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Abstract. A thermal lattice Boltzmann method (LBM) for two-phase fluid flows in
nucleate pool boiling process is proposed. In the present method, a new function
for heat transfer is introduced to the isothermal LBM for two-phase immiscible fluids
with large density differences. The calculated temperature is substituted into the pres-
sure tensor, which is used for the calculation of an order parameter representing two
phases so that bubbles can be formed by nucleate boiling. By using this method, two-
dimensional simulations of nucleate pool boiling by a heat source on a solid wall are
carried out with the boundary condition for a constant heat flux. The flow character-
istics and temperature distribution in the nucleate pool boiling process are obtained.
It is seen that a bubble nucleation is formed at first and then the bubble grows and
leaves the wall, finally going up with deformation by the buoyant effect. In addition,
the effects of the gravity and the surface wettability on the bubble diameter at depar-
ture are numerically investigated. The calculated results are in qualitative agreement
with other theoretical predictions with available experimental data.
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1 Introduction

Two-phase fluid flows with phase change are of great importance in science and engi-
neering fields. In particular, flows with nucleate boiling can be found in many industrial
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applications because the efficiency of heat transfer is much higher than in single phase
flows. In these applications, it is necessary to make correct predictions of heat transfer
characteristics of two-phase fluid flows. However, most of the past studies on such nu-
cleate boiling were related to collection of data for boiling process obtained as a function
of any of the several independent variables: heater and flow conditions, system pres-
sure, liquid/vapor thermophysical properties and so on (e.g., see reviews [1–3]). Thus,
although the effects of these parameters on the heat transfer coefficient have been inves-
tigated and quite well established, the detailed mechanisms were not fully understood
owing to its complexity. Nevertheless, with the current advance in precision measuring
devices and high-performance computers, several experimental and numerical studies
of these issues have recently been performed.

Main features of the nucleate boiling process that affect the rate of heat transfer dur-
ing the ebullition cycle are the bubble radius at departure and the frequency at which
bubbles are generated and departed. J. Kim and M. H. Kim [4] performed quantitative
analyses of bubble departures during nucleate pool boiling and obtained dimensionless
scales based on experimental data that had been previously reported in many studies.
With regard to numerical researches, for example, Kunugi et al. [5] carried out direct nu-
merical simulation of pool boiling phenomena by the MARS (Multi-interface Advection
and Reconstruction Solver) method [6]. Mukherjee and Kandlikar [7] used the numerical
model of Mukherjee and Dhir [8] to simulate vapor bubble growth on a heated wall by
means of the level-set technique.

Whereas these simulations of boiling phenomena require some models for phase
change such as the enthalpy method or temperature recovery method [9], an alterna-
tive approach has been proposed to simulate nucleate boiling without using any of the
models. The method is based on the free-energy approach in nonequilibrium thermo-
dynamics. Takada and Tomiyama [10] conducted numerical simulation of two-phase
flows with phase change using a phase-field method. Seta and Okui [11] proposed a
lattice Boltzmann method (LBM) [12, 13] with heat transfer to simulate pool boiling in
two-dimensional flows. More recently, Hazi and Markus [14] also carried out lattice
Boltzmann simulations of pool boiling phenomena and investigated bubble diameter at
departure and release frequency under different gravity and various wetting conditions
on a heated surface.

In the LBM for two-phase fluid flows, several models [15–18] have been developed
and successfully applied to many kinds of issues such as phase separations, instability
problems, droplet dynamics, bubble flows and so on. In particular, Inamuro et al. [19]
proposed two-phase LBM, which enables the stable calculation of two-phase fluid flows
with large density ratios of up to 1000. In the present paper, therefore, we incorporate
the effects of heat transfer with nucleate boiling into the two-phase LBM proposed by
Inamuro et al. to simulate the nucleate pool boiling on a heated surface. By using this
method, the effects of the gravity and the surface wettability on the bubble diameter at
departure are numerically investigated.
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2 Numerical method

2.1 Two-phase lattice Boltzmann method

Non-dimensional variables, which are defined by using a characteristic length L0, a char-
acteristic particle speed c, a characteristic time scale t0 =

