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Abstract. We show that an enslaved phase-separation front moving with diffusive

speeds U = C/
√

T can leave alternating domains of increasing size in their wake. We
find the size and spacing of these domains is identical to Liesegang patterns. For equal
composition of the components we are able to predict the exact form of the pattern an-
alytically. To our knowledge this is the first fully analytical derivation of the Liesegang
laws. We also show that there is a critical value for C below which only two domains
are formed. Our analytical predictions are verified by numerical simulations using a
lattice Boltzmann method.
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1 Introduction to Liesegang patterns

The formation of highly ordered patterns in naturally occurring biological, chemical, and
mineralogical systems has long been a subject of intense interest. The study of such pat-
tern formation can sometimes allow deep insight into their underlying natural phenom-
ena. In a previous paper we analyzed the dynamics of pattern formation behind a one-
dimensional, slow moving (enslaved), phase-separation front. Our analysis concerned
fronts moving with constant speed, and the pattern formed was a series of alternating
bands of regular width and spacing [4]. We show here that a front moving with diffusive
speed will form a more complex Liesegang pattern.

It was with the motivation of understanding pattern formation in simple systems that,
just over one hundred years ago, R. E. Liesegang observed a highly ordered pattern of
concentric rings precipitating around a drop of silver nitrate on a glass slide with a thin
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gel coating containing potassium dichromate [8]. These concentric rings are now known
as Liesegang rings. The radial width and spacing of the rings increases with increas-
ing distance from the center. Rings close to the center are narrow and tightly packed.
Rings far from the center are wide and far apart. The pattern forms from the center out-
wards, and is stationary once visible. Several alternatives to silver nitrate and potassium
dichromate in the production of Liesegang rings have been used in the literature. In gen-
eral, some electrolytes A and B combine to form an insoluble precipitate D which then
produces Liesegang patterns. Most recent publications use linear Liesegang patterns of
bands and gaps which are produced by adding the A electrolyte to a test-tube containing
the B electrolyte suspended in gel [9].

To characterize Liesegang bands or rings, they are typically numbered from the first
formed to the last formed, the nth appearing at time tn at position xn with a width wn.
Repeated careful measurements of Liesegang patterns revealed that discrete, defect-free
bands could be characterized by a set of empirical laws [6]. They are

Time Law xn ∝
√

tn, (1.1a)

Spacing Law xn+1/xn =1+p, (1.1b)

Width Law xn ∝ wn. (1.1c)

The time law relates the position of the nth band with the time of its appearance. The
location of subsequent bands is given by the spacing law, where p>0 is the spacing coeffi-
cient. The width law states that the band width is proportional to the position of the band,
which is a natural result of the spacing law with the assumptions of mass conservation
and uniform concentration of precipitate bands [7]. These laws are only considered valid
for large n. Much attention has been paid to the phenomenological Matalon-Packter law
p=F(B0)+G(B0)/A0, which relates p to the initial concentrations A0 and B0 of the A and
B electrolytes [2]. F(B0) and G(B0) are known to be decreasing functions of B0, though
not much else about them is known. Antal et al. [2] show that the Matalon-Packter law
can be derived in limiting cases from more general expressions.

Soon after their characterization, study into the nature and cause of Liesegang pat-
terns was prolific. For instance, a paper by Stern in 1954 makes mention of more than
six hundred papers having been published on the subject by that time [10]. There were
many early attempts to develop a comprehensive model of Liesegang pattern formation.
However, it proved difficult to account for the wide variety and complexity of possible
patterns, and many early models were eliminated by additional experiments. The com-
plexity of Liesegang pattern formation thwarted theoretical understanding, and progress
slowed. More than a century later there is currently still no generally accepted compre-
hensive mechanism for Liesegang pattern formation.

