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Abstract. We show the methodology and advantages of asymptotic analysis when ap-
plied to lattice Boltzmann outflow treatments. On the one hand, one can analyze out-
flow algorithms formulated directly in terms of the lattice Boltzmann variables, like the
extrapolation method, to find the induced outflow conditions in terms of the Navier-
Stokes variables. On the other hand, one can check the consistency and accuracy of
lattice Boltzmann outflow treatments to given hydrodynamic outflow conditions like
the Neumann or average pressure condition. As example how the gained insight can
be used, we propose an improvement of the well known extrapolation method.
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1 Introduction

In contrast to conventional CFD methods where the fluid velocity and pressure are pri-
mary variables, the lattice Boltzmann method recovers them as averages of the meso-
scopic particle distributions in a postprocessing step (see, for example, [1, 8, 9, 12, 15, 21–
23]). The advantage of very simple evolution equations for the particle distributions,
however, come at the price of non-transparent relations between the desired hydrody-
namic boundary conditions and the required lattice Boltzmann boundary treatments. In
this article, we show that asymptotic analysis can help to clarify this relationship.

The standard lattice Boltzmann method is comprised of two phases, a collision phase
and a transport phase

f c(n, j)= f (n, j)−A( f− f eq)(n, j), (1.1a)

fi(n+1, j+ci)= f c
i (n, j). (1.1b)

∗Corresponding author. Email addresses: michael.junk@uni-konstanz.de (M. Junk), zhaoxia.yang@

uni-konstanz.de (Z. Yang)

http://www.global-sci.com/ 1117 c©2011 Global-Science Press



1118 M. Junk and Z. Yang / Commun. Comput. Phys., 9 (2011), pp. 1117-1127

Here, f (n, j) is the vector of particle distribution functions fi(n, j) = f (n, j,ci) at the nth
time level tn and the lattice node xj (j∈Z

d) with the discrete velocity ci ∈{−1,0,1}d(i =
1,2,··· ,N). The particles collide locally, which is modeled with a linear operator A includ-
ing BGK [23] and MRT [9, 20] approaches. The equilibrium functions f

eq
i recommended

in [12] are adopted here,

f
eq
i = Fi(ρ̂,û), Fi(ρ̂,û)= f ∗i

(

ρ̂+3û·ci+
9

2
(û·ci)

2−
3

2
|û|2

)

, (1.2)

in which

ρ̂=
N

∑
i=1

fi, û=
N

∑
i=1

ci fi (1.3)

are the mass density and the average momentum of the particles based on the assumption
that the fluid density slightly fluctuates around a constant ρ̄ (here, ρ̄ = 1 without loss of
generality). The constants f ∗i depend on the chosen velocity model.

The Chapman-Enskog expansion [2, 10, 11, 13] and asymptotic analysis [17, 18, 27]
show that for incompressible flows governed by the Navier-Stokes equations,

∇·u=0, ∂tu+(u·∇)u+∇p=ν∇2u, u|t=0 =ψ, (1.4)

the fluid velocity u and pressure p can be extracted from the lattice Boltzmann moments
ρ̂ and û with second order accuracy, supposing that the eigenvalues of the collision ma-
trix A are properly related to the fluid shear viscosity ν and that initial and boundary
conditions are approximated sufficiently accurate.