√

L0/g0, where g0 is the gravita-
tional acceleration, a reference order parameter φ0 and a reference density ρ0 are used as
in [19]. In the LBM, a modeled fluid, composed of identical particles whose velocities are
restricted to a finite set of N vectors ci (i = 1,2,3,··· ,N), is considered. The nine-velocity
model (N =9) given by the following equation is used in the computations:

[c1,c2,c3,c4,c5,c6,c7,c8,c9]=

[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]

. (2.1)

The physical space is divided into a square lattice and the evolution of particle population
at each lattice site is computed. Two particle velocity distribution functions, fi and gi, are
used. The function fi is used for the calculation of an order parameter which represents
two phases and the function gi is used for the calculation of a predicted velocity of the
two-phase fluid without a pressure gradient. The evolution of the particle distribution
functions fi(x,t) and gi(x,t) with velocity ci at the point x and at time t is computed by
the following equations:

fi

(

x+ci∆x,t+∆t
)

= f c
i (x,t), (2.2a)

gi

(

x+ci∆x,t+∆t
)

= gc
i (x,t), (2.2b)

where f c
i and gc

i , given below, are functions in which variables x and t enter only through
macroscopic variables and/or their derivatives, ∆x is a spacing of the square lattice and
∆t is a time step during which the particles travel the lattice spacing.

The order parameter φ distinguishing two phases and the predicted velocity u
∗ of the

two-phase fluids are defined as follows:

φ=
9

∑
i=1

fi, u
∗=

9

∑
i=1

cigi. (2.3)

The functions f c
i and gc

i in the Eqs. (2.2a) and (2.2b) are given as follows:

f c
i = Hiφ+Fi

(

p0−κ f φ
∂2φ

∂x2
α

)

+3Eiφciαuα+Eiκ f Gαβ(φ)ciαciβ+EiC
∂Pαβ

∂xβ
ciα, (2.4a)

gc
i =Ei

{

1+3ciαuα−
3

2
uαuα+

9

2
ciαciβuαuβ+

3

4
∆x

( ∂uβ

∂xα
+

∂uα

∂xβ

)

ciαciβ

+3ciα
∆x

ρ

∂

∂xβ

[

µ
( ∂uβ

∂xα
+

∂uα

∂xβ

)]

}

+Ei
κg

ρ
Gαβ(ρ)ciαciβ

−
1

2
Fi

κg

ρ

( ∂ρ

∂xα

)2
−3Eiciy

(

1−
ρL

ρ

)

g∆x+3Eiciy
gβθ

ρ
(θ−θ∗)∆x, (2.4b)
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where

p0 =
φT

1−bφ
−aφ2, (2.5a)

Gαβ(φ)=
9

2

∂φ

∂xα

∂φ

∂xβ
−

9

4

∂φ

∂xγ

∂φ

∂xγ
δαβ, (2.5b)

Pαβ =
[

p0−κ f φ
∂2φ

∂x2
γ
−

κ f

2

( ∂φ

∂xγ

)2]

δαβ+κ f
∂φ

∂xα

∂φ

∂xβ
, (2.5c)

and

H1 =1, H2 = H3 = H4 = ···= H9 =0,

F1 =−
5

3
, Fi =3Ei (i=2,3,4,··· ,9),

E1 =
4

9
, E2 =E3 =E4 =E5 =

1

9
,

E6 =E7 =E8 =E9 =
1

36
,



































(2.6)

with α,β,γ = x,y (subscripts α, β and γ represent Cartesian coordinates and the summa-
tion convention is used). Note that the subscripts L and G indicate liquid and gas phases,
respectively. In the above equations, uα, ρ and µ are the velocity, density and viscosity of
two-phase fluids, respectively; g is the gravitational acceleration acting in the −y direc-
tion; δαβ is the Kronecker delta; κ f and κg are constant parameters determining the width
of the interface and the strength of the interfacial tension σ, respectively; βθ is the volu-
metric expansion coefficient; θ and θ∗ are the temperature and the reference temperature,
respectively; a, b and T are free parameters determining the maximum and minimum
values of φ; and C, which is of O(1), is a constant parameter related to the mobility θM as
follows:

θM =
(1

2
−

1

3
C

)

