schemes
are less expensive than the modal-SL scheme. For m≥ 6, the adap-LG scheme is the most
efficient of all of them. As for the error, both LG schemes yield smaller errors than the
SL schemes, but the asymptotic rate of convergence is about the same for all of them.
Note that both SL methods have the same error and the same thing happens for both LG
methods.

Next we wish to know whether it is better to use m=2 and meshes with a large num-
ber of d.o.f. or to use m larger and less d.o.f. Also, we want to know, in both scenarios,
which one of these schemes is the most efficient in terms of CPU time. To this end, for
each m and each scheme, we have chosen those experiments that, with a tolerance to the
square of the L2-error that is less or equal than 10−9, have the lowest number of d.o.f. The
results are shown in Fig. 6, where the average CPU time per time step is represented in
the upper panel, the L2-error in the middle panel and the number of d.o.f in the lower
panel, all of them versus the degrees of the polynomials used in the experiments. The
lower part of the bars of the d.o.f corresponds to the inner unit circle. Firstly, we note
that for large m both LG and adap-LG schemes are more efficient than the SL schemes, it
is worth mentioning that the CPU time for the nodal-SL scheme with m =10 is 3.81 secs,
far larger than that of the other schemes. Secondly, as far as the L2-error is concerned, the
LG schemes are also more efficient than the semi-Lagrangian schemes, for instance, for
m=2 the nodal-SL scheme needs 59495 nodes, whereas the LG schemes need 16487.

From these experiments, and at least for this example, we can conclude that for a fixed
tolerance LG schemes are more efficient than the semi-Lagrangian schemes.
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obtained for the four schemes and m = 2,4,6,8,10 (in abscissa) using the mesh which gives the square of the

L2-error below the tolerance 10−9 with less d.o.f.

3.2 The driven cavity problem

In the Gaussian bell problem we have seen that for a fixed tolerance the LG schemes are
more efficient than the semi-Lagrangian schemes; so that, we shall use the LG schemes
to solve the Navier-Stokes equations for the driven cavity problem. This example shows
the differences between LG and adap-LG in a Navier-Stokes problem.

We consider problem (1.2) with Ω=(0,1)×(0,1), ~u0 =0 and ν=1/Re in this example,
with Re the Reynolds number. We assume non-slip boundary conditions, ~u = (0,0), on
the left, right and lower boundaries and ~u =(1,0) on the upper boundary. All the com-
putations are carried out with ∆t=0.02, a large time step for this problem (CFL=20), but
accurate enough to obtain the well accepted results of Ghia et al. [8]. The mesh consists
of 10×10 regular uniform quadrilaterals with m = 10, i.e., 10201 nodes. Hence, in this
example 2≤mj =m′

j ≤10 depending on the regularity of the solution in each element Qj

when using adap-LG.
We carry out numerical experiments with Re =1000, 3200, 5000 and 10000 and using

LG and adap-LG schemes. In Fig. 7 we show the velocity profiles of u and v at the center-
lines x=0.5 and y=0.5 respectively. In this figure we see the velocity profiles obtained by
the adap-LG scheme at T =500, when the solution has reached the steady state compared
with the results of the steady state computed by Ghia et al. in [8]. The velocity profiles
shown at Re = 10000 correspond to the time averaged values, but still the agreement is
very good even for this large Re. For a throughout and careful study of this problem in
a range of Reynolds number as large as 21000 see [6] where a comparison of its results
with other studies are also performed.
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Figure 7: Velocity profiles of u and v at the horizontal and vertical centerlines.

In Fig. 8 we show the CPU time in seconds of the convective step of LG and adap-LG
schemes every time step as well as the evolution of the number of nodes of the adap-
LG with respect to the time t. Note that in this problem the CPU time required for the
convective step with the adap-LG scheme can vary in each time step depending on the
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solution of the cavity problem at each time instant. In contrast, the LG scheme spends the
same CPU time in every time step as shown in Fig. 8.