As far as boundary conditions are concerned, we can distinguish two basic types.
(1) The Navier-Stokes problem (1.4) includes certain hydrodynamical boundary condi-
tions (like no-slip velocity conditions, or normal stress conditions). Then, the task is to
find consistent lattice Boltzmann boundary algorithms, which comes with the general
difficulty that the required lattice Boltzmann boundary conditions outnumber the given
hydrodynamical ones. The additional conditions have to be chosen very carefully in or-
der to avoid conflicts on the hydrodynamical level which entail poor approximations.
(2) The solution domain of (1.4) is very large or unbounded (like pipe flows or exterior
flows). Then, for numerical reasons, artificial boundaries have to be introduced where
no obvious physical boundary conditions are available. Again, one way to proceed is to
adopt outflow conditions formulated in terms of the hydrodynamical variables and con-
struct associated lattice Boltzmann algorithms (like the Neumann condition for the fluid
velocity u [19], the do-nothing condition [19], the average pressure condition [25], or the
convective condition on u [26]). Another way is to formulate reasonable outflow condi-
tions directly for the lattice Boltzmann variables (like the extrapolation method [28], the
approximation by using Grad’s moments [3] and the convective condition on fi [16, 28]).
If this approach is successful, the implied conditions on the hydrodynamical level may
be a valuable alternative to existing outflow treatments.
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Whichever scenario has to be dealt with, it is clear that an analytical tool is required to
extract the hydrodynamical boundary conditions hidden in a given lattice Boltzmann al-
gorithm. In this article, we want to show that such a tool is available and that it generates
valuable insight into lattice Boltzmann algorithms which naturally leads to modifications
and improvements. As examples to illustrate the method, we choose two outflow bound-
ary conditions: the extrapolation method [28] and the do-nothing condition [19].

2 Asymptotic analysis

A brief outline of the asymptotic analysis in the case of lattice Boltzmann BGK models
(where, formally, A= I/τ is a multiple of the identity) is given below. A detailed discus-
sion for general collision matrices A can be found in [17, 18, 27]. The lattice Boltzmann
solutions fi are assumed to have regular expansions

fi(n, j)= f
(0)
i (tn,xj)+h f

(1)
i (tn,xj)+··· , (2.1)

where h is the grid size. The coefficients f
(k)
i are sufficiently smooth functions with re-

spect to t and x and independent of h. We insert these expansions into the lattice Boltz-
mann update rule (1.1), do Taylor expansion at the fluid grid points and sort the terms

with equal powers of h. Then the coefficients f
(k)
i can be found order by order and a

prediction f̂i of the lattice Boltzmann solution fi can be constructed

f̂i = f
(0)
i +h f

(1)
i +···+h4 f

(4)
i , (2.2)

where

f
(0)
i = f ∗i , (2.3a)

f
(1)
i =3 f ∗i ci ·u, (2.3b)

f
(2)
i = f ∗i

(

3p+
9

2
(ci ·u)2−

3

2
u2

)

−τci ·∇ f
(1)
i , (2.3c)

f
(3)
i =3 f ∗i ci ·w−τ

(

∂t f
(1)
i +(ci ·∇) f

(2)
i +

1

2
(ci ·∇)2 f

(1)
i

)

, (2.3d)

f
(4)
i = f ∗i

(

3q+
9

2
(ci ·u)(ci ·w)−

3

2
(u·w)

)

−τ
(

∂t f
(2)
i +(ci ·∇) f

(3)
i

+
1

2
(ci ·∇)2 f

(2)
i +D(∂t,ci ·∇) f

(1)
i

)

, (2.3e)

and D in the expression for f
(4)
i is some third order polynomial. While the zeroth or-

der coefficient f
(0)
i is simply constant, the first and second order coefficients depend on

the Navier-Stokes variables u and p, showing a clear relationship between leading order
contributions to the lattice Boltzmann variables and the hydrodynamic quantities. This
relationship is the basis for constructing boundary conditions which are formulated in
terms of p, u, or derivatives of u.
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The detailed analysis also shows that the additional vector field w appearing in the
third order contribution and the scalar field q appearing in fourth order satisfy a non-
homogeneous Oseen type equation with a source term depending on the Navier-Stokes
solution. In general, the higher order contributions w and q do not vanish which entails
that the Navier-Stokes quantities u and p can at best be extracted up to error terms of
order h2 from the analytic prediction f̂i via

u=
1

h

N

∑
i=1

ci f̂i+O(h2), p=
1

h2

( N

∑
i=1

f̂i−1
)

+O(h2). (2.4)

Since f̂i is close to the numerical solution fi of the lattice Boltzmann update rule (1.1), one
can conclude that second order in the grid size h is the optimal accuracy of the Navier-
Stokes solution obtained from the standard lattice Boltzmann algorithm.