∆x. (2.7)

The first and second derivatives (Laplacian) in Eqs. (2.4a), (2.4b), (2.5b) and (2.5c) are
calculated by using the following finite difference approximations:

∂ψ

∂xα
=

1

6∆x

9

∑
i=2

ciαψ(x+ci∆x), (2.8a)

∂2ψ

∂x2
α

=
1

3(∆x)2

[ 9

∑
i=2

ψ(x+ci∆x)−8ψ(x)

]

. (2.8b)

The density in the interface is obtained by using the cut-off values of the order parameter,
φ∗

L and φ∗
G, for the liquid and gas phases with the following relation:

ρ=















ρG, φ<φ∗
G,

ρL−ρG

2

{

sin
[

φ−(φ∗
L+φ∗

G)/2
φ∗

L−φ∗
G

]

+1
}

+ρG, φ∗
G≤φ≤φ∗

L,

ρL, φ∗
L <φ.

(2.9)
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The viscosity µ in the interface is obtained by the following equation:

µ=
ρ−ρG

ρL−ρG
(µL−µG)+µG. (2.10)

The interfacial tension σ is given by

σ =κg

∫ ∞

−∞

(∂ρ

∂ξ

)2
dξ, (2.11)

where ξ indicates the coordinate normal to the interface [20].
Since u

∗ is not divergence free (∇·u∗ 6=0) in general, it is required for u
∗ to be corrected

by using the Poisson equation for the pressure p of the two-phase fluids. By using the ex-
plicit Euler method for the temporal integration, the Navier-Stokes equation is expressed
as

Sh
u

n+1−u
n

∆t
+(u

n ·∇)u
n =−

∇p

ρ
+

1

Re
∇2

u
n+F, (2.12)

where Sh=U/c is the Strouhal number, F is the external force term (the surface tension
and buoyancy terms) and the superscript n indicates the value at t = n∆t. Eq. (2.12) is
divided into the following two equations:

Shu
∗=Shu

n+
[ 1

Re
∇2

u
n−(u

n ·∇)u
n+F

]

∆t, (2.13a)

Sh
u

n+1−u
∗

∆t
=−

∇p

ρ
. (2.13b)

Taking the divergence of Eq. (2.13b) and considering the continuity equation (∇·un+1=0),
we get the following Poisson equation for the pressure p of the two-phase fluids:

∇·
(∇p

ρ

)

=Sh
∇·u∗

∆t
. (2.14)

In order to solve Eq. (2.14), a new velocity distribution function hi is introduced [19] and
the following evolution equation of hi is used for the calculation of p:

hm+1
i (x+ci∆x)=hm

i (x)−
1

τh
[hm

i (x)−Ei p
m(x)]−

1

3
Ei

∂u∗
α

∂xα
∆x, (2.15)

where m is the number of iterations and the relaxation time τh is give by

τh =
1

ρ
+

1

2
. (2.16)

The pressure p is obtained by

p=
9

∑
i=1

hi. (2.17)
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The calculation of Eq. (2.15) is iterated until |pm+1−pm|< ε is satisfied in the whole do-
main. The tolerance ε is set to 1.0×10−6 in the following calculations.

The temperature θ of the fluids is calculated by the following equation:

θ(x,t+∆t)=
9

∑
i=1

Tc
i (x−ci∆x,t), (2.18)

where the function Tc
i is expressed as follows:

Tc
i =Eiθ(1+3ciαuα)+EiB∆xciα

∂θ

∂xα
, (2.19)

where B is a parameter determining the thermal diffusivity αθ and the thermal conduc-
tivity λ. The relations between these parameters are as follows:

αθ =
(1

6
−

1

3
B
)

∆x, λ=
(1

3
−

1

3
B
)

∆x. (2.20)

Furthermore, the parameter B in the interface is given by

B=
ρ−ρG

ρL−ρG
(BL−BG)+BG. (2.21)

The calculated temperature θ is substituted for T in the pressure tensor (2.5a). Conse-
quently, the value of f c

i is changed by the temperature and bubbles can be formed by the
boiling.

