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Abstract. Free energy lattice Boltzmann methods are well suited for the simulation of
two phase flow problems. The model for the interface is based on well understood
physical grounds. In most cases a numerical interface is used instead of the physical
one because of lattice resolution limitations. In this paper we present a framework
where we can both follow the droplet behavior in a coarse scale and solve the interface
in a fine scale simultaneously. We apply the method for the simulation of a droplet
using an interface to diameter size ratio of 1 to 280. In a second simulation, a small
droplet coalesces with a 42 times larger droplet producing on it only a small capillary
wave that propagates and dissipates.

PACS: 82.70.-y, 02.70.Hm, 02.60.Nm

Key words: Two-phase flow, diffuse interface model, multi-scale, real interface.

1 Introduction

The main problem present in meso-scale multi-phase flow simulation is resolving the
interfacial phenomena. These are disregarded when working at macroscopic scales and
even for millimeter size droplet interactions [15] where only interfacial tension forces
and phase tracking are relevant when solving mass and momentum balances. High res-
olution techniques are needed for performing mesoscale experiment studies on droplets,
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bubbles or colloids. These results are needed as closure relationships for describing the
interactions of such entities.

The actual problem is that the computational models are able to model droplets or
bubbles and can be trusted when no pinch-off or interface rupture is expected to occur.
On the other hand, thermodynamical models of the interface can give a better description
of the interface at the nanoscale but can not model an entire droplet at the same time
because of the difference in scales.

In this work, transient mesoscale two phase problems are proposed modeled in a
new way where the homogeneity of traditional CFD solvers is broken up in a method
that implements multiscale lattices that go beyond a local mesh refinement concept [1].
The work distinguishes between interfacial physics and bulk phase hydrodynamics. The
interfacial physics are modeled using the Cahn-Hilliard equation. This physical model
takes into account not only the tracking between phases, but also the shape of the in-
terface and the mass diffusion process through it. Therefore it is also suitable for phase
change simulations [3, 11]. The hydrodynamic-only model is much simpler.

The lattice Boltzmann method is adopted for solving the both present models. Rele-
vant papers can be found in the lattice Boltzmann literature addressing the more general
concepts of mesh refinement in both single [4] and multiphase [18, 21]. These can be
used as a complement to the concept introduced in this work. The scope of this work is
to show how a multimodel approach can be used for simulation of 2D droplets to have
large droplets with more realistic interfaces. For the gas and liquid bulk hydrodynam-
ics, traditional single phase lattice Boltzmann methods are used. In a region affected by
the liquid-gas interphase a two phase flow lattice Boltzmann method is used based on
the free energy approach: Cahn-Hilliard equation with a pressure and momentum lattice
Boltzmann distribution. In short, each model has its own space-time scales, equations
and solution method.

The models are described in Section 2; how to solve them and the multiscale imple-
mentation in Section 3; the simulation results in Section 4; and finally concluding remarks
are given in Section 5.

2 Model considerations

The main idea is to separate the physics by a domain decomposition technique, distin-
guishing in the highest hierarchy two regions: simple single phase fluid flow in the bulk
and two phase fluid flow with concentration gradients present in the interfaces. Two
scales are defined: the interfacial physics scale and a bulk hydrodynamic scale, where
the corresponding lattice topographies are fine and coarse respectively. The problem is
better explained at the coarse level, where only a single phase is present. There are coarse
voxels containing only liquid phase, only gas phase, or a part of the interface defined as
a non-negligible variation of the concentration (density). A coarse interface voxel is over-
lapped with an entire lattice block composed of fine voxels. A scale change is made
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Figure 1: Domain decomposition and multiscale. The MPM region is intercommunicated through a traditional
domain decomposition technique. MPM and SPM regions are communicated through multiscale coupling steps.

between a coarse voxel and an interface coarse voxel, in one jump, in opposition to cas-
cade approaches [1]. The treatment over the scale jump is of great interest because each
scale solves a different sub-model. Low interfacial physics activity is the condition to be
adopted to define were a multiscale jump is to be placed, i.e., far away from the interfaces.
Single phase models (SPM) are adopted for the gas or liquid bulk fluid flow. It is not a
requirement that both SPMs are the same, they can even been implemented on different
meshes or follow different equations, e.g., compressible for gas and incompressible for
liquid is possible. A multiphase model (MPM) is used to simulate the physics over the
surroundings of and for the interface itself. An example for a liquid droplet is sketched
in Fig. 1. Nodes are placed in the center of each voxel.

2.1 SPM-Single phase model

The SPM consists of continuity and momentum balances

dδp

dt
+ρφc2

s∇·~u=0, (2.1a)

ρφ
d~u

dt
+ρφ~u·∇~u=−∇δp+∇·T . (2.1b)

An incompressible Navier-Stokes approach is used for simulation of both gas and liquid.
Here ρφ is a constant density for each phase, ~u is the velocity field, T the stress tensor and
c2

s =dP/dρ is the speed of sound, related to the fluid compressibility. The fluid pressure,
pt, can be calculated at any point using an equation of state. Since the model is incom-
pressible, variations in density are not modeled. The pressure obtained by applying the
equation of state to the reference density is consequently named reference pressure. The
fluid hydrodynamics produce the variations δp in the pressure field. Therefore the actual
pressure in every point is the sum of the reference pressure and δp.
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2.2 MPM-Multi phase model

The interfacial physics are modeled using an extra diffusion-type equation. This physical
model is capable of tracking the phases, simulating the shape of the interface, the mass
diffusion through it, the pinch-off and coalescence processes [6], and phase change [3,11].