Current dominating theories of Liesegang pattern formation can be categorized as
either an ion-product supersaturation theory where electrolytes combine directly into the
precipitate (A+B→D), or a nucleation and growth theory where one or more intermediate
compounds form before final precipitation (A+B→C→D). A brief discussion of these
models is given in the recent paper by Jahnke and Kantelhardt [7].
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For either of these theories, precipitation occurs behind a reaction front formed by
the A electrolyte diffusing into the B electrolyte. Since the initial concentration (A0) of
A in the drop is typically an order of magnitude higher than the concentration (B0) of
B in the gel, the time dependent concentration profile A(x,t) of A electrolyte in the gel
forms a reaction front which resembles the familiar heat-diffusion profile moving with
speed ur ∝ t−1/2 [2]. Coincident with, or trailing behind this reaction front is a precipita-
tion front, moving at a speed up ∝ t−1/2, which produces the banded pattern. The precise
relationship of the precipitation front to the reaction front depends on the specific chem-
ical and physical mechanism of Liesegang pattern formation which are still not entirely
understood.

The recent trend for publications on Liesegang patterns shows a re-surging inter-
est. A search of the ISI Web of Science Internet database for publications on the topic
”Liesegang” shows an increase in papers since a fall in the early second half of the 20th
century. We found only 8 papers from 1970 to 1979, 35 from 1980 to 1989, 107 from 1990
to 1999, and 196 since 2000. Much of the recent research into Liesegang pattern forma-
tion has focused on the moving front by employing a variety of numerical techniques
to simulate models of precipitation fronts. Some examples are the reaction-diffusion cel-
lular automata simulations by Chopard et al. [3], direct simulation of a model-B system
with a chemical reaction like source term by Antal et al. [1] and Rácz [9], the discrete
stochastic simulation which used random walkers to model the diffusion front by Izsák
and Lagzi [5], as well as the lattice gas simulation by Jahnke and Kantelhardt [7].

In this paper we show that patterns identical to Liesegang patterns can be formed in
a much simpler physical system. We consider a binary mixture that can phase-separate if
a control parameter crosses a critical value. In this system an enslaved phase-separation
front moves at a speed of u=ct−1/2. An example of such a system would be a binary mix-
ture that is cooled below its critical temperature from one end. This situation is somewhat
similar to that of the electrolytes, where material is formed at the front and will subse-
quently phase separate. However the details are quite different, most notably in the
nucleation conditions.

It should be noted that this model is somewhat similar to the Model-B precipitation
front proposed by Antal et al. [1], but there are several key differences. Their model
has a moving, Gaussian shaped source of A-type material designed to mimic the prod-
uct of a chemical reaction front. Their source moves through a region which is phase-
separated into an equilibrium B-type. When the concentration of A-type material in a
given area reaches the spinodal value, an A-type domain nucleates and depletes the sur-
rounding region of its A-type material. The source moves on, leaving stable domains.
The speed, width, and concentration of their source are free parameters of their model.
Our model has an abrupt control parameter front which induces phase-separation as it
passes through a mixed material, the mechanism for nucleation of new domains is quite
different. Notably switching does not occur at the spinodal value for reasons explained
in [4]. Also the analysis of Antal et al. is numerical in nature. Our model has only one
parameter and can be solved analytically.
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To allow for an analytical treatment we make the simplifying assumption of an abrupt
front. We expect that the results will be qualitatively similar to those for an extended
control parameter front. In practice, an abrupt front could be experimentally achieved by
immersing a thin sample into a temperature bath at a prescribed speed u ∝ t−1/2.

The key result is that we are able to analytically determine the resulting patterns and
we show that they obey the Liesegang laws given by Eqs. (1.1a), (1.1b), and (1.1c). We
derive an analytical expression for the spacing coefficient p in terms of the free parame-
ters of this model. We verify these theoretical predictions by direct numerical simulations
using a lattice Boltzmann method.