Applying the asymptotic theory [21] to Eqs. (2.2a), (2.2b), (2.15) and (2.18), we find
that the asymptotic expansions of macroscopic variables, φ, ρ, u, p and θ, satisfy the
phase-field advection-diffusion equation (the Cahn-Hilliard equation with advection) for
φ, the continuity equation, the Navier-Stokes equations for incompressible two-phase
fluid including the interfacial tension and the buoyancy and the convection-diffusion
equations for the temperature with relative errors of O[(∆x)2] (see [22]).

2.2 Wetting boundary condition

Recently, Briant et al. [23, 24] have proposed a wetting boundary condition which en-
ables the contact angle of the interface to be controlled in a way consistent with Cahn
theory [25]. In their method, the derivative of the density normal to the wall, ∂ρ/∂n, is
specified by using the wetting potential that is calculated according to a prescribed static
contact angle θS. In the following computations, the specified value of ∂ρ/∂n at wall sites
is substituted for the first and second derivatives in Eq. (2.4a).
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3 Results and discussion

3.1 A single bubble rising in saturated liquid

In order to confirm the mass conservation of the present method, the simulation of a
single bubble rising in a saturated liquid is carried out. The computational domain with
Lx=Ly=200∆x is considered, as shown in Fig. 1. A single bubble with diameter D=16∆x
is placed in a saturated liquid at the initial state. The periodic boundary condition is used
in the x- and y-directions. The parameters determining the maximum and minimum
values of the order parameter are a=1, b=1, T =2.93×10−1; it follows that these values
are φmax = 4.031×10−1 and φmin = 2.638×10−1, respectively. The cut-off values of the
order parameter for obtaining the density in the interface are φ∗

L = 3.80×10−1 and φ∗
G =

2.75×10−1. The other computational parameters are as follows: ρL = 50, ρG = 1, µL =
1.0×10−1∆x, µG =1.0×10−2∆x, θL =θG =2.93×10−1, κ f =0.05(∆x)2, κg =1.0×10−8(∆x)2,

g∆x=4.0×10−9, θM =1.0×10−2∆x, λL =λG =1.7×10−1∆x, αθ,L =αθ,G =1.0×10−6∆x and
βθ,L = βθ,G =1.0∆x. The dimensionless numbers for this problem are Eötvös number E=
gD2(ρL−ρG)/σ and Morton number M = gµ4

L(ρL−ρG)/(ρ2
Lσ3); their values are E =6.66

and M=18.4.

L
y

Lx

y
x

Liquid

D

Gas

Figure 1: Computational domain of a single bubble rising in saturated liquid.

Fig. 2 shows the time evolution of the bubble shape for E =6.66 and M =18.4. From
this figure, it is seen that the bubble rises in a saturated liquid with its oblate ellipsoidal
shape maintained. The simulated bubble shape agrees with the shape in the experimental
regime map [26]. Fig. 3 shows the time variation of the mass of the bubble. After the
simulation is executed and the flow field is fully developed, calculation of the mass of
the bubble is started. The mass of the bubble, S, is calculated by counting the number
of nodes inside the interface, (ρL+ρG)/2. In addition, S is normalized by the value at
the beginning time of the calculation. It is noted that the dimensionless time is t∗b =
(t−tb)vt/De, where tb is the beginning time of the calculation. From this figure, it is
seen that the mass of the bubble is conserved during the calculation in spite of the small
diameter (D =16∆x). Hence, the mass conservation of the bubble by the present method
verified and comparable to the result by the conventional isothermal LBM.
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Figure 2: Time evolution of the bubble shape for E=6.66 and M=18.4. The dimensionless time is t∗0 =tvt/De,
where vt and De are the terminal velocity and the equivalent diameter of bubble, respectively.
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Figure 3: Time variation of mass of bubble. The area of mass, S, is normalized by the value when calculation
starts. The dimensionless time is t∗b=(t−tb)vt/De, where vt, De and tb are the terminal velocity, the equivalent
diameter of bubble and the beginning time of calculation, respectively.

3.2 Estimation of domain size

Next, preliminary simulations of a nucleate pool boiling are carried out in order to esti-
mate the size of the domain. We consider a rectangular domain with fixed Ly = 200∆x
and various values of Lx (Lx =75∆x, 100∆x, 150∆x, 200∆x and 250∆x), as shown in Fig. 4.

