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Abstract. The objective of this paper is to seek an alternative to the numerical sim-
ulation of the Navier-Stokes equations by a method similar to solving the BGK-type
modeled lattice Boltzmann equation. The proposed method is valid for both gas and
liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations
for two distribution functions; one for mass and another for thermal energy. These
equations are derived by considering an infinitesimally small control volume with a
velocity lattice representation for the distribution functions. The zero-order moment
equation of the mass distribution function is used to recover the continuity equation,
while the first-order moment equation recovers the linear momentum equation. The
recovered equations are correct to the first order of the Knudsen number (Kn); thus,
satisfying the continuum assumption. Similarly, the zero-order moment equation of
the thermal energy distribution function is used to recover the thermal energy equa-
tion. For aerodynamic flows, it is shown that the finite difference solution of the DFS
is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model
and a specified equation of state. Thus formulated, the DFS can be used to simulate a
variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics,
compressible flow with shocks, incompressible isothermal and non-isothermal Couette
flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used
to demonstrate the validity and extent of the DFS. Very good to excellent agreement
with known analytical and/or numerical solutions is obtained; thus lending evidence
to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid
flow simulations.
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1 Introduction

The Bhatnagar-Gross-Krook (BGK)-type [1] modeled lattice Boltzmann equation proves
to be a viable alternative to the Navier-Stokes (NS) equations for fluid flow simulations
and the associated transport phenomena [2–5]. The original Boltzmann equation was
derived by stipulating the assumption of ideal gas and the neglect of the intermolecular
interaction. The BGK-type modeled Boltzmann equation (MBE) is a scalar equation gov-
erning the transport of a particle distribution function f . In order to solve this equation, a
conventional approach is to assume a velocity lattice model, thus giving rise to the lattice
Boltzmann method (LBM). The scalar equation for f is then transformed into N number
of lattice equations; therefore, the process of solving the vector and tensor NS equations
is reduced to using LBM to solve the set of scalar equations. With the development of
more and more accurate numerical methods, the BGK-type modeled lattice Boltzmann
equation (LBE) found success not only in aerodynamic flows but also in the simulations
of thermodynamic flows [6, 7]. Extension to one-step aeroacoustics simulations [8, 9], to
acoustic scattering simulations [10, 11], and to shock capturing and shock structure sim-
ulations [12, 13] has also been successfully demonstrated. The simulations are in good
agreement with analytical and other known numerical results.

Most of these studies were focused on gas flows where an ideal gas equation of state
was specified. For non-ideal gas and fluid flows with multiple phases and components,
the appropriateness of the traditional LBM is doubtful. Since the mean-field approxi-
mation is widely used in liquid theory [14], the same approach has been extended to
treat non-ideal gas flows, fluid flows with phase transitions and binary immiscible flu-
ids [15–18]. These studies were mainly focused on the recovery of the NS equations.
A recent theoretical study to represent hydrodynamic systems through a systematic dis-
cretization of the Boltzmann kinetic equation has been attempted [19]; it manages to show
an alternative way to recover fluid dynamic equations, from the NS equations to Burnett
fluids and beyond. As a result, a systematic approach to derive the NS equations based
on the kinetic level of representation is available; the approach is not subject to the as-
sumption of an ideal gas law and the neglect of intermolecular interaction. In principle,
this latest approach can be used to treat incompressible flow of liquids, such as the dou-
ble diffusive phenomenon found in ocean layers [20–22]. However, the application of
LBM to this branch of fluid dynamics is still lacking. The present work attempts to ex-
amine the validity and extent of the application of LBM-type technique or its variant to
oceanography.

Using the Hermite expansion approach, Shan et al. [19] showed that fluid flows can
be systematically approximated by constructing higher-order LBE models. Instead of
adopting this approach to derive a LBE that could recover the NS equations exactly for
incompressible (with constant density assumed) and compressible fluid flows, an alter-
native approach is sought in the present study. Due to the simplicity of the BGK-type
modeled LBE, its extension to hydrodynamic problems is both appropriate and desir-
able, if the assumption of an ideal gas law can be lifted. The focus is on the recovery of
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the continuum NS equations. If incompressible flows were to be simulated exactly, the
assumption of a very small Mach number (M≪1) [23] should be avoided. This is because
the M≪ 1 assumption is not equivalent to the necessary and sufficient condition for an
incompressible flow, which is characterized by zero total rate of change of density (ρ) in
the whole flow field [24]. A way to impose this zero total rate of change of ρ condition in
the solution of the BGK-type modeled LBE has been put forward in [25].

The present objective, therefore, is to seek an alternative way to derive the BGK-type
modeled LBE that can recover the continuum NS equations fully and is equally valid
for gas and liquid flows. This BGK-type modeled LBE is derived based on a discrete flux
scheme (DFS). A two equation formulation much like that proposed in [26,27] is adopted.
These two equations are derived heuristically using the control volume approach, and
they are very similar to the BGK-type modeled LBE. One equation governs the transport

of f̃ , a distribution function used to represent an intrinsic flow property, such as the fluid
density, at an infinitesimally small control volume. Another equation governs the trans-
port of g̃, which is proposed to represent the distribution function of the total thermal
energy of the infinitesimally small control volume of moving fluid. Hereafter, a symbol
with a tilde is used to represent the dimensional property, while a symbol without a tilde
is used to represent its corresponding dimensionless property.

In anticipation of the fact that the velocity lattice technique is used to solve the f̃ and

g̃ equations, only the derivation of the equations for f̃α and g̃α (the lattice counterpart of

f̃ and g̃, respectively) is presented together with the recovery of the full set of NS equa-

tions from the transport equations for f̃α and g̃α. Here α is an index used to denote the
velocity lattice. Note it is not necessary to invoke an equation of state in the recovery
of the NS equations. The next step is to establish equivalency of this two-equation ap-
proach to the single-equation formulation for compressible gas flows [13]. If the validity
and extent of the NS equations were to be fully replicated in the equivalent BGK-type
modeled LBE, the ability of the present approach to simulate incompressible flows needs
to be established. This can be accomplished by treating incompressible, non-isothermal
flows with ρ = constant instead of assuming M ≪ 1 as proposed in [23]. Finally, it is
shown that the present approach can be extended to treat buoyant flows where double
diffusion occurs. The overall formulation is given in detail, but only examples of shock
structure simulation and buoyant flow calculation are discussed because other examples
of incompressible, non-isothermal gas and/or liquid flows have been reported in [28].

2 Discrete flux scheme (DFS) as an alternative to the

Navier-Stokes (NS) equations

It should be pointed out from the beginning that the DFS is a numerical scheme proposed

for the solution of the NS equations. The governing equations for f̃α and g̃α are derived
and their equivalency to the mass, momentum and energy transport equations is estab-
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Figure 1: Pictorial representation of the control volume Ω̃ in the flow field.

lished. In order to establish this equivalency, f̃α has to satisfy certain constraints similar to
those used to establish equivalency between the MBE and the NS equations. The function
g̃α also has to satisfy certain constraints if the thermal energy equation of the set of NS
equations were to be recovered correctly. In the process, the set of vector and tensor NS
equations are reduced to a finite number of scalar equations. Thus derived, the equations

for f̃α and g̃α are of the convective-diffusive type and can be solved numerically using a
splitting technique [29]. The extension of this approach to account for external body force
effect is also presented. This is carried out with the aim to provide a general framework
for any type of external body force, including buoyancy. The resulting equations are then
used to treat problems such as double diffusion in ocean layers.