2 A model for Liesegang patterns formed by enslaved phase

separation fronts

We consider two materials, an A-type and a B-type, in an incompressible mixture such
that the total density ρ=ρA(x,t)+ρB(x,t) remains constant. The relevant variable is then
the relative concentration of A to B-type material defined as

φ(x,t)=
ρA(x,t)−ρB(x,t)

ρ
. (2.1)

From here on the time and position dependence of the concentration will be implied. For
simplicity we assume that the two materials have the mixing free energy described by a
φ4 law

F=
∫

dx
[ a(x,t)

2
φ2+

b(x,t)

4
φ4+

κ(x,t)

2
(∇φ)2

]

. (2.2)

The time and position dependence of the control parameters (a, b, and κ) are such that
they constitute a spatially abrupt transition from the mixing region to the phase-separating
region of the phase diagram. For example:

a(x,t)= aS +(aM−aS)Θ

(

∫

udt+x0

)

, (2.3)

where Θ is the Heaviside step function, and the transition takes the form of a front mov-
ing with velocity u(t). The free energy of Eq. (2.2) has a single minimum for a > 0, re-
sulting in material mixing. When a < 0 there are two minima, resulting in the separating
of material. The control parameters for the mixing and separating regions are denoted by
subscripts M and S respectively. The other parameters are defined similarly.

Since we assume incompressibility and a one-dimensional geometry of the system,
hydrodynamics can be neglected here, and the dynamics is therefore purely diffusive

∂tφ=∇
[

m(x,t)∇µ(x,t)
]

. (2.4)
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The chemical potential is derived from the free energy as,

µ(x,t)=
δF

δφ
= a(x,t)φ+b(x,t)φ3−κ(x,t)∇2φ, (2.5)

and the diffusive mobility m is one of the control parameters which can vary across the
front similarly to (2.3). Aside from time and space dependence of the control parameters,
this is the familiar Model-B.

This model for a moving front has many parameters which can affect the dynamics of
phase separation, however not all of these parameters are independent. As we elaborate
on in our previous paper, introduction of appropriate time, space, and concentration
scaling can non-dimensionalize the equations of motion [4]. For the remainder of this
paper we will work entirely in the non-dimensional scales

T =
t

tsp
, X =

x

λsp
, Φ=

φ

φeq
. (2.6)

Here tsp = 4κ/ma2 and λsp = 2π
√
−2κ/a are the characteristic time and length scales of

spinodal decomposition, and φeq=
√
−a/b is the positive equilibrium concentration of the

phase-separated material. Non-dimensional quantities will be denoted by capital letters.
Nondimensionalization reduces the free parameters to an independent set of four

parameters: U = u/usp is the speed of the front scaled by the natural speed of spinodal
decomposition usp=λsp/tsp, M=mM/mS is the ratio of the diffusive mobility ahead of the
front to behind the front, A=−aM/aS is the depth of the quench into the unstable region
of the phase diagram, and Φin = φin/φeq is the non-dimensional initial concentration of
the mixed material. As we have previously shown, the dynamics becomes particularly
simple if we let the diffusive mobility ahead of the front be negligible mM → 0. In this
case the dynamics ahead of the front, represented by Eq. (2.4), is halted. This makes the
A parameter unnecessary. This is not a particularly physical assumption, but it does only
cause a small quantitative change in the pattern formation as compared to M =1, as we
have previously shown [4]. The existence of analytical solutions, however, makes M =0
an attractive choice. If we then assume that the front moves into material which has an
equally mixed initial concentration, the morphology of domains formed depends only on
the non-dimensional front speed (U). Interestingly, an analytical expression can be found
for the non-dimensional domain wavelength (L) when U is small and constant:

L(U)=
4
[
√

6+6ln(2−
√

2/3)−3
]

3π2U
=

Ψ0

U
. (2.7)

The derivation of this law is given in [4]. Because it is convenient to work with this ana-
lytical solution, we will focus on the condition where the initial mixed material contains
equal parts of A-type and B-type material.