However, the accuracy order may decline due to incompatible initial or boundary
conditions. To analyze the influence of these conditions, we insert the prediction func-
tions f̂i into the initial and boundary algorithms, do Taylor expansion at intersection
points between grid lines and the boundary and sort terms of equal order in h. Again,
the leading order of the residues expose the hydrodynamic initial and boundary condi-
tions corresponding to the lattice Boltzmann algorithm as well as the consistency order
and the expected accuracy. The success of this idea has been demonstrated in detail with
the asymptotic analysis of velocity Dirichlet conditions [18]. In the following section, we
apply the idea to the analysis of outflow treatments.

3 Analysis of outflow treatments

The benchmark problem which we use to investigate the behavior of different outflow
treatments is the classical non-stationary 2D flow around a cylinder with Reynolds num-
ber Re=100.

(0,0)

(0,H)

2.2m

0.15m
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outflow

x

y

Figure 1: Configuration of the 2D test case from [24].

The detailed configuration of this flow can be found in [24] together with reference
values for the drag and lift coefficients Cd, Cl and the pressure difference ∆p at the cylin-
der (see also Fig. 1). This helps to investigate the influence of the outflow condition on
the inner flow. Behind the cylinder, a continuous vortex shedding occurs (Fig. 2).
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Figure 2: The vortex shedding behind the cylinder is displayed by plotting the curl of the fluid velocity.

A qualitative requirement on an outflow condition is that the vortices pass through
the outlet as if the channel had infinite length. Practically, we compare the flow fields
from simulations with fixed channel width but varying length (the length-width ratio
(L/H) ranges in {2,3,5}) and take the degree of variation as indicator for the quality of
the outflow treatment.

3.1 Do-nothing condition

The do-nothing condition [14] is an open boundary condition suggested for the incom-
pressible Navier-Stokes equation,

−pn+ν
∂u

∂n
=0. (3.1)

The notion ”do-nothing” refers to the facts that it is obtained as a natural boundary con-
dition from a particular variational formulation of the Navier-Stokes equation (for details
and derivation see [7, 14]).

With the help of the asymptotic expansion and the resulting structural information
on the variables fi and their relation to p and the derivatives of u, a lattice Boltzmann
implementation of (3.1) has been constructed in [19]. When the outer normal direction n
is opposite to one of the incoming velocity directions ci, the algorithm treats the lattice
Boltzmann variable fi different from the variables for the other incoming velocities

fi(n+1, jo)=
[

F
eq
i (1,û)−

( ν

τ
−1

)

f
neq
i∗

]

(n, jo), ci =−n, (3.2a)

fi(n+1, jo)= f c
i∗(n, jo+ci)+6 f ∗i [ûx(n, jo)cix +ûy(n, jo−n)ciy], ci 6=−n. (3.2b)

Here, jo is the label of a boundary node, i∗ is the index of the discrete velocity ci∗ =−ci,
f neq = f− f eq is the non-equilibrium part of the distribution function, and ûx,ûy are the
normal and tangential components of the velocity û.

In order to verify analytically that the algorithm (3.2a), (3.2b) realizes condition (3.1),
we insert the prediction f̂i with coefficients (2.3) into (3.2a). Then a Taylor expansion is
carried out around the node (tn,xjo) which leads to

h23 f ∗i
(

p−ν(n·∇)(u·n)
)

=O(h3), (3.3)
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where ci = −n has been used. A detailed specification of the next order coefficient is
possible. It depends on time derivatives of the Navier-Stokes flow velocity and does not
vanish for general flows. Dividing by 3 f ∗i h2, we thus find

−p+ν
∂u·n

∂n
=O(h). (3.4)

The scheme (3.2b) produces similarly

h26 f ∗i (n·∇)(u·t)ciy =O(h3), (3.5)

which leads to
∂u·t

∂n
=O(h). (3.6)

Multiplying (3.4) by n and (3.6) by t and adding up finally yields

−pn+ν
∂u

∂n
=O(h), (3.7)

which tell us that the boundary algorithm (3.2a), (3.2b) is consistent to the do-nothing
condition with first order accuracy.