2.1 Discrete flux representation of the mass and momentum equation

Consider a control volume Ω of continuum fluid with a finite volume Ω̃ and an arbitrary
shape fixed in space (see Fig. 1). The center of Ω is located at coordinates (x,y,z), and the
fluid is assumed to move through Ω. The corresponding mass m̃ of the fluid inside Ω is

assumed to move at velocity ξ̃, while ρ̃ at (x,y,z) can be defined by an averaging process,
such that,

ρ̃(x,y,z)=
1

Ω̃

∫

Ω
m̃dξ̃, (2.1)

while the velocity ũ of the fluid at (x,y,z) is also defined by a mass-averaging process,
i.e.,

ũ(x,y,z)=
1
Ω̃

∫
Ω

m̃ξ̃dξ̃

1
Ω̃

∫
Ω

m̃dξ̃
. (2.2)

In parallel with the derivation of the conventional LBE, a discrete representation is pro-

posed. Consequently, it is assumed that there are only a finite number of velocities ξ̃α for

consideration. An intrinsic property f̃α relating to the density of the fluid correspond-

ing to a group of fluid masses moving with the same velocity ξ̃α is defined so that the
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following can be obtained

ρ̃=∑
α

f̃α, (2.3a)

ρ̃ũ=∑
α

f̃α ξ̃α, (2.3b)

where f̃α = Wαm̃α/Ω̃ is a discrete form of representing the distribution function f̃ , and
m̃α is a discrete form of representing the mass m̃. After invoking the discrete flux model,

the number of velocity ξ̃α varies from essentially an infinite number to a finite number.
In view of this, it is convenient to introduce a weighting function Wα to account for the
summation, which acts like a numerical integration. The weighting function Wα may

be negative, hence, f̃α may also be negative. However, the sum of f̃α should always be

positive. Due to the discrete choice of the velocities ξ̃α, the flux of the flow properties is
represented in a discrete manner and hence the name ”discrete flux” is used.

Since f̃α is corresponding to a group of masses of fluid moving with the same velocity

ξ̃α, the total rate of change of f̃α in Ω is (∂ f̃α/∂t̃+ ξ̃α ·∇ f̃α), which is not necessarily zero,
because the velocity of these masses of fluid will change as a result of collision and/or
the effect of intermolecular forces between fluid molecules. If it is assumed that there
exists a ”local equilibrium” state for f̃α, denoted as f̃

eq
α , such that when f̃α reaches its

local equilibrium state, its rate of change vanishes. When the masses of fluid inside Ω

are not in their local equilibrium states, it is argued that they will rearrange their ve-

locities to approach f̃
eq
α as a result of collision and/or the effect of intermolecular forces

as mentioned before. The time required for the rearrangement can be designated as the
”relaxation time”, τ̃, which is substantially smaller than the flow characteristic time t̃0,
much like that proposed in the BGK model for the conventional LBE. Following the ar-

gument of the BGK model, it is further assumed that (∂ f̃α/∂t̃+ ξ̃α ·∇ f̃α) is proportional to

the difference between f̃α and f̃
eq
α , or

∂ f̃α

∂t̃
+ ξ̃α ·∇ f̃α =− f̃α− f̃

eq
α

τ̃
. (2.4)

After normalizing f̃α by a characteristic density ρ̃0, ξ̃α by ũ0, time, including τ̃, by t̃0, and

space by l̃0, respectively, the dimensionless form of Eq. (2.4) is given by

∂ fα

∂t
+ξα ·∇ fα =− fα− f

eq
α

ετ
, (2.5)

where ε is a small parameter that can be interpreted as similar to the Knudsen number
(Kn). It will be shown later that this interpretation is consistent with the continuum
assumption.

If, in addition, it is assumed that the deviation of fα from f
eq
α is very small, then fα can

be written in terms of f
eq
α and a small non-equilibrium component f

neq
α , such that

fα = f
eq
α +ε f

neq
α . (2.6)
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Thus defined, f
eq
α can be determined if certain constraints are satisfied. These constraints

are put forward with the objective that the f
eq
α thus obtained can be used in Eq. (2.5) to

recover the mass and momentum equation in the set of NS equations. These constraints
are

∑
α

f
eq
α =ρ, (2.7a)

∑
α

f
eq
α (ξα)i =ρui, (2.7b)

∑
α

f
eq
α (ξα)i(ξα)j =ρuiuj+pδij−τij. (2.7c)

From this point on, the indices i and j are also used to denote vectors and second-order
tensors. The first two constraints are similar to the mass and linear momentum defi-
nitions given in Eqs. (2.3a), (2.3b) and those found in the evaluation of an equilibrium
particle distribution function of the LBM [3]. The third constraint is proposed to ensure
the recovery of the momentum equation in the NS equations. Therefore, τij, which is the
dimensionless viscous stress tensor, is defined as

τij =− M∞

Re∞

{
2µ

(
Sij−

1

3
δijSkk

)}
, (2.8)

where the strain tensor Sij is given by Sij =
(
∂ui/∂xj+∂uj/∂xi

)
/2, µ is the first coefficient

of viscosity and is made dimensionless by a reference µ0, M∞ is a reference Mach number
and Re∞ is a reference Reynolds number. Multiplying Eq. (2.5) with respect to {1,(ξα)i}T,
taking summation over α, and using the expressions given in Eqs. (2.7a)-(2.7c), the exact
mass conservation equation and the momentum equation accurate to order ε of the NS
equations set are obtained; they can be written as

∂ρ

∂t
+∑

j

∂ρuj

∂xj
=

Dρ

Dt
+ρ∑

j

∂uj

∂xj
=0, (2.9a)

∂(ρui)

∂t
+∑

j

∂

∂xj
(ρuiuj+pδij +τij)=O(ε). (2.9b)

It can be seen that if ε is interpreted as Kn, the correct NS equations for a continuum fluid
are recovered.

2.2 Discrete flux representation of the energy equation

Similar to fα, another flux distribution function, gα, representing the total thermal energy
et is introduced, such that

ρet =ρ
(

e+
1

2
|u|2

)
=∑

i

gα, (2.10)
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where et and e, and gα have been normalized by ũ2
0 and ρ̃0ũ2

0, respectively, to make them
dimensionless. Similar to the argument of fα, although gα is related to the total energy, its
individual value can be negative due to the finite number of discrete velocities assumed.
The equilibrium state of gα is g

eq
α . Consequently, gα can be written in terms of g

eq
α plus a

non-equilibrium state g
neq
α , i.e.,

gα = g
eq
α +εg

neq
α . (2.11)

The equation that governs the transport of gα can again be derived in a manner similar
to that for fα. The result is

∂gα

∂t
+ξα ·∇gα =− gα−g

eq
α

ετ
. (2.12)

If the thermal energy equation in the NS equations were to be recovered correctly, g
eq
α has

to satisfy the following constraints

∑
α

g
eq
α =ρ

(
e+

1

2
|u|2

)
, (2.13a)

∑
α

g
eq
α (ξα)i =ui

(
p+ρe+

1

2
ρ|u|2

)
+∑

j

ujτij+qi, (2.13b)

where the heat flux vector qi is given by

qi =− γM∞

Re∞Pr∞

(
κ

∂e

∂xi

)
, (2.14)