To complete our model we require that the front moves with a time dependent speed

U(T)=
C√
T

, (2.8)
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appropriate for a diffusive velocity. The parameter C now becomes the only free param-
eter in this model. This parameter will therefore determine the spacing and width of the
resulting domains.

3 Derivation of Liesegang laws

We will now show that for certain parameter choices the model presented in the previous
chapter will result in the formation of Liesegang patterns. We will do this by deriving
the Liesegang laws of Eqs. (1.1a), (1.1b), and (1.1c) directly from the model. We will
conclude this section by deriving a Matalon-Packter like analytical expression for the
spacing coefficient.

We first recognize that domain production at any point in space can only occur after
the phase-separation front has passed. From our previous paper we observe that once an
enslaved front has passed a point, domain growth or nucleation occurs very rapidly [4].
That is, domains form and grow near the front. The position of the front at time T is
found by integrating the front-speed:

X(T)=
∫ T

0
U(T)dT =

∫ T

0

C√
T

dT =2C
√

T =α
√

T. (3.1)

From this we see that if domains are formed, then the nth domain will be formed at time
Tn at position Xn which is proportional to

√
Tn in agreement with the time law of (1.1a).

This is simply a result of the imposed front speed.
Deriving the width and spacing laws is more interesting. As we found in our previous

paper [4] and reproduced in Eq. (2.7), a front moving at constant speed produces domains
of a predictable wavelength. In the process of deriving Eq. (2.7), we discovered domain
growth has two distinct stages: first is a formation stage where a domain nucleates at the
front and grows as it is pulled along with the front until a new domain nucleates; second
is an expansion stage where the just detached domain grows due to deposition of material
excluded from the newly forming, opposite type domain. For a constant speed front
moving into material which is initially symmetrically mixed and of negligible mobility,
each stage accounts for growing half of the domain’s final width. In essence, it takes two
domain-type switching cycles to completely form a stable domain, and the domain width
grows at half the front speed.

The width of a domain as it detaches from a constant speed front is half of its final
width, which is then a quarter of the constant speed domain wavelength for a front at
that speed. If the front speed is changing, the width at detachment Wdet is one quar-
ter the domain wavelength predicted in Eq. (2.7) for a front moving with instantaneous
speed U at detachment. This statement implies the assumption that our nucleation the-
ory that was derived for constant U can also be applied for time-dependent U. This is a
non-trivial assumption but it is justifiable by the excellent agreement of our theory with
direct numerical simulations of the full PDE. Using Eq. (2.8) to replace the front speed
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Figure 1: The top of the figure is a concentration profile in a Liesegang pattern where positive equilibrium con-
centration domains are considered bands and negative equilibrium concentration domains are gaps. The bottom
of the figure shows three important aspects of Liesegang pattern formation corresponding to the concentration
profile at the top. The dashed line represents the distance from the previous domain in the final morphology.
We label the position of the first interface of a domain n as X0

n. Therefore the height of the dashed line is

X−X0
n where n is the domain that exists at position X. The dashed line has slope 1 because the W and X

axes have the same scale. The dotted line represents the width W of the front-attached domain as a function
of the front position X. The slope 1/2 is explained in the text and in our previous paper on enslaved front
phase-separation [4]. The solid line represents the maximum front-attached domain width of Eq. (3.2) for the

position X of the front. When a domain forming at the front reaches Wdet(X), it detaches from the front, and
a new domain is nucleated at the front. The dotted, dashed, and solid lines all intersect at the points where
domain type switching occurs at the front. Note that when a domain n becomes detached from the front its
first interface becomes stationary at X0

n.

dependence with time, then using Eq. (3.1) to replace the time dependence with position,
we can predict the width Wdet of a domain as it detaches from a front when this front is
at position X:

Wdet =
1

4
L(U)=

Ψ0

4U
=

Ψ0

√
T

4C
=

Ψ0

8C2
X = βX. (3.2)

Note that this already resembles the Liesegang width law, but does not relate the final
domain width to the domain position. For that we must consider the growth of the
domain after it detaches from the front. The information presented in this section thus
far is graphically shown in Fig. 1 which represents the growth and final morphology of
Liesegang pattern formation.