In all the computations we see that the number of nodes in the adap-LG method under-
goes a rapid increase at the beginning of the calculations, then the increase slows down,
and near the steady state the number of nodes becomes practically stationary. We also
see that at Re = 1000, a low Reynolds number, the number of nodes required are about
7000 whereas for Re=10000, with a more complex fluid structure, the number of nodes is
about 9500, close to the limit number of nodes equal to 10201. This results in a faster cal-
culation at low Reynolds numbers, whereas at large Reynolds numbers the CPU time is
about the same for both schemes. However, note that even for Re=10000 the convective
step is slightly faster in the adap-LG scheme as shown in Fig. 7.

3.3 Some notes about parallelization

One of the main advantages of the semi-Lagrangian and Lagrange-Galerkin schemes
when using m large is that the number of d.o.f. required to get an accurate solution is
reduced considerably. However, as we can see in Figs. 3-5, the disadvantage is that the
CPU time spent to compute the convective step increases due to the large amount of
interpolations that the algorithm needs, but instead it decreases when inverting the ma-
trix associated to the variational formulation (2.5), for the convection-diffusion problem,
or (2.6) and (2.7) for the Navier-Stokes equations, since the number of nodes is usually
much lower. Nevertheless, although the convective step spends a large percentage of the
CPU time needed in each time step (mainly in the Gaussian bell problem, in the driven
cavity problem is about 60%, not shown in figures), the nice point is that most of the
computations are independent, that means that it is easy to parallelize the computations.

Specifically, for the parallelization of the convective step, we propose that all the pro-
cessors share the mesh information and that each one of them takes care of the compu-
tations of a group of quadrilaterals. Then, if NP is the number of processors, Jk ⊂N is
such that all the computations related to the elements {Qj : j∈ Jk}⊂Dh are carried out by
the processor k, with 1≤ k≤ NP. Note that it is important that each processor owns all
the information related to the mesh because it will have to compute X(xi,tn+1;tn) for any
i, where xi are the nodes of the group of the quadrilaterals, and X(xi,tn+1;tn) may not
belong to such a group.

The algorithm needs only two MPI communications. At the beginning of the algo-
rithm an MPI Bcast is used to share the velocity ~un

h and ~un−1
h (as well as wn and wn−1 in

the convection diffusion model) to all the processors. This allows to processor k to com-

pute X(xi,tn+1;tn−l), with l=0 and 1, for any xi∈Qj, j∈ Jk ; then ~un∗
h (xi) and ~u

(n−1)∗∗
h (xi) or

wn∗
h (xi) and w

(n−1)∗∗
h (xi); and finally we calculate the integrals, which are the first terms

on the right hand side of (2.5), (2.6) and (2.7), in the elements Qj for j∈ Jk. The computa-
tion is finished once the integrals over the whole domain are done. To do so we require
the last communication call, MPI Reduce, and the convective step is over.

In Fig. 9, we show the CPU time using this parallelization with the cavity problem for
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Figure 9: Speed-up of the overall CPU time of the convective step needed to reach T =500 for Re=5000.

Re=5000. The figure refers to the overall CPU time for the convective step, including the
MPI communications, needed in the whole computation to reach T=500. As we can see,
even for more than 100 CPUs the speed up is close to the ideal one.

4 Conclusions

We have conducted a sequence of numerical experiments employing the Navier-Stokes
equations and the convection-diffusion equations of a scalar quantity to test and com-
pare nodal and modal semi-Lagrangian schemes as well as Lagrange-Galerkin schemes
in the framework of high order hp finite elements. According to the results of these ex-
periments, both semi-Lagrangian and Lagrange-Galerkin hp finite element methods are
able to produce very good results in convection-dominated problems.

Regarding the behaviour, in terms of CPU time and accuracy, of semi-Lagrangian
schemes versus Lagrange-Galerkin schemes we have noticed that when the degree of the
polynomials of the hp finite elements are higher than 2 Lagrange-Galerkin are better than
semi-Lagrangian schemes because they are more accurate (although the asymptotic rate
of convergence is the same for both schemes) and faster, specially when the degree of
the polynomials are larger or equal than 8. We also have tested Lagrange-Galerkin p-
adaptive schemes and the conclusion is that p-adaptive Lagrange-Galerkin schemes are
more efficient than the conventional Lagrange-Galerkin ones. Additionally, we have also
conducted experiments to test the efficiency of parallelization of the schemes presented
in the paper. Our results show that the parallelization is very efficient, giving a speed-up
quasi-optimal in the convective step even with more than 100 processors.
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