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Abstract. We analyze the Lattice Boltzmann method for the simulation of fluctuating
hydrodynamics by Adhikari et al. [Europhys. Lett., 71 (2005), 473-479] and find that
it shows excellent agreement with theory even for small wavelengths as long as a sta-
tionary system is considered. This is in contrast to other finite difference and older
lattice Boltzmann implementations that show convergence only in the limit of large
wavelengths. In particular cross correlators vanish to less than 0.5%. For larger mean
velocities, however, Galilean invariance violations manifest themselves.
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1 Introduction

Fluctuations are important for many hydrodynamic phenomena, from colloid diffusion
to phase-separation close to the critical point. Particle based methods such as Stochastic
Rotation Dynamics [2], Lattice Gas [3] or Molecular Dynamics simulations [4] naturally
give rise to stochastic noise. In contrast the lattice Boltzmann (LB), or finite difference dis-
cretization of the Navier-Stokes equations require fluctuations that have to be included
manually. The guiding principle for doing this is the theory of the fluctuating Navier-
Stokes equations [5]. Despite the success of applying the Navier-Stokes equations to
very small-scale flows formally the hydrodynamic limit requires large wavelengths. For
fluctuating hydrodynamics the constraint of large wavelengths becomes important and
standard discretization will give results that are not in agreement with statistical physics
for shorter wavelengths. For a detailed analysis of simulating fluctuating hydrodynam-
ics using finite difference methods and some remedies to improve this situation see the
recent manuscript of A. Donev [6]. Similar deficiencies are found for implementations of
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fluctuating Navier-Stokes equations using the Lattice Boltzmann approach introduced by
Ladd [7]. It is, however possible to use a more fundamental approach to include fluctua-
tions in the LB method. Adhikari et al. [1] introduced noise on all nonconserved modes,
not only the hydrodynamic ones, leading to a scheme which shows good agreement with
theory even for large wavelengths. Duenweg et al. rederived this noise implementation
from detailed balance considerations of lattice gases [8]. Both approaches are numeri-
cally identical. In this paper we study the degree of improvement achieved and show
that many of the deficiencies that plague finite difference discretizations of fluctuating
Navier-Stokes equations are absent in this Lattice Boltzmann implementation as long as
we consider a system with vanishing mean velocity. For large mean velocities Galilean
invariance is violated and errors of a similar magnitude to the earlier implementations
are observed.

2 Fluctuating lattice Boltzmann with ghost noise

Following the derivation of Adhikari et al. [1], we start with the Lattice Boltzmann equa-
tion (LBE)

fi(x+vi,t+1)= fi(x,t)+∑
j

Λij

[

f j(x,t)− f 0
j (x,t)

]

+ξi(x,t). (2.1)

Here the fi are the particle densities at position x, time t associated with velocity vi. Λij

is the collision matrix and ξi are the noise terms. We use the standard local equilibrium
distribution given by

f 0
i =ρwi

[

1+
3

c2
u·vi+

9

2c4
(u·vi)

2− 3

2c2
u·u

]

, (2.2)

which is the discretized version of a Maxwell distribution [9, 10]. In equilibrium the fi

will fluctuate around this distribution. The noise terms ξi must be chosen such that,
in the case of isothermal Lattice Boltzmann (LB), the density ρ = ∑i fi and momentum
ρu=∑i fivi are conserved, i.e., ∑i ξi =0 and ∑i ξivi =0. Furthermore a proper fluctuation
dissipation theorem (FDT) corresponding to the collision operator Λij is obeyed. This
implies that the ξi are correlated. We can find a representation in which the noise terms
are uncorrelated by transforming the LBE into moment space. The moments are given by

Ma(x,t)=∑
i

ma
i fi(x,t). (2.3)

So far this is a standard Multi-Relaxation-Time (MRT) representation [11–13]. The back
transform is given by fi(x,t)=∑a na

i Ma(x,t). However, in order to construct a proper FDT
these transforms cannot be orthogonal as in other MRT methods [11,12], so here we have
na

i 6=ma
i . Instead the transforms are chosen such that

∑
i

wim
a
i mb

i =∑
i

ma
i nb

i =δab (2.4)
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with na
i = wim

a
i , while maintaining a diagonal moment space representation of the colli-

sion operator

Λij =−∑
a

∑
b

na
i

1

τa
δabmb

j . (2.5)