To derive the width law, recall the formation and expansion stages of domain growth
mentioned previously. A domain forming at the front increases its width at half the front
speed. Due to mass conservation, the detached domain directly behind it increases its
width at the same rate. The width of domains at detachment is predicted by Eq. (3.2).
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The final width of domain n is then its detachment width, plus the detachment width of
the next domain of opposite material, which we count as n+1/2. From this we get:

Wn =Wdet
n +Wdet

n+ 1
2
= βXdet

n +βXdet
n+ 1

2
. (3.3)

The position of the first interface X0
n of domain n can be easily found from the detachment

position Xdet
n by subtracting the width Wdet

n of the domain at detachment:

X0
n =Xdet

n −Wdet
n =(1−β)Xdet

n . (3.4)

As evident in Fig. 1, the position X0
n+1/2 of the first interface of the next domain, which

will be of opposite composition, is simply the position of the current domain’s second
interface, and is found by adding the current domain’s width to its first interface position:

X0
n+ 1

2
=X0

n+Wn. (3.5)

Combining Eqs. (3.3), (3.4), and (3.5), we recover the Liesegang width law:

Wn =
1

1/2β−1
X0

n =
1

4C2/Ψ0−1
X0

n =γX0
n. (3.6)

We now derive the spacing law. As seen from Eq. (3.5), the position of the first interface
of the subsequent domain scales by a constant factor:

X0
n+ 1

2
=X0

n+Wn =(1+γ)X0
n. (3.7)

Two subsequent domains increase the index n by one, and their positions scale by that
same factor squared:

X0
n+1 =(1+γ)X0

n+ 1
2
=(1+γ)2X0

n. (3.8)

This gives the Liesegang spacing law

X0
n+1

X0
n

=(1+γ)2 =
1

(2β−1)2
=

1

(Ψ0/4C2−1)2
. (3.9)

The position of the band is taken as the boundary between the band and the previous
gap. Due to experimental reasons, the location of a Liesegang band is often considered
to be at the center of the band, i.e., Xn = X0

n+Wn/2. Our derivation of the Liesegang
time, spacing, and width laws uses the fact that there is some freedom in measuring the
positions of the domains Xn, as long as all domains are measured consistently. It is clear
that the scaling law holds whether one measures the position on the leading or trailing
edge of the domain edge. Note that if one definition of the position given by

Xn =X0
n+νWn, (3.10)
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obeys the Liesegang laws, then all these definitions of the position will still fulfill the
Liesegang spacing laws because:

Xn+1

Xn
=

X0
n+1+νWn+1

X0
n+νWn

=
(1+γν)X0

n+1

(1+γν)X0
n

=
X0

n+1

X0
n

. (3.11)

From Eq. (3.9), we determine that the Liesegang spacing coefficient for this model is:

p=(Ψ0/4C2−1)−2−1. (3.12)

Note that this expression replaces the Matalon-Packter law, but bears no apparent resem-
blance to this phenomenological law. For values of C >

√
Ψ0/2, the Liesegang spacing

coefficient p is greater than zero, and many domains will form, generating a Liesegang
pattern. For C below the critical value Ccr =

√
Ψ0/2≈0.1247, no Liesegang patterns will

be formed. Instead only two domains continue to grow and no nucleation of new do-
mains occurs. A graphical representation of Eq. (3.12) is shown in Fig. 3. The authors
are not aware of any previous purely analytical expressions that accurately predict the
spacing coefficient for any Liesegang pattern producing models.