Pr∞ is a reference Prandtl number, and κ is the fluid coefficient of thermal conductivity
made dimensionless by a reference κ0. Eq. (2.13a) is similar to the definition of et given
in Eq. (2.10), and Eq. (2.13b) simply ensures the recovery of the energy equation in the
NS equations. Taking summation over α in Eq. (2.12), and using the expressions given in
Eqs. (2.13a) and (2.13b), the thermal energy equation is recovered, i.e.,

∂

∂t

(
ρe+

1

2
ρ|u|2

)
+∑

j

∂

∂xj

[
uj

(
ρe+

1

2
ρ|u|2+p

)
+∑

k

ukτjk +qj

]
=O(ε). (2.15)

From the above derivation, it is clear that solving Eqs. (2.5) and (2.12) is equivalent to
solving the NS equations given by Eqs. (2.9a), (2.9b) and (2.15). For compressible gas
flows, an equation of state is required to close the equation set; however, for incompress-
ible flows of gas or liquid, no such requirement is necessary. Before proceeding to discuss
the numerical methods used to solve Eqs. (2.5) and (2.12), an extension of this general ap-
proach to treat flows with external body forces is outlined below. The method proposed
is general enough for any external body force, including that introduced by the imple-
mentation of the immersed boundary technique [30].
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2.3 Extension of methodology to flow with external body force

The effect of an external body force, such as buoyancy in a stratified flow, can be easily
accounted for in the present discrete flux formulation. In order to account for this effect,
Eq. (2.5) can be modified to read

∂ fα

∂t
+ξα ·∇ fα+Fα =− fα− f

eq
α

ετ
, (2.16)

where Fα is the dimensionless rate of change of density of fluid elements moving with
velocity ξα in the control volume Ω due to the applied force field. It has to fulfill the
following constraints,

∑
α

Fα =0, (2.17a)

∑
α

Fαξα =Fb, (2.17b)

where Fb is the dimensionless external body force applied to the flow field. The constraint
given by Eq. (2.17a) implies that the body force does not affect the total mass inside Ω.
In Eq. (2.17b), Fα multiplies by velocity ξα is the rate of change of momentum due to the
external force field, thus it is the body force itself. Therefore, this approach can be used to
recover the buoyant force in the NS equations written for stratified flow. This approach to
account for the effect of external body forces can be easily generalized to treat boundary
with arbitrary geometries. An example is the immersed boundary method [30] where the
boundary shape can be represented by a balance of fluid forces acting on the boundary.

3 Relation between DFS and LBE

The mathematical framework and the concomitant physical meaning of the discrete flux
scheme proposed as an alternative to solving the NS equations have been presented.
The next step is to establish its relation to the lattice Boltzmann equation (LBE) de-
rived based on the gas-kinetic approach. This can be accomplished by presenting the
following cases separately and elaborating on the relation between the DFS approach
and that of the LBE, and the numerical methods used to solve the specific cases. These
are: Case A-compressible flow with an ideal gas law; Case B-incompressible isother-
mal and non-isothermal flow; and Case C-stratified flow. In the following, it is shown
that the present two-distribution-function DFS formulation can be reduced to a single-
distribution-function formulation of the conventional LBE for gas flows (Case A). If the
flow is incompressible (whether isothermal or non-isothermal with decoupled energy
equation), there is no need to specify a state equation in the simulation; however, con-
ventional LBE is applicable provided a method is available for the determination of the
pressure field. It should be noted that the same form of equations is solved by the conven-
tional LBE and DFS but different numerical approaches are used to achieve incompress-
ibility. For Case C where the flow is subject to temperature and salinity stratification,
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Energy equation 
decoupled

Case C 
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Pressure can be 
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Figure 2: Illustration chart for the three cases.

conventional LBE, which inherently assumes an ideal gas law, is not applicable because
the fluid is a liquid; however, the present DFS is still valid because there is no restric-
tion on the property of the fluid considered. The relation between the general DFS, the
conventional LBE and these three cases is illustrated in Fig. 2.

Once the mathematical framework for the DFS and its equivalency to the BGK-type
modeled LBE has been established, the finite difference scheme of [5, 11, 13], which con-
sists of a streaming and a diffusive step [29] is again used to numerically solve the f̃α

and g̃α lattice equations. For incompressible flows, the iterative scheme of [25] is adopted
so that the constant ρ assumption can be satisfied. This iterative scheme is based on the
pressure-correction method proposed in [31]. For ease of reference, the present finite dif-
ference numerical scheme is designated FDLBM/2 to indicate that the method solves two

distribution functions, f̃α and g̃α, and to differentiate it from the FDLBM used in [5,11,13],

which solves the lattice equations governing the transport of the distribution function f̃α

only.

3.1 Case A — Compressible flow with ideal gas law

In this case, p can be explicitly expressed as a function of ρ and e (or T) through an
equation of state, or by invoking a compressibility relation. The case with an ideal gas
law is chosen as an illustrative example. As explained in the Introduction, the mass,
momentum and energy equations are coupled in a compressible flow. If an equation of
state is specified, solving Eqs. (2.5) and (2.12) simultaneously is equivalent to solving
the full set of NS equation. However, the current case does not include a complicated
thermodynamics equation of state; such as the case where p, ρ and T are related by a
differential equation with temporal derivative, or p is defined implicitly by other state
variables. This point is further discussed in Case C.

It should be noted that et is the sum of e and the flow kinetic energy ρ|u|2/2. Under
the present formulation, the kinetic energy can be expressed in terms of fα. This suggests
that gα can be related to fα if a relation between p, ρ and e is available. In other words,
a way to simplify the two-distribution-function DFS approach to a single-distribution-
function formulation of the conventional LBE could be found, and this means that only
one distribution function is sufficient to represent particle dynamics as suggested in ki-
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netic theory of gases. In order to establish this connection, according to [11,13], Eq. (2.7c)
is modified to read

∑
α

f
eq
α (ξα)i(ξα)j =ρuiuj+pδij−τij+P′

ij, (3.1)

such that

∂P′
ij

∂xj
=0, (3.2)

and P′
ij is a dimensionless second-order tensor. This condition is necessary if the cor-

rect momentum equation were to be recovered [11, 13]. With the introduction of P′
ij in

Eq. (3.1), the problem of finding a relation between gα and fα is reduced to determining
the behavior of P′

ij that permits such a relation to exist. From Eq. (3.1), it can be shown

that

∑
α

1

2
f

eq
α |ξα|2 =

1

2
ρ|u|2+

D

2
p− 1

2 ∑
i

τii+
1

2 ∑
i

P′
ii, (3.3)

where D is the dimension of the flow problem. For an ideal gas, p can be expressed in
terms of ρ and e as p = ρe(γ−1). Using Eqs. (2.10), (2.13a), and (2.13b), it can be shown
that

∑
α

g
eq
α =∑

α

gα =ρe+
1

2
ρ|u|2

=
1

2 ∑ f
eq
α |ξα|2−ρe

[ D(γ−1)

2
−1

]
+

1

2 ∑
i

τii−
1

2 ∑
i

P′
ii. (3.4)

Thus, gα and g
eq
α can be written as

gα =
1

2
fα|ξα|2 and g

eq
α =

1

2
f

eq
α |ξα|2, (3.5)

if ∑i P
′
ii satisfies the following condition,

∑
i

P′
ii =−ρe[D(γ−1)−2]+∑

i

τii. (3.6)