Since the do-nothing condition is natural in a weak formulation [14] and has proved
to produce reasonable results, its lattice Boltzmann implementation is also expected to
behave reasonably. In fact, the numerical simulations of the channel flow demonstrate
that this outflow treatment does not influence the inner flow significantly, as long as
L/H is large enough.

The numerical results reported in Fig. 3 correspond to aspect ratios L/H ∈ {2,3,5}.
Especially with the rather small ratios L/H = 2,3 one cannot expect to obtain a precise
solution. However, our goal is to demonstrate the influence of the outflow condition on
the inner flow which is, of course, more drastic when the ratio changes from 5 to 2 than
from 8 to 5. This is due to the fact that, close to the cylinder, the gradients of the flow
fields are stronger. For the same reason, the small ratio L/H =2 acts as a stability check
of the outflow condition because strong gradients are more likely to trigger instabilities
than weaker gradients further away from the cylinder.

In Fig. 3, the three lower plots show cross sections of the velocity and pressure fields
along the center line of the channel. One can observe that the profiles for different channel
lengths are close to each other which supports that the do-nothing condition allows to
substitute a longer channel by a shorter one without drastic influence on the general
structure of the solution. A more detailed inspection of the solution in terms of lift and
drag coefficients as well as pressure difference between front and back of the cylinder
shows bigger variations which is not surprising due to the higher sensitivity of these
functionals and the comparably short channel lengths. For drag and lift, the maxima
of the signal should be in the interval indicated by the dashed horizontal lines which is
satisfied for the reasonable case L/H = 5. As explained above, with smaller ratios it is
unlikely to obtain high precision.
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Figure 3: The simulation results obtained with the do-nothing condition are demonstrated by the dotted lines
(L/H=2), dashed lines (L/H=3) and solid lines (L/H=5). The upper plots show how the drag (Cd), lift (Cl)
coefficients and the pressure difference at the cylinder (△p) vary in 2000 time steps (from 18000 to 20000).
The dash-dotted lines display the interval of the reference values. The lower plots are the velocity and pressure
profiles along the center line of the channel after 20000 time steps.

In the plot of the pressure difference, the horizontal lines indicate an interval which
should contain the pressure value half a period after the lift coefficient has reached its
maximum. Like in the other two plots, a phase shift of the signal depending on the
aspect ratio is clearly visible.

3.2 Extrapolation method

This method has been applied for quite a long time (a recent reference is [28]). To obtain
the algorithm, one simply extrapolates the unknown fi at a boundary node from the
values of two neighboring fluid nodes. Here, we take linear extrapolation which requires
two neighboring nodes in the direction of the inner normal, i.e.,

fi(n+1, jo)=2 fi(n+1, jo−n)− fi(n+1, jo−2n), (3.8)

where again jo is the label of a boundary node and n is the outer normal direction at the
outlet.

To reveal the hydrodynamic outflow condition hidden in this algorithm, we apply the

asymptotic analysis. The prediction f̂i with coefficients (2.3) is inserted into Eq. (3.8) and
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Figure 4: The simulation results obtained with the extrapolation method are demonstrated by the dotted lines
(L/H = 2), dashed lines (L/H = 3) and solid lines (L/H = 5). The upper plots show how the drag (Cd), lift
(Cl) coefficients and the pressure difference at cylinder (△p) vary in 2000 time steps (from 18000 to 20000).
The dash-dotted lines display the interval of the reference values. The lower plots are the velocity and pressure
profiles along the center line of the channel after 20000 time steps.

the Taylor expansion around (tn,xjo) leads to

h33 f ∗i (n·∇)2(u·ci)−h43 f ∗i

[

(n·∇)3(u·ci)+(n·∇)2
(

p+
3

2
(u·ci)

2

−
1

2
u2−τ(ci ·∇)(u·ci)

)]

=O(h5). (3.9)

Taking into account that the incoming velocity directions ci at an outlet node are linearly
independent, we can conclude from the leading order term that the second order normal
derivative of the fluid velocity vanishes up to terms of order h

∂2u

∂n2
=O(h). (3.10)