We have now derived all of the laws for Liesegang patterns. Surprisingly there are
no free parameters and our analytical expressions completely determine the patterns.
It remains to be shown that the approximations made in this analytical derivation do
not significantly alter the results. To do this we compare our analytical results to direct
numerical simulations of our model.

4 Numerical method and results

In our previous paper we presented a one-dimensional lattice Boltzmann method (LBM)
simulation of our model for enslaved phase-separation fronts moving with constant
speed. We did this by creating a lattice with spatially dependent control parameters,
where the parameters change abruptly at the location of the front. We then advect the
material at speed u across this stationary front, using carefully constructed inflow and
outflow boundary conditions. A Galilean transformation x′→x−ut of this simulation re-
turns the original model. The simulation was designed this way, because a slow moving
abrupt front on a discrete spatial lattice would be stationary for long periods followed
by an instantaneous change of position. On the other hand, since the current of material
in a LBM simulation is represented by continuous distribution functions, a constant drift
speed u in the drift diffusion of material can be made arbitrarily small. For details on
the development of the LBM simulations for enslaved fronts please refer to our previous
paper [4]. Here we will only discuss the changes required to implement this method for
fronts moving with a non-constant speed.
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4.1 Changes for diffusive fronts and details of implementation

The method we presented was designed with constant speed fronts in mind, but there
was no requirement made that the front speed, and therefore the material advection
speed in the LBM simulation, be constant. To implement our model for the diffusive
speed front of Eq. (2.8) we make two changes. First, the simulation is started at time
T = T0 > 0 to ensure that the advection speed is finite. Second, the advection speed is
recalculated according to Eq. (2.8) at every iteration. To ensure the analytical solution of
Eq. (2.7) is applicable, we must use front speeds that are much slower than the speed of
a free front. The numerical verification of Eq. (2.7) is given in [4, Fig. 7] and shows that
fronts moving at non-dimensional speed of U ≤ 0.001 produce domain sizes that agree
very well with the prediction. This being the case, we begin our simulation so that the
initial front speed is U0 =0.001, by setting our simulation start time T0 =(C/U0)2.

The simulation is initialized with random concentration fluctuations around the sym-
metrically mixed concentration value of Φin =0. This results in spinodal decomposition
in the region behind the front. These small domains serve to buffer the domains formed
by the enslaved front from being adversely effected by any anomalies due to the outflow
boundary condition. To increase simulation performance the number of lattice sites is
initially rather small, and is dynamically grown to maintain a buffer of small domains.

4.2 Measurements and calculations

Our goal with these simulations is to verify our analytical predictions of Eqs. (3.6) and
(3.9) for the Liesegang laws. We accomplish this by performing simulations with differ-
ent values of C, measuring the width Wn of the nth domain formed, and performing a
numerical fitting to the equation

Wn =W0+Q(1+p)n, (4.1)

where W0, Q, and p are the fitting parameters. This is an alternative form of Eq. (1.1b)
with a substitution provided by Eq. (1.1c).

The domain widths are measured by interpolating the sub-lattice position of the zero-
crossing of the concentration at an interface, and determining the distance to the sub-
lattice position of the next interface. To ensure that there are sufficient domains to per-
form meaningful fitting to Eq. (4.1) we track the number of switching events; after 19
switching events have occurred the domain widths and other data, such as the concen-
tration profile, are written out to disk. As explained in the previous section, the two
domains directly behind the front are not completely formed, and are not used to find
the experimental p value. The first domain formed by the front may also be ignored as
it can sometimes be induced by the very strong dynamics of spinodal decomposition.
This typically leaves 16 alternating domains of A and B-type material which can be used
for fitting to Eq. (4.1). Example simulation data and p fitting are shown in Fig. 2 for the
C=0.4 data point shown in Fig. 3. The concentration profile is shown in Fig. 2(a), and the
width fitting is shown in Fig. 2(b).
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Figure 2: Final data from LBM simulation for C = 0.4. Subfigure (a) shows an example concentration profile
of Liesegang pattern morphology at simulation completion. The offset is due to requiring an initial finite speed
and dynamic growing of the simulation. Subfigure (b) shows the fitting of domains widths found in (a) to
determine p(C). Some domains are ignored because they are not formed by the front, but are instead artifacts
of the simulation procedure. The width Wn of domain n is fitted to the equation Wn =W0+Q(1+p)n to find
an experimental value of p to compare to the theoretical prediction of Eq. (3.12). For these data the fitting
values are W0 =−1.92468, Q=23.7999, and p=0.212093.