An expression for p can now be deduced from Eqs. (3.4), (3.5), and (3.6); the result is

p=(γ−1)
[
∑
α

1

2
fα|ξα|2−

1

2
ρ|u|2

]
. (3.7)

Consequently, for an ideal gas, there is no need to consider a second particle distribu-
tion function; only one is needed to establish the equivalency of the LBE with the NS
equations.
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Besides the relations given in Eqs. (3.5), if the result given in [11,13] is to be recovered,
Eq. (3.4) has to be re-written as:

D(γ−1)

2 ∑
α

g
eq
α =

D(γ−1)

2 ∑
α

gα =
D(γ−1)

2

[
ρe+

1

2
ρ|u|2

]

=
1

2 ∑ f
eq
α |ξα|2+

1

2
ρ|u|2

[ D(γ−1)

2
−1

]
+

1

2 ∑
i

τii−
1

2 ∑
i

P′
ii. (3.8)

The relations between gα and g
eq
α , and fα are then given by

gα =
1

D(γ−1)
fα|ξα|2 and g

eq
α =

1

D(γ−1)
f

eq
α |ξα |2, (3.9)

provided P′
ii satisfies the condition

∑
i

P′
ii =ρ|u|2

[ D(γ−1)

2
−1

]
+∑

i

τii. (3.10)

Therefore, using Eqs. (3.9) and (3.10), Eq. (3.8) can be solved to yield an expression for p,
i.e.,

p=∑
α

1

D
fα|ξα|2−

(γ−1)

2
ρ|u|2. (3.11)

However, in both cases, a more general expression for p can be deduced as

p=∑
α

1

D
fα|ξα|2−

1

2
ρ|u|2+

1

D ∑
i

τii−
1

D ∑
i

P′
ii. (3.12)

This analysis provides a meaning for P′
ij which has not been explained fully in [11, 13]. It

has to be introduced into Eq. (2.7c) so that a condition can be established for the recovery
of the NS equations from one single particle distribution function. The two different
approaches give rise to two slightly different relations between gα and fα. The exact
choice is not important because the difference is only in the coefficient qualifying the
relation between gα and fα.

Linking gα to fα and incorporating the constraints of g
eq
α into f

eq
α , it can be easily seen

that solving Eq. (2.5) is sufficient to demonstrate equivalency with the NS equations;
Eq. (2.12) is no longer required. As a result, only the transport of one distribution function
fα needs to be solved. The price is the solution of an additional Eq. (3.2) for P′

ij. The

meaning of ε in Eq. (2.5) can then be interpreted as Kn and the expansion of fα in Eq. (2.6)
is in terms of Kn, much like the Chapman-Enskog expansion in LBM. It is reminded that
gα can be expressed in terms of fα only if p can be expressed explicitly as a function of
ρ and e. The present approach, without linking gα with fα, is more convenient because
it does not require the exact specification of an equation of state for the fluid. It does,



1268 S. C. Fu, R. M. C. So and W. W. F. Leung / Commun. Comput. Phys., 9 (2011), pp. 1257-1283

however, require the solution of two BGK-type equations for the distribution functions
fα and gα.

Finally, it should be pointed out that the choice of Eqs. (3.9) and (3.10) is exactly equiv-
alent to a previous FDLBM formulation for compressible viscous flow given in [11, 13].
The previous FDLBM has been applied to shock capturing problems as well as to simu-
late shock structures, and to resolve acoustic scattering by a vortex and by an isolated heat
source [10–13]. Good agreement with direct numerical simulation results and analytical
solutions is obtained. In the previous treatment [11,13], P′

ij is introduced in Eqs. (3.1) and

(3.2) to provide flexibility for an equation of state for diatomic gas; otherwise, only the
flow of three-dimensional (3-D) Newtonian monatomic gas is applicable (because in such
a case, ∑τii =0, D=3, γ=5/3, and P′

ij =0 will always be a solution).

Case B – Incompressible isothermal and non-isothermal flow

Incompressible flow can be specified by Dρ/Dt = 0. As a result, the mass conservation
equation, Eq. (2.9a), is reduced to ∇·u = 0, which is equivalent to saying that volume
is preserved. Therefore, constant density is a sufficient condition for the flow to be in-
compressible and this is the case considered here. For the isothermal case, there is no
need to solve the energy equation because the temperature T is also a constant. Only
the mass and momentum equations need be solved. For the non-isothermal case, as long
as the energy equation is decoupled from the mass and momentum equations, once the
velocity and pressure fields are known, the energy (or the gα ) equation can be solved
separately. In the following discussion, emphasis is placed on the solution of fα for an
incompressible flow where Dρ/Dt=0 is valid in the whole flow field.

When ρ is a constant, it becomes a parameter rather than a solution of the NS equa-
tions. The pressure p is, instead, treated as a dependent variable and is a part of the
solution of the NS equations; it cannot be explicitly expressed as a function of other pa-
rameters and variables. Consequently, an expression for p has to be found from fα. By
hint of Eq. (3.12), an expression for p is given by

p=∑
α

1

D
fα|ξα|2−

1

D
ρ|u|2+

1

D ∑
i

τii, (3.13)

and the average or mechanical pressure is then defined as

p= p− 1

D ∑
i

τii =∑
α

1

D
fα|ξα|2−

1

D
ρ|u|2. (3.14)

The right hand side (RHS) of Eq. (3.14) shows that, in this definition, the mechanical
pressure is the difference between the second moment of fα and the kinetic energy. For
incompressible flow, solving Eq. (2.5) with the help of Eqs. (2.3b) and (3.13) may not
necessarily satisfy Eq. (2.3a). Therefore, it is necessary to develop an iterative numerical
method to ensure the fulfillment of Eq. (2.3a) while these other equations are being solved
simultaneously.
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In order to accomplish this objective, a slightly modified form of Eq. (2.5) is solved,
i.e.,

∂ f ′α
∂t′

+
∂ fα

∂t
+ξα ·∇ fα =− fα− f

eq
α

ετ
. (3.15)

The time t is now treated as a pseudo time for iteration until Eqs. (2.3a), (2.3b) and (3.13)
are all satisfied, while t′ is the physical time, and f ′α is defined such that

∑
α

f ′α =ρ, (3.16a)

∑
α

f ′αξα =ρu, (3.16b)

∑
α

1

D
f ′α|ξα|2 =

c2ρ

D
. (3.16c)

In addition to Eqs. (2.7a)-(2.7c), f
eq
α also has to satisfy the constraint,

∑
α

1

D
f

eq
α |ξα|2ξα =

c2ρu

D
. (3.17)

Multiplying Eq. (3.15) with respect to {1,ξα,|ξα|2/D}T, taking summation over α, and
using Eqs. (2.3b) and (3.13), the following equations are obtained,

∂ρ

∂t′
+

∂

∂t

(
∑
α

fα

)
+∑

j

∂ρuj

∂xj
=−1

ε

(
∑
α

fα−ρ
)

, (3.18a)

∂(ρui)

∂t′
+

∂(ρui)

∂t
+∑

j

∂

∂xj
(ρuiuj+pδij+τij)=O(ε), (3.18b)

∂

∂t

[
p− 1

D ∑
j

τjj+
1

D
ρ|u|2

]
+

c2

D

( ∂ρ

∂t′
+∑

j

∂ρuj

∂xj

)
=O(ε). (3.18c)