Now the moment transformation matrices are orthogonal with respect to the Hermite
norm. Such transforms with weighted norms were proposed before [14–16] in different
contexts. The necessity of the Hermite norm is briefly outlined after Eq. (2.8) below and
allows for a convenient definition of the moment space noise terms ξa as independent
random variables. We can now rewrite the collision term of the Lattice Boltzmann equa-
tion in terms of the moments Ma as

fi(x+vi,t+1)=∑
a

na
i

{

Ma(x,t)− 1

τa

[

Ma(x,t)−Ma,0(x,t)
]

+ξa
}

. (2.6)

Adhikari et al. [1] then obtain the FDT by performing a Fourier transform of the fluctua-
tions from the mean of the moments δMa=Ma−〈Ma〉. They then use the k-independence
of these for an ideal gas to obtain

〈

ξaξc
〉

=
τa+τc−1

τaτc

〈

δMaδMc
〉

. (2.7)

One particular result of the derivation is that the moment fluctuations ξa decouple be-
cause

〈

δMaδMb
〉

=∑
i

∑
j

ma
i mb

j 〈δ fiδ f j〉=∑
i

∑
j

ma
i mb

j f̄iδij =∑
i

ma
i mb

i ρ̄wi = ρ̄δab. (2.8)

Here we used
〈δ fiδ f j〉= f̄iδij, with δ fi = fi− f̄i, (2.9)

where f̄i is the spatially uniform global equilibrium distribution function [17]. Adhikari
also assumed that u≪1, so that f̄i=ρ̄wi. This allows us to use the orthogonality relation of
Eq. (2.4) in the last step of the calculation above. For a different transformation we would
obtain non-diagonal elements in the fluctuation matrix which will then require corre-
lated noise terms which are more cumbersome to implement. For practical applications
it is important to note that the u≪ 1 condition for the noise introduces a non-Galilean
invariant contribution. We comment on this in our validation section. Inserting Eq. (2.8)
into Eq. (2.7) leads to a noise expression of

ξa =
1

τa

√

ρ̄(2τa−1)N, (2.10)

where N is a random variable with zero mean and a variance of one.
Note that the moments Ma are chosen to include the hydrodynamic moments. In the

isothermal case discussed here they are comprised of the conserved quantities ρ and j,
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and the stress modes Π. The remaining degrees of freedom are often called ghost modes
as they do not appear in the isothermal Navier-Stokes equations. However, the key result
of the Adhikari et al. [1] was that they need to be taken into account when including
noise. Thus we add noise on all non conserved quantities, i.e., stress and ghost modes, in
Eq. (2.6) according to Eq. (2.10).

In practice we implement this algorithm by calculating the moments by means of
Eq. (2.3), performing the collision on the moments, adding the noise term and then trans-
forming back into f -space as indicated in Eq. (2.6). The streaming step is then done in
f -space. This algorithm is almost as efficient as the standard LB implementation. The
additional computational cost for calculating the ghost modes and the random numbers
results in a computational overhead of less than 20%.

3 Correlators in a D2Q9 implementation

To evaluate this method we present results for the D2Q9 (two dimensions, 9 base ve-
locity vectors) LB model. The results are similar for other models, in particular we also
tested D1Q3 and D3Q15. As D2Q9 base velocity set, we use {vi}= {(0,0),(1,0),(0,1),
(−1,0),(0,−1), (1,1),(−1,1), (−1,−1),(1,−1)} and the {wi}={4/9, 1/9, 1/9, 1/9, 1/36,
1/36, 1/36, 1/36}. The matrix elements ma

i in transform (2.3) are then given by

{ma
i }=
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. (3.1)

The corresponding elements na
i of the back transform are defined by the requirement

na
i = ma

i wi. The zeroth moment then is the density ρ, the first and second are (up to a
factor) the components of the momentum, the third and fourth the components of the
shear stress and the fifth resembles the bulk stress [18]. The remaining three moments
are the ghost modes. Thus the equilibrium moments Ma,0 =∑i m

a
i f 0

i are

M0,0 =ρ, M1,0 =
√

3ρux, M2,0 =
√

3ρuy, M3,0 =
3

2
ρ(u2

x−u2
y), (3.2a)

M4,0 =3ρuxuy, M5,0 =
3

2
ρ(u2

x +u2
y), M6,0 = M7,0 = M8,0 =0. (3.2b)
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We present here results for k-independence of the moment fluctuations predicted by
Eq. (2.8). In particular we consider the normalized static structure factor

Sk(Ma)= Na
〈

δMa(k)δMa(−k)
〉

, (3.3)

where
δMa(k)=∑

x

δMa(x)e−ik·x (3.4)

is the discrete spatial Fourier transform of δMa and ∑x is understood to be the summation
over all discrete lattice sites. The normalization constant Na such that Sk(Ma) = 1 is
equivalent to ρ̄, i.e., for the density Nρ =1/ρ̄3V and velocity components Nuα =1/ρ̄VkbT,
where kbT = 1/3 for the isothermal D2Q9 model employed. A value of 1 throughout
k-space for the structure factor of any of the moments given in Eq. (3.2) thus indicates
agreement with Eq. (2.8). The volume V is just the number of lattice points V =∑x1 and
the division by it is just a normalization artifact of the Fourier transform.