L
y

Lx

y
x

q

Liquid

Figure 4: Computational domain of nucleate pool boiling.



Y. Tanaka, M. Yoshino and T. Hirata / Commun. Comput. Phys., 9 (2011), pp. 1347-1361 1355

The no-slip boundary condition and the wetting boundary condition, in which the static
contact angle is set to θS =90◦, are applied to the bottom wall (y=0). In addition, a heat
source with a constant heat flux q=5.0×10−6 is placed at the central point on the bottom
boundary [27] in order to compare with the theoretical predictions [28] described later. At
the top boundary (y=Ly), the normal derivatives of the order parameter, the density and
the velocity are set to zero. The periodic boundary condition is used in the x-direction,
so that the distance among the heat sources is different in each case. At the initial state,
the computational domain is filled with the liquid whose temperature is θL =2.93×10−1.
The other computational parameters are the same as those in the previous problem.

(a) (b) (c) (d) (e)

Figure 5: Bubble shape and velocity vectors for various distances among the heat sources just after detachment
of the bubble: (a) Lx =75∆x; (b) Lx =100∆x; (c) Lx =150∆x; (d) Lx =200∆x; (e) Lx =250∆x.

Fig. 5 shows the computational results of the bubble shape and velocity vectors for
various distances among the heat sources just after detachment of the bubble. In all cases,
circular flows can be observed on both sides of the bubble. It is seen that when the dis-
tance is over 200∆x, there is little influence on the neighboring heat sources. Furthermore,
the bubble diameter at departure as defined in Fig. 6 is calculated and shown in Fig. 7.
From this figure, we can see that the bubble diameter decreases when the distance is less
than 100∆x. For these reasons, Lx is set to 200∆x in the following simulations.

d

Figure 6: Definition of the bubble diameter at departure d. The solid line indicates the contour line of the
density with ρ=(ρL+ρG)/2.
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x

 L x /∆x

Figure 7: Bubble diameter at departure for various distances among heat sources.

3.3 Nucleate pool boiling for various gravitational accelerations

In order to investigate the effect of the gravity, the simulations of nucleate pool boiling
for various gravitational accelerations are performed. The square domain with Lx = Ly =
200∆x is considered. In these simulations, the gravitational acceleration is changed in the
range of 10−9

< g∆x<10−8. The boundary conditions and other computational parame-
ters are the same as those in the previous problem. Fig. 8 shows the time evolution of the
bubble shape with velocity vectors and temperature distributions for g∆x=2.0×10−9. It
is seen that a bubble nucleation is formed at first and then the bubble grows and leaves
the wall, finally going up with deformation by the buoyancy. From the time evolution
of velocity vectors, it is also found that circular flows appear on both sides of the bubble
and grow with time. After the bubble is detached, these circular flows go up with the
bubble. Also, from the time evolution of temperature distribution, it is seen that heat
is transferred upward by the rising bubble. Fig. 9 shows the time variations of the con-

0.2925

0.2965

0.2985

0.2945

t∗=0.00 t∗=6.32 t∗=10.4 t∗=11.5 t∗=13.6

Figure 8: Time evolution of bubble shape with velocity vectors (upper) and temperature distribution (lower) for

g∆x=2.0×10−9. The solid line indicates the contour line of the density with ρ=(ρL+ρG)/2. The dimensionless

time is t∗= t/
√

Ly/g.
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Figure 9: Time variation of characteristic lengths of bubble for g∆x=2.0×10−9: —, contact length of bubble
on the wall, l; - - -, largest diameter of bubble cap, d; ×, bubble diameter at departure. The dimensionless time
is t∗= t/

√

Ly/g.
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Figure 10: Bubble diameter at first departure for various gravitational accelerations.

tact length l of the bubble on the wall and the largest diameter d of the bubble cap for
g∆x=2.0×10−9. In this figure, the cross indicates the detachment of the bubble and each
dashed line is plotted during the time when the bubble stays in the computational do-
main after the deformation. It is seen that the value of the contact length oscillates around
17∆x after the first detachment of the bubble. In addition, the diameter of the bubble cap
increases as the contact length locally decreases. After that, the bubble cap is detached
when the contact length on the wall reaches the local minimal value.