After steady state has been reached with respect to the pseudo time, Eqs. (3.18b) and
(3.18c) become the momentum and the mass conservation equation of the NS equations.
Furthermore, due to Eq. (3.18a), Eq. (2.3a) is also satisfied. The first bracketed term in
Eq. (3.18c) is the pseudo time rate of change of the ”mechanical pressure” plus the ”dy-
namic pressure”, which can be denoted as the ”total pressure head”. The second brack-
eted term in Eq. (3.18c) is essentially the LHS of Eq. (2.9a). Since ρ is constant, this term
becomes the divergence of the velocity multiplying by a factor (ρc2/D), which is the ”dy-
namic pressure” or the ”kinetic energy” due to the chosen speed c. The divergence of the
velocity can be viewed as ”the time rate of change of the volume of a moving fluid ele-
ment per volume”; therefore, Eq. (3.18c) could be viewed as a pressure-correction formula
to correct the ”total pressure head” by balancing it with the time rate of change of the
volume, until the change is negligibly small, which in fact, is the definition of an incom-
pressible flow. The above technique is similar to the pressure-correction method of [31].
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For non-isothermal flows, the energy equation is decoupled from the mass and momen-
tum equations; therefore, it can be solved separately. The velocity and pressure fields are
obtained by solving the fα equation, while gα can be deduced by solving Eqs. (2.10)-(2.15)
and hence e (or T). This pressure-correction technique for incompressible flow has been
previously presented [25] and used to simulate incompressible flows in 2-D channels and
micro-channels, in flow over a cavity, and in sudden expansion flow [5]. Good agreement
with analytical and known numerical results is obtained.

Case C — Stratified flow

A geophysical fluid dynamics problem, such as a double diffusive flow in the ocean, is
chosen as an example to illustrate the extension of the DFS to incompressible flow with
energy equation coupling. For a stratified flow with Boussinesq approximation, the mean
density is considered constant as far as its mass is concerned; however, density variation
is retained in the buoyancy term of the governing equations. Consequently, ρ can be
written as ρ = ρ0+ρ′, where ρ0 is a constant reference density, and ρ′≪ ρ0 is the density
disturbance. The governing equations are given by

∂uj

∂xj
=0, (3.19a)

ρ0

(∂ui

∂t
+

∂uiuj

∂xj

)
=− ∂p

∂xi
+µ

∂2ui

∂xj∂uj
−ρ′gδi3−ρ0(2ωi×ui), (3.19b)

where g is the gravitational acceleration, and 2ωi×ui is the Coriolis acceleration due
to earth’s rotation, whose angular velocity is given by ωi. The density of seawater in the
ocean is affected not only by temperature, but also by salinity S. As a first approximation,
a linear equation between ρ, T and S can be adopted [32]

ρ=ρ0[1−β1(T−T0)+β2(S−S0)], (3.20)

where β1 is the coefficient of thermal expansion, β2 is the coefficient of saline contraction,
and ρ0, T0, S0 are reference values. The temperature and the salinity are governed by the
following transport equations, respectively,

∂T

∂t
+u·∇T = kT∇2T, (3.21a)

∂S

∂t
+u·∇S= kS∇2T. (3.21b)

With the help of ∇·u = 0, they can be written in conservation form; therefore, they can
be solved using the method developed for gα as detailed in Eqs. (2.10)-(2.15). Density
disturbance can be assessed using Eqs. (3.20), (3.21a), and (3.21b) or simply by solving

∂ρ′

∂t
+u·∇ρ′ = kT∇2ρ′, (3.22)
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which can again be treated using the method developed for gα.

This case is different from Case B because the salinity equation and the momentum
equation is coupled through ρ′; therefore, the method of Case B for incompressible flow
alone is not adequate. In order to solve this problem, Eq. (3.15) needs to be modified by
the inclusion of a body force term to give,

∂ f ′α
∂t′

+
∂ fα

∂t
+ξα ·∇ fα+Fα =− fα− f

eq
α

ετ
, (3.23)

where Fα is added to account for the presence of the gravitational and Coriolis force term
in Eq. (3.19b). It can be seen that Fα contains ρ′ and this can be determined by solving
Eqs. (3.20), (3.21a), and (3.21b) or by solving Eq. (3.22) directly. The distribution functions
f ′α and f

eq
α are as defined in Case B, except that ρ is now replaced by ρ0. For every pseudo

time step ∆t, solving Eq. (3.23) gives an update to the velocity field. Using this updated
velocity, a corrected ρ′ can be determined from Eqs. (3.20) and (3.21) or from Eq. (3.22),
which then provides an updated Fα. The iteration process continues until a steady state
with respect to the pseudo time has been reached. Consequently, the divergence of the
velocity field (∇·u=0) is satisfied and so is Eq. (3.18c).

In principle, the same algorithm can be applied to flows without invoking the Boussi-
nesq approximation or with a more complicated state equation. For example, instead of
Eq. (3.20), a state equation [32] that is commonly adopted for oceanographic flow is

ρ(T,S,p)=ρ(T,S,0)=
[

1− p

K(T,S,p)

]−1
, (3.24)

where ρ(T,S,0) and K(T,S,p) are complicated functions of T, S and p, and are given by

ρ(T,S,0)=999.842594+6.793952×10−2 T−9.095290×10−3T2+···
−1.6546×10−6T2S1.5+4.83140×10−4S2, (3.25a)

K(T,S,p)=19652.21+148.4206T−2.327105T2 +···
−2.0816×10−3Tp2S+9.1697×10−10T2 p2S. (3.25b)

Although a state equation relating ρ, T, p, and S is now available, the pressure still can-
not be defined explicitly. Therefore, the method of Case A is not applicable. Since the
salinity equation is coupled to the momentum equation, the method of Case B is also not
applicable. Thus, the problem is different from the previously treated stratified flow be-
cause the density can no longer be approximated by a constant, and the conservation of
mass needs to be satisfied rather than the conservation of volume. The same algorithm
can again be used because the conservation of mass can be assured by Eq. (3.18c) after
a steady state has been reached in the pseudo time. In every pseudo time step, ρ in f

eq
α

and f ′α is updated by Eq. (3.24)-(3.25b). An iteration process similar to that previously
employed is adopted; thus ensuring mass conservation and the satisfaction of Eq. (3.18c).
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4 Velocity lattice model and numerical scheme for FDLBM/2

A velocity lattice method is used to solve the fα and gα equations, i.e., Eqs. (2.5) and
(2.12), respectively, in the present FDLBM/2 for incompressible, non-isothermal flows.
The method used is the same for the fα and gα equations; it is only necessary to give
a brief outline on the solution of these equations. In the present investigation, a Carte-
sian coordinate system with x- and y-axis to represent the stream and normal direction
is assumed for two-dimensional (2-D) flows. Following the work of [5, 10–13], a two-
dimensional, nine lattice (D2Q9) velocity lattice model is assumed for fα and gα. Exten-
sion to 3-D flows is straightforward and is given in detail in [28]. In line with [5,10–13], a
second order polynomial in ξα is assumed for f

eq
α and a first order one for gα, i.e.,

f
eq
α = Aα+(ξα)x Axα+(ξα)y Ayα+(ξα)

2
xBxxα+(ξα)

2
yByyα+(ξα)x(ξα)yBxyα, (4.1a)

g
eq
α =Cα+(ξα)xCxα+(ξα)yCyα, (4.1b)

where the coefficients, Aα, Axα, Ayα, Bxxα, Cα, etc, need to be determined. These coef-
ficients are determined by invoking Eqs. (2.7a)-(2.7c), and (2.13a), (2.13b), and the con-
ditions that higher moments of f

neq
α and g

neq
α vanish. Their values for a D2Q9 model are

determined by assuming the lattice distribution and its magnitude to be given by

ξ0 =0, α=0, (4.2a)

ξα =σ
{

cos
[π(α−1)

4

]
, sin

[π(α−1)

4

]}
, (4.2b)

ξα =
√

2σ
{

cos
[π(α−1)

4

]
, sin

[π(α−1)

4

]}
, (4.2c)

where σ is a parameter whose value is dependent on the problem and the numerical
method [28].