One additional note: the concentration profile of Fig. 2(a) seems to show a very sharp
interface. The actual interface width covers approximately ten lattice sites, and is in
agreement with the bulk stability requirements outlined by Wagner and Pooley in [11].
The use of the minimum stable interface width increases simulation spatial efficiency.
Additionally, the use of smaller interface widths allows a larger time scaling factor s to be
used which further increases simulation efficiency by calculating a larger time step each
iteration [4].

Numerous simulations of the type shown in Fig. 2 were performed for different values
of C and the corresponding p values were measured and compared to the theoretical
prediction of Eq. (3.12). These results are shown in Fig. 3 and show excellent agreement.
This remarkable agreement suggests that approximations made in the derivation of the
analytical results have negligible effect on the final results. This is notable, as no other
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Simulation Figure 3: Comparison of the theoretical pre-

diction for p as a function of the free param-
eter C shown in Eq. (3.12). This expression
replaces the Matalon-Packter law for this
model. The results show excellent agreement
of the simulation results with the assump-
tions made in the derivation of the Liesegang
scaling laws for this model. For C < Ccr no
new domains were nucleated. These data
were taken from a series of simulations, the
details of which are explained in the text.
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Liesegang pattern forming model has an accurate analytical prediction of the Liesegang
scaling laws.

5 Outlook

In this paper we have shown that a model for an enslaved phase separation front which
moves at diffusive speed U=C/

√
T can be used to produce Liesegang patterns. We have

done this by deriving the Liesegang time, width and spacing laws from the model. Our
analysis includes the determination of the Liesegang spacing coefficient p as a function of
the front speed parameter C. In doing so we determined the values of C where Liesegang
patterns are produced, and verified this with direct numerical simulations of the model.

For this paper we have chosen the initial material composition to be symmetrically
mixed. This corresponds to Φin =0 and allows us to use the analytical result in Eq. (2.7)
to determine the Liesegang laws and their constants of proportionality. This model, how-
ever, can generate Liesegang patterns for the range of initial concentrations between the
spinodal concentrations. An example is shown in Fig. 4 of a Liesegang pattern for asym-
metrically mixed initial material generated by this model. The parameters used in this
simulation were C = 0.5 and Φin =−0.3. We expect that it will be possible to determine
a spacing law for off-critical mixtures, but that is outside the scope of this paper. Addi-
tionally, the production of Liesegang patterns by enslaved fronts which move into ma-
terial with non-zero mixed mobility should be considered. We expect the results to be
qualitatively similar, but we are not sure that this case will be amenable to an analytical
treatment.
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Figure 4: Example concentration profile showing Liesegang patterns formed by an enslaved front moving through
material with an initial concentration Φin =−0.3, and a front speed scaling constant C = 0.5. The profile is
shown in subfigure (a) at simulation completion. Subfigure (b) shows fitting the band (A-type) and gap (B-type)
widths separately to find p(C) for initial material consisting of a majority B-type. Fitting parameters for the
bands are W0=−1.41736, Q=22.4956, and pA=0.151002. Fitting parameters for the gaps are W0=−0.449771,
Q = 36.1552, and pB = 0.15435. This spacing coefficient is higher than for material which is initially equally
mixed Φin =0. As can be seen in Fig. 3, the spacing coefficient for C=0.5 is p≈0.12 in the case where Φin=0.
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