Fig. 10 shows the bubble diameter at first departure plotted against gravitational ac-
celerations. It is seen that the bubble diameter at departure decreases with increasing
gravitational accelerations. Fritz [28] investigated the bubble diameter at departure the-
oretically and experimentally. From his results of the experiments performed by using
H2O, Hg and CCl4, he concluded that the bubble diameter at departure d satisfies the
following relation:

d∼ θS

√

σ

g(ρL−ρG)
. (3.1)

It is noted that the applicable range of the above relationship is from low to middle heat
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(a) (b) (c)

Figure 11: Bubble shape for various static contact angles just after detachment of the bubble: (a) θS =79.5◦;
(b) θS =107◦; (c) θS =140◦.
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Figure 12: Bubble diameter at departure for various static contact angles.

fluxes. According to the Eq. (3.1), the bubble diameter at departure is proportional to
g−0.5. It is obtained from the present results that the slope of the bubble diameter at de-
parture is nearly −0.5 over the range of the calculated gravitational acceleration. Hence,
the relation between the bubble diameter at departure and gravitational acceleration is
found to be reasonable.

3.4 Nucleate pool boiling for various static contact angles

In order to investigate the effect of wettability on the wall, the simulations of nucleate
pool boiling for various static contact angles are carried out. The static contact angle is
changed in the range of 79.5◦ ≤ θS ≤ 140◦. The gravitational acceleration is fixed g∆x =
6.0×10−9. The boundary conditions and other computational parameters are the same as
those in the previous problem. Fig. 11 shows the bubble shape for various static contact
angles just after detachment of the bubble. It is seen that the contact length of the bubble
on the wall spreads with increasing the static contact angle. It is also found that the
bubble diameter at departure increases as the static contact angle increases.

Finally, the computational results of the bubble diameter at departure are plotted
against static contact angles in Fig. 12. It is seen that the bubble diameter at departure
increases almost linearly in the range of the present static contact angle. In Eq. (3.1), the
bubble diameter at departure is proportional to the static contact angle. Therefore, the
relation between the bubble diameter at departure and the static contact angle is in good



Y. Tanaka, M. Yoshino and T. Hirata / Commun. Comput. Phys., 9 (2011), pp. 1347-1361 1359

agreement with other theoretical predictions with available experimental data. In con-
trast, the computational results of the bubble diameter at departure deviates from this
linearity in the range of θS <79.5◦, because the size of the heat source is too small in these
simulations. Thus, simulations with higher resolution are required for the nucleate pool
boiling on the hydrophilic wall.

4 Concluding remarks

A numerical method for nucleate pool boiling based on the lattice Boltzmann method
for two-phase fluids with large density differences has been proposed. The method was
applied to two-dimensional simulations of nucleate pool boiling by a heat source on a
solid wall. By comparing the present results to theoretical predictions with available
experimental data regarding the bubble diameter at departure, it is found that the present
method yields qualitatively reasonable results.

It is found that in preliminary calculations by the present method, we can simulate the
nucleate pool boiling for water-vapor systems at 373K (the density ratio is about 1600) by
a heat source with a constant temperature, though the cost of these simulations is more
expensive. In general, spurious velocities for high density ratio become larger than those
for low density ratio. However, the spurious velocities don’t affect the behavior of the
nucleate pool boiling, since they are smaller than the fluid velocities due to the gravity
and the temperature difference. In this simulation, the ratio of the maximum spurious ve-
locity to the maximum fluid velocity when the bubble is detached is 6.6%, where the spu-
rious velocity is estimated by calculating a stationary spherical droplet whose diameter is
the same as the equivalent diameter converted from the area of the detached bubble. The
spurious velocities can be reduced with decreasing the interfacial tension and with in-
creasing the lattice points in the interface, as reported by Inamuro et al. [19]. In addition,
three-dimensional simulations are needed for quantitative investigations and in particu-
lar, the LBM has a great advantage of extension to three-dimension in a straightforward
way. Thus, three-dimensional simulations for high density ratio with high resolution are
required in future work.
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