If the coefficients having the same ”energy shell” of the lattice velocities are assumed
identical, the number of unknowns resulting from the coefficients, Aα, Axα, Bxxα, Cα, etc,
exceed the available constraints for fα and gα in a D2Q9 lattice model. Six constraints are
available for the determination of the coefficients for fα, and three are available for gα.
Consequently, assumptions are necessary in order to facilitate the determination of these
coefficients. As a first attempt, seven and four coefficients for fα and gα, respectively, are
assumed zero. The results are:

A0 =ρ− 2p

σ2
− ρ|u|2

σ2
+

τxx+τyy

σ2
, A1 = A2 =0, (4.3a)

Ax1 =
ρu

2σ2
, Ax2 =0, (4.3b)

Ay1 =
ρν

2σ2
, Ay2 =0, (4.3c)
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Bxx1 =
1

2σ4
(p+ρu2−τxx), Bxx2 =0, (4.3d)

Byy1 =
1

2σ4
(p+ρν2−τyy), Byy2 =0, (4.3e)

Bxy2 =
1

4σ4
(ρuν−τxy), Bxy1 =0, (4.3f)

C0 =ρet, C1 =C2 =0, (4.3g)

Cx1 =
1

2σ2

[
u(p+ρet)+uτxx+ντxy+qx

]
, Cx2 =0, (4.3h)

Cy1 =
1

2σ2

[
ν(p+ρet)+uτxy+ντyy+qy

]
, Cy2 =0, (4.3i)

where u and ν are the velocity components along the x- and y-direction, respectively.
The value of σ is estimated depending on the numerical method used to solve the lattice
equations. The details for different flow types are given in [5, 10–13, 28]. Thus deter-
mined, the coefficients are not unique; other assumptions could be made for the zero
coefficients. The results given in Eqs. (4.3a)-(4.3i) might change as a result. However,
the studies of [5, 10–13, 28] have shown that this assumption seems to work best for the
different incompressible, isothermal and non-isothermal, and compressible flow investi-
gations carried out so far.

Different numerical schemes can be used to solve Eqs. (2.5) and (2.12) with a ve-
locity lattice model given by Eqs. (4.1a)-(4.3i). The order of accuracy of the numerical
schemes used depends to a great extent on the physical problem and on whether the
flow is compressible or incompressible. Even for compressible flows, the order of the
numerical scheme also differs. For example, a sixth-order scheme is necessary if the
acoustics disturbances were to be resolved correctly, such as in the acoustics propagation
and acoustics-scattering problems treated in [9–11]. On the other hand, for shock cap-
turing [12] problems, a shock capturing scheme such as the total variation diminishing
scheme is required. Otherwise, the numerical simulation will be too cumbersome and
could even lead to numerical instability. For shock structure problems, usually a second-
order accurate numerical scheme is sufficient; however, in order to obtain better accuracy,
a 6th-order Lele scheme [13] is used in the present FDLBM/2 simulation. In the case of
incompressible flow, irrespective whether the energy equation is coupled with the mass
and momentum equation, a pressure-correction method [25] is required in order to en-
sure constant-density behavior in the flow [5]. In spite of these differences, there is one
commonality among these numerical schemes; i.e., they all used a splitting method, finite
difference scheme to solve Eqs. (2.5) and (2.12). The splitting method [29] is a common
tool for time dependent convective-diffusive type differential equations. The governing
equation is split into a convective part and a diffusive part; thus, its solution is divided
into two steps. The first step solves the convective part with specified initial conditions
for the dependent variable, while the second step solves the diffusive part using the so-
lution of the convective part as initial conditions for the diffusive equation. Details of
the splitting method, numerical scheme for compressible flows are given in [11–13]; for
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incompressible flows they are provided in [5, 25].
For the sake of completeness, a brief description of the splitting technique for incom-

pressible, non-isothermal flows is given below to serve as reference for interested readers:

i. Initial macroscopic quantities are used to calculate the initial f
eq
α and g

eq
α , which are then

used as initial values to start the calculation.

ii. With fα and gα at time t known, intermediate values f I
α and gI

α are calculated from the
convective equations,

∂ fα

∂t
+ξα ·∇ fα =0, (4.4a)

∂gα

∂t
+ξα ·∇gα =0, (4.4b)

which can be solved by any time marching finite difference scheme.

iii. Using this f I
α and gI

α, the corresponding intermediate macroscopic quantities (uI ,νI ,pI ,etI)
for all interior grid points are calculated as

uI ≡
1

ρ

8

∑
α=0

f I
α(ξα)x, νI ≡

1

ρ

8

∑
α=0

f I
α(ξα)y, (4.5a)

pI ≡
8

∑
α=0

f I
α

1

2

(
(ξα)

2
x+(ξα)

2
y

)
− 1

2
ρ|uI |2+

(τxx)I +(τyy)I

2
, (4.5b)

ρI =∑
α

f I
α , (4.5c)

etI =
1

ρ ∑
α

gI
α. (4.5d)

Either Eq. (4.5b) or (4.5c) is employed, which is case dependent, to find the pressure
or the density, while the other quantity is found by the equation of state. For example,
for incompressible flow (Case B), Eq. (4.5b) is employed to find the pressure. Then
the density is assigned as a constant parameter (constant density can be treated as the
equation state of an incompressible flow), and Eq. (4.5c) would be satisfied by iteration.

iv. The boundary conditions for the macroscopic level are then set as in any finite difference
methods.

v. Using the macroscopic quantities thus determined, corresponding f
I,eq
α and g

I,eq
α values

are obtained.

vi. Using f I
α and gI

α as the initial condition, the diffusion equations

∂ fα

∂t
=− 1

τKn
( fα− f

eq
α ), (4.6a)

∂gα

∂t
=− 1

τKn
(gα−g

eq
α ), (4.6b)



S. C. Fu, R. M. C. So and W. W. F. Leung / Commun. Comput. Phys., 9 (2011), pp. 1257-1283 1275

are solved. The scheme makes use of the advantage of an arbitrary relaxation time. By
setting τ =1 and Kn=∆t, it can be shown that fα and gα at time (t+∆t) are exactly

the same as f
I,eq
α and g

I,eq
α (see [25] for details); hence, (u,ν,p,et)|t+∆t =(uI ,νI ,pI ,etI).

vii. Time marching proceeds by repeating procedures (ii) to (vi).

Similarly, for compressible and other types of flows, the procedure follows closely that
given above (for further details, refer to [11–13, 28]).