The simulation results of the test flow based on the extrapolation condition are displayed
in Fig. 4. Obviously, the outflow condition strongly deteriorates the flow in the interior.
The maximum of the drag and lift coefficients as well as the pressure difference at the
cylinder are far away from the reference intervals even for the large aspect ratio L/H =
5. Also, the velocity and pressure profiles along the center line of the channel strongly
depend on the ratio L/H. These results indicate that the outflow condition

∂2u

∂n2
=0 (3.11)

induced, in leading order, by the extrapolation method does not fit well to the Navier-
Stokes equation for incompressible fluid flow.
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However, a condition similar to (3.11) is discussed in the literature [4–6]. In these
articles, general outflow boundary conditions of the form

∂ju·n

∂nj
=0,

∂qu·t

∂nq
=0, p= p0 (3.12)

are investigated with respect to the formation of boundary layers (the analysis is based
on Laplace-Fourier techniques applied to the linearized, time-dependent Navier-Stokes
equations). The authors show that outflow boundary layers are weaker for higher values
of j and q. Moreover, the choice j=q+1 leads to divergence free solutions, while the case
j 6= q+1 leads to a divergence production that is confined to the boundary layer when
the viscosity is small. They recommend using j =3 and q =2 and consider j =2, q =2 as
acceptable for small viscosities.

The latter case, however, almost corresponds to condition (3.11) with the only differ-
ence that the pressure condition in (3.12) is missing. To fix this problem, we propose a
modification of the extrapolation method which also incorporates a pressure Dirichlet
condition. Noting that the condition (3.4) originating from the algorithm (3.2a) implies
p=0 if we formally set ν=0, we are led to

fi(n+1, jo)=
[

F
eq
i (1,û)+ f

neq
i∗

]

(n, jo), ci =−n, (3.13a)

fi(n+1, jo)=2 fi(n+1, jo−n)− fi(n+1, jo−2n), ci 6=−n, (3.13b)

where the extrapolation condition is kept for the non-normal velocity directions. The
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Figure 5: The simulation results obtained with the modified extrapolation algorithm are demonstrated by the
dotted lines (L/H=2), dashed lines (L/H=3) and solid lines (L/H=5). The upper plots show how the drag
(Cd), lift (Cl) coefficients and the pressure difference at cylinder (△p) vary in 2000 time steps (from 18000 to
20000). The dash-dotted lines display the interval of the reference values. The lower plots are the velocity and
pressure profiles along the center line of the channel after 20000 time steps.
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asymptotic analysis shows that this algorithm is consistent to the boundary conditions

∂2u

∂n2
=0, p=0, (3.14)

which are a special case of (3.12) with j=q=2 and p0 =0. The simulation results obtained
with the modified extrapolation scheme are displayed in Fig. 5. We observe a dramatic
improvement compared to the original extrapolation method. The results are now com-
parable to those obtained with the do-nothing condition.

4 Discussion and conclusions

We have taken two lattice Boltzmann outflow algorithms, the extrapolation method [28]
and the do-nothing condition [19], as representatives of two types of outflow treatments.
The do-nothing condition is originally given in terms of the hydrodynamical variables [24]
and requires the construction of a corresponding lattice Boltzmann algorithm. Con-
versely, in the case of the extrapolation method, the lattice Boltzmann algorithm is con-
structed first and the question concerning the induced hydrodynamical condition arises
which eventually leads to conditions reported in [4–6].

In both scenarios, the asymptotic analysis is a valuable tool. The explicit knowledge
of the relation between Navier-Stokes fields and leading order contributions to the lattice
Boltzmann variables helps in designing algorithms for given boundary conditions, and
afterward, allows to estimate the resulting accuracy. The analysis of the extrapolation
method, on the other hand, is a nice example how gained insight into the hydrodynami-
cal consequences of a given algorithm can lead to successful improvements.
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[8] D. d’Humiéres, Generalized lattice-Boltzmann equations. in rarefied gas dynamics: theory
and simulations, (eds. B. D. shizgal and D. P. Weaver), Progr. Astronaut. Aero., 59 (1992),
450–548.



M. Junk and Z. Yang / Commun. Comput. Phys., 9 (2011), pp. 1117-1127 1127
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