According to the argument put forth in [1] we expect the mean square fluctuations
of all moments Ma to be unity throughout k-space. For the density ρ this is confirmed
to three orders of magnitude in Fig. 1(b) for Sk(ρ) and in Fig. 2(b) for Sk(ux). We find
similar agreement for all nine moments of the D2Q9 model. For comparison we set the
noise on the non-hydrodynamic modes (M6,M7,M8) to zero, recovering the original Ladd
method [7] and, as seen in Figs. 1(a) and 2(a), the lack of noise on the ghost terms leads to
drastic deficiencies for large kx,ky values. Note that there are no deficiencies in Fig. 1 for
kx =0 and ky =0. The reason is that the projection of the D2Q9 model onto one coordinate
axis yields a D1Q3 model. The isothermal ideal gas D1Q3 model, however, only has
one stress mode and no ghost modes and thus there is no difference between the Ladd
and Adhikari implementations in these projections. This is again observed in Fig. 2(a)
where Sk(ux) exhibits white noise along the kx axis even in the absence of ghost noise.
Motivated by private communication with A. Donev who is developing a general finite
volume scheme to solve the fluctuating Navier-Stokes Equations [6] based on a third
order Runge-Kutta integrator we also measured the cross correlator

Rk(ux,uy)= Nux
〈

ux(k)u∗
y(k)

〉

. (3.5)

According to Eq. (2.8) this quantity is expected to vanish. This is again confirmed nicely
in Fig. 3(b) to three orders of magnitude. In contrast measurements of Rk(ux,uy) in an
implementation without ghost noise exhibits significant correlations of up to 0.25ρ̄ for
intermediate kx and ky ranges as seen in Fig. 3(a).

The required condition in Eq. (2.8), u ≪ 1, suggests that this noise implementation
may suffer from a lack of Galilean invariance. To estimate the magnitude of this violation
we consider an imposed mean velocity in the x-direction. We measured correlators for
a fluctuating system with large superimposed velocity of ux = 0.1. The results in Fig. 4
indicate that indeed the moment fluctuations do not completely decouple and Eq. (2.8) is
no longer fulfilled. Compared to the Ladd implementation these errors are still smaller,
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(a) Without ghost noise
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(b) With ghost noise

Figure 1: Sk(ρ) averaged over 2×108 iterations in a τa=1 for all a, V=202, fluctuating D2Q9 ideal gas without
and with active ghost noise. Note that different scales are used to visualize the slight deviations seen in the
ghost noise case.
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(a) Without ghost noise
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(b) With ghost noise

Figure 2: Sk(ux) averaged over 2×107 iterations in a τa = 1 for all a, V = 202, fluctuating D2Q9 ideal gas
without and with active ghost noise. Note that different scales are used to visualize the slight deviations seen
in the ghost noise case.
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(a) Without ghost noise
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Figure 3: Rk(uxuy) averaged over 8×106 iterations in a τa = 1 for all a, V = 202 fluctuating D2Q9 ideal gas

simulation with and without active ghost noise. Again, take note of the different scales.
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(a) Sk(ρ)
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(b) Sk(ux)
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(c) Sk(ux,uy)

Figure 4: Correlators Sk(ρ), Sk(ux), and Rk(ux,uy) averaged over 5×106 iterations or a τa=1 for all a, V=202

fluctuating D2Q9 ideal gas simulation with a constant velocity of ux =0.1.

but they can approach the same order of magnitude for maximal accessible velocities. A
more comprehensive investigation of these effects is subject of a forthcoming publication.

4 Discussion and outlook

We have shown here that the Adhikari approach to use an improved LB method presents
a promising scheme to simulate fluctuating hydrodynamics. The ability to interpret the
ghost degrees of freedom as resulting from discrete particle distributions gives us the
ability to systematically introduce fluctuations. This approach recovers fluctuations not
only in the hydrodynamic limit but also for much shorter wavelengths. However, this is
only true in the absence of flow. Since lattice Boltzmann methods are not generally used
in this regime one may wonder if Galilean invariance violations may not erase some of
the improvement achieved by including noise in the ghost modes. This is a subject to
which we will return in a forthcoming paper.
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