5 Numerical simulation examples

The FDLBM of [11, 13] has been used to simulate aeroacoustic propagation and acoustic
scattering problems and good agreement with other known data was obtained [10, 11].
Further, the approach has been used to simulate shock structure of monatomic and di-
atomic gases at M∼=1.5 (see [13]). In [13], shock structure problems were chosen because
the objective was to demonstrate that, apart from the NS equations, the FDLBM can be
extended to treat a more complicated flow model, e.g., models with nonlinear transport
coefficients, and with an extended thermodynamics model, such as the Brenner-Navier-
Stokes model [33–35]. On the other hand, the FDLBM/2 has been used to simulate a
series of incompressible, non-isothermal gas and liquid flows in two and three dimen-
sions, and good agreement with analytical results and other known numerical simula-
tions was obtained [28]. Since the present DFS formulation of the FDLBM/2 has been
demonstrated to be equivalent to the FDLBM with an equation of state stipulated, there
is no doubt that the FDLBM/2 simulations of the aeroacoustic and non-isothermal prob-
lems will be identical to those derived from the FDLBM [10–13]. Consequently, it is not
necessary to repeat the same simulations again using FDLBM/2. In order to verify the
soundness of the FDLBM/2 for shock structure simulations and thus demonstrating that
the method can also be extended to simulate a more complicated flow model, such as the
Brenner-Navier-Stokes model [33–35], the FDLBM/2 is used to simulate the measured
Argon and Nitrogen shock structures reported in [36] and the results compared with the
measurements and those deduced from the FDLBM reported in [13].

In order to demonstrate the viability and validity of the FDLBM/2 for oceanographic
flow, the FDLBM/2 is used to simulate a double diffusive phenomenon in a rectangle
reported in [37, 38]. This calculation is chosen to further demonstrate the validity and
extent of the FDLBM/2 for liquid flow simulation. If possible, the calculations are com-
pared with other known numerical results [37, 38]. Therefore, in the current work, only
two numerical simulations are reported; one on shock structure and another on double
diffusive phenomenon in a rectangle.

5.1 Shock structure simulation using FDLBM/2

Since the continuum NS equations are not appropriate for flows with a finite Kn (of the
order of ∼= 0.2) such as found in shock structure at relatively high M, a correction to the
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NS equations has been proposed by Brenner [33, 34]. This correction has been tested
in [35]. The calculated shock structure profiles obtained by numerically solving the Bren-
ner corrected NS equations were in good agreement with experimental data [36] for Ar-
gon gas but not for Nitrogen gas. The FDLBM using a single distribution function has
been revised to recover the Brenner corrected NS equations [13] and the simulated re-
sults were compared with the measurements of [36] and the finite difference solution of
the NS equations with the Brenner correction [13]. The results thus obtained showed that
the FDLBM simulations are essentially identical to those deduced directly from the NS
equations with the Brenner correction. In order to further demonstrate the equivalency
between the FDLBM and the FDLBM/2 approaches, the same shock structure problems
are again solved using the FDLBM/2 and the results are compared with those reported
in [13]. For the sake of completeness, the Brenner corrected NS equations are given be-
low without showing how they were obtained; details are given in [35]. The Brenner
corrected NS equations are:

∂ρ

∂t
+

∂

∂xj
(ρuj)=0, (5.1a)

∂(ρui)

∂t
+

∂

∂xj
(pδij+ρuiuj−Tij)=0, (5.1b)

∂

∂t

(
ρe+

1

2
ρ|u|2

)
+

∂

∂xj

[
uj

(
p+ρe+

1

2
ρ|u|2

)
−ukTjk−

γM

PrRe

∂e

∂xj
− M

PrbRe

µp

ρ2

∂ρ

∂xj

]
=0, (5.1c)

where the stress tensor has been modified by adding an additional term and the resulting
expression is given by

Tij =
µM

Re

( ∂uj

∂xi
+

∂ui

∂xj

)
+

λM

Re

(∂uk

∂xk

)
δij+Bij, (5.2a)

Bij =
〈 2µM2

Re2Prb

∂

∂xi

( µ

ρ2

∂ρ

∂xj

)〉
. (5.2b)

The angle bracket is defined as

< A>= A′′− 1

3
tr(A′′)I, A′′=

1

2
(A+AT), (5.3)

and λ and Prb are the second viscosity coefficient and a second Prandtl number intro-
duced by Brenner. Finally, the viscosity coefficient µ is modeled by a power law with an
exponent s.

The FDLBM/2 results and their comparisons with measurements [36] and the FDLBM
simulations [13] are shown in Figs. 3 and 4. The numerical discretization used to solve
the FDLBM equations [13] is also used here to solve the FDLBM/2 equations. For conve-
nience, details of the numerical scheme are highlighted in the figure captions. The Argon
shock structure profiles are plotted in Fig. 3; all numerical simulations, finite difference
solution of the Brenner corrected NS equations, the FDLBM and FDLBM/2 calculations,
are essentially identical, and are in very good agreement with the measurements of [36].
The Nitrogen shock structure results are shown in Fig. 4. As expected, the three numer-
ical simulations are essentially identical; however, they are not in agreement with the
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Figure 3: Shock structure profile for Argon gas at M =1.55 with Pr =2/3, Prb =1, γ =5/3, λ=−2/3µ, and
s = 0.816: ”—” measurements [36]; ”x” numerical result from solving Brenner corrected NS equations using

finite difference method (4th order Runge-Kutta for temporal and 6th order Lele compact scheme for spatial

with ∆x=0.2, and ∆t=0.001); ”•” FDLBM (2nd order Runge-Kutta for temporal and 6th order Lele compact
scheme for spatial with ∆x=0.2, and ∆t=0.01); ”◦” FDLBM/2 (same numerical discretization scheme as the
FDLBM case).
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Figure 4: Shock structure profile for Nitrogen gas at M=1.53 with Pr=0.71, Prb =1, γ=1.4, λ=−2/3µ, and
s = 0.756: ”—” measurements [36]; ”x” numerical result from solving Brenner corrected NS equations using

finite difference method (4th order Runge-Kutta for temporal and 6th order Lele compact scheme for spatial

with ∆x=0.2, and ∆t=0.001); ”•” FDLBM (2nd order Runge-Kutta for temporal and 6th order Lele compact
scheme for spatial with ∆x =0.2 and ∆t=0.01); ”◦” FDLBM/2 (same numerical discretization scheme as the
FDLBM case).

measurements of [36]. These comparisons show that the FDLBM/2 and FDLBM results
are identical, and are as good as the results of the Brenner corrected NS equations. The
results further show that the NS equations, with or without the Brenner correction, are
not suitable for flows with finite Kn such as found in shock structures of diatomic gas
at relatively high M (in this case M = 1.5, and Kn≈ 0.2). Therefore, the FDLBM and the
FDLBM/2, which recover the Brenner corrected NS equations, also cannot be used to
simulate flows with finite Kn.
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5.2 Double diffusive phenomenon in a rectangle

It should be pointed out that the present formulation is valid for laminar flows only. As
such the numerical analysis of double diffusion in a rectangle [37, 38] is limited to situ-
ations where the Rayleigh number cannot be too large; otherwise, the flow will become
turbulent and the numerical calculation will become unstable. The main difficulty of
this kind of simulation is that excessively large computational resources are required to
resolve the thin solutal boundary layer. A highly stretched non-uniform grid was used
in [37]. As a preliminary attempt to demonstrate the validity and extent of FDLBM/2,
a uniform gird is chosen for the present study. In order to obtain a stable simulation,
the double diffusive phenomenon in a rectangle is carried out using the same geometric
and physical specifications of [37], except a smaller Rayleigh number is chosen instead.
Therefore, a quantitative comparison of the present calculations with the numerical re-
sults of [37] cannot be made; only a qualitative comparison can be attempted. This does
not represent a drawback because, after all, one of the current objectives is to evaluate
the validity and extent of the DFS formulation as an alternative to the NS equations for
double diffusive phenomenon.

Double-diffusive phenomena usually refer to a class of fluid motions which are sub-
ject to the simultaneous presence of two diffusive components with different molecular
diffusivities. Much of the research on this topic is devoted to the oceanic flow process.
The governing equations are the two-dimensional NS equations with Boussinesq approx-
imations. The normalization and non-dimensional parameters employed are

x,y=
x̃,ỹ

l0
, u,ν=

ũ,ν̃√
RTκ/l0

, t=
t̃

l0/(
√

RTκ/l0)
, (5.4a)

p=
p̃

ρ0(
√

RTκ/l0)2
, T =

T̃−T0

∆T
, S=

S̃−S0

∆S
, (5.4b)

RT =
gβT∆Tl3

0

νκ
, RS =

gβS∆Sl3
0

νκ
, Rρ =

RS

RT
, Pr=

ν

κ
, Le=

κ

κS
, (5.4c)

where T and S are the temperature and salinity of the liquid, respectively, and ∆S and ∆T
are their respective maximum differences across the cavity width. Other physical prop-
erties are: g, acceleration due to gravity; ν, kinematic viscosity; κ, thermal diffusivity; κS,
diffusivity of the concentration; βT and βS, the coefficients of volume expansion of ther-
mal and concentration differences, respectively. In the above definitions, RT, RS, Pr and
Le are the thermal Rayleigh number, the solutal Rayleigh number, the Prandtl number
and the Lewis number, respectively. The normalized governing equations are given by

∂u

∂x
+

∂ν

∂y
=0, (5.5a)

∂u

∂t
+u

∂u

∂x
+ν

∂u

∂y
=−∂p

∂x
+

Pr√
RT

∇2u, (5.5b)

∂ν

∂t
+u

∂ν

∂x
+ν

∂ν

∂y
=−∂p

∂y
+

Pr√
RT

∇2ν+Pr(T−RρS), (5.5c)
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∂T

∂t
+u

∂T

∂x
+ν

∂T

∂y
=

1√
RT

∇2T, (5.5d)

∂S

∂t
+u

∂S

∂x
+ν

∂S

∂y
=

1

Le
√

RT
∇2S. (5.5e)

In the present calculation, the dimensionless numbers are set as RS=6×104, RT=12×104,
and Pr=7; hence Rρ =0.5. The aspect ratio Ar, which is defined as the ratio of the height
to the width of the rectangle, is Ar = 2. Two cases with Lewis number given by Le = 10,
and 100 are simulated. The boundary conditions for the calculations are

u=ν=0, on x=0,1 and y=0,Ar, (5.6a)

T =S=−0.5, on x=0, (5.6b)

T =S=0.5, on x=1, (5.6c)

∂T

∂y
=

∂S

∂y
=0, on y=0,Ar. (5.6d)

The present FDLBM/2 is formulated to recover the set of Eqs. (5.5a)-(5.5e). A steady state
solution calculated by the present FDLBM/2 is plotted in Figs. 5 and 6. As Le increases,
a thinner solutal boundary layer is observed in the contour plots (cf. Figs. 5(b) and 6(b)).

The numerical results are compared using a mean Nusselt number Nu and a mean
Sherwood number Sh which are defined as

Nu=
1

Ar

∫ Ar

0

∂T

∂x

∣∣∣
x=0

dy, Sh=
1

Ar

∫ Ar

0

∂S

∂x

∣∣∣
x=0

dy. (5.7)

The Nusselt and Sherwood numbers as calculated by the present FDLBM/2 scheme are
listed in Table 1. For larger Le, which means that thermal diffusivity dominates over
the diffusivity of concentration, both numbers increase and the increase of Sh is more
significant. Also, it is shown in Table 1 that both Nu and Sh are slightly higher for the
case with pure thermal convection (Rρ =0) than for the case where Rρ =0.5.

Table 1: Mean Nusselt and Sherwood number for different Le and Rρ at RS =6×104.

Ñu S̃h
Rρ Le Rρ Le

10 100 10 100
0 4.7285 4.7285 0 12.42 25.33

0.5 4.5082 4.6591 0.5 10.33 23.27

For the case of pure thermal convection (Rρ =0), Bejan [38] proposed a theoretically-

derived expression for Nu for cavities with high Ar. The expression proposed is

Nu=0.364
( RT

Ar

) 1
4
, (5.8)
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Figure 5: Contour plot of a) temperature, b) salinity, and c) vertical profile of horizontal velocity at x = 0.5

for Le = 10, RS = 6×104, RT = 12×104, (i.e., Rρ = 0.5), Pr = 7, and Ar = 2. The numerical parameters are:
∆x=0.01, ∆t=0.0001. There are 30 contour lines with values divided uniformly between maximum value (0.5)
and minimum value (-0.5) for each contour plot.

Figure 6: Contour plot of a) temperature, b) salinity, and c) vertical profile of horizontal velocity at x = 0.5

for Le = 100, RS = 6×104, RT = 12×104, (i.e., Rρ = 0.5), Pr = 7, and Ar = 2. The numerical parameters are:
∆x=0.01, ∆t=0.0001. There are 30 contour lines with values divided uniformly between maximum value (0.5)
and minimum value (-0.5) for each contour plot.

which is suitable for the case when R1/7
T Ar→∞. Although the values of R1/7

T Ar for the
present case and those reported in [37] are finite, a comparison with the results of Be-
jan [38] and Lee and Hyun [37] can be attempted for the sake of reference. Table 2 shows
the results of Nu in different cases. As mentioned before, a quantitative comparison of
the FDLBM/2 calculations with the numerical results of [37] cannot be made in this study.
However, a consistent trend of Nu can be observed in Table 2; thus, the validity of the
FDLBM/2 for double diffusive studies is assured. A more detailed calculation will be
carried out for quantitative comparison in a later study.
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Table 2: Comparison of mean Nusselt number with different Rρ and RS.

Numerical Ñu Theoretical Ñu [38] R1/7
T Ar

RS Rρ

6×107 [37] 0 29.10 32.04 28.52
0.5 28.79

6×104 (FDLBM/2) 0 4.73 5.70 10.63
0.5 4.66

6 Conclusions

A discrete flux scheme (DFS) is developed to derive the governing transport equations
for two distribution functions; one for mass and another for the thermal energy. It is
equivalent to solving the BGK-type modeled LBE that can recover the continuum NS
equations fully but is equally valid for gas and liquid flows. For aerodynamic flows, it
can be shown that the DFS approach is similar to the lattice Boltzmann equation (LBE)
with a BGK-type model and a specified equation of state. Thus formulated, the validity
and extent of the DFS have been demonstrated for a variety of aerodynamic and hydrody-
namic flow problems including aeroacoustic propagation and scattering by an obstacle,
shock capturing, thermal thin film flow along an incline, natural convection in a square
and a cubic cavity, and other types of thermal fluid flows. In the present study, two more
numerical simulations are reported; one on shock structure and another on double dif-
fusive phenomenon in a rectangular cavity. These simulations are carried out to further
demonstrate the validity and extent of the FDLBM/2, which is derived from the DFS, for
shock structure simulation, and for double diffusive phenomenon where temperature
and salinity gradients are present.
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