This model is obtained by writing the system Hamiltonian for the kinetic energy and
the free energy depending on both: the local molecular concentration, and the spatial
variation of this concentration [8, 9]. The first is obtained from the equation of state. The
second is obtained as first proposed by [2], the Cahn-Hilliard equation.

The free energy approach is chosen because it has shown great potential for working
at high density ratios (ρlg), eliminating numerical spurious currents and because a con-
sistent model of interfacial physics is needed [6]. The phase, continuity and momentum
equations are

dφ

dt
+~u·∇φ= M∇2µφ, (2.2a)

dδp

dt
+ρφc2

s∇·~u=0, (2.2b)

ρφ
d~u

dt
+ρφ~u·∇~u=−∇δp−ρφ∇µφ+∇·T , (2.2c)

where the nomenclature is the same as in the SPM. In addition, M is the Cahn-Hilliard
mobility [3], and µφ is the chemical potential. The mobility is the proportionality constant
between the concentration flux and the chemical potential gradients. For a binary gas-
liquid system it is the diffusion coefficient. In the MPM, the density reference component,
ρφ, is not constant. The order parameter is the density normalized, φ=ρφ−φ∗ with φ∗=
(ρh−ρl)/2 using liquid and gas densities respectively.

Eq. (2.2a), the Cahn Hilliard equation (a phase-field like equation), describes the con-
vection of density and the variations due to diffusion towards chemical equilibrium.
Eq. (2.2b) is the compressibility equation, where hydrodynamic variations in pressure
will constrain the fluid flow but will not affect the density of the system. Eq. (2.2c) is
the momentum balance. The interfacial tension force is modeled through the chemical
potential term µφ. Summarizing, the internal energy (Ψ), chemical potential (µφ), and
pressure (pt) are

Ψφ(φ,∇φ)=

Ψ0
︷ ︸︸ ︷

A(φ+φ∗)2(φ−φ∗)2+
κ

2
|~∇φ|2, (2.3a)

µφ =
∂Ψ0

∂φ
−κ∇2φ, (2.3b)

pt =δp+
ρφ

φ∗
∂Ψ0

∂φ
−Ψ0−

κ

2
|~∇φ|2. (2.3c)

Note that a double well potential was chosen for the Helmholtz energy (Ψ0). If the real
equation of state of a single component two-phase flow system is known, it can be intro-



1418 P. M. Dupuy et al. / Commun. Comput. Phys., 9 (2011), pp. 1414-1430

Table 1: Physical magnitudes in SPM and MPM.
√

: model variable. ×: not defined in the model. =:
straightforward conversion. ⊗: conversion not needed, but non-trivial values mean that the interface should
not be neglected and are used as trigger for the refinement of a coarse voxel.

Physical magnitude SPM MPM SPM→MPM SPM←MPM
pressure

√ √
= =

velocity
√ √

= =
density const.

√
= ⊗

chemical potential × √
const. ⊗

chemical potential gradient × √
0 ⊗

duced here. Similarly for binary components [13] and more complex cases. No tempera-
ture dependent term is explicitly added in the internal energy formulation since temper-
ature changes are not simulated. As stated, the internal energy is comprised of two terms
with constants A and κ respectively. The balance between these two terms is directly
related to the real interface thickness, w and the interfacial tension force σ,

A=
3

4

σ

wφ∗4
, κ =

3

8

σw

φ∗2
. (2.4)

Gradient theory of inhomogeneous species can work with several compounds, neverthe-
less our approach is to model a single compound, two fluids flow by matching the four
parameters (only two are independent) and the diffusion coefficient M.

2.3 Model coupling

The coupling between the models assumes that there is no significant mass transfer far
away from the interface. Along the multiscale boundary, the SPM needs the velocity and
pressure fields from the MPM. The MPM needs the same information, plus the density,
chemical potential and density flux. Density and chemical potential can easily be com-
puted from the constant reference density applicable to each SPM lattice. The density
flux is calculated to assure no variation of the density near the boundary. This means
that the MPM is gaining or loosing mass through the multiscale boundaries.

If the mass transfer through the multiscale boundary is used to update the reference
density in the SPM, a mass conservative multiscale model is obtained, capable of sim-
ulating processes such as evaporation and Ostwald ripening. This is not the case if the
SPM reference density is kept constant and therefore small droplets do not disappear.

3 Methodology

Two different lattice Boltzmann methods are used for solving the present models. Details
for the implemented methods are given below for each model.
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3.1 SPM-lattice Boltzmann method

The lattice Boltzmann equation
~f T+1

x+e =~f T
x +Ω~f T

x (3.1)

is used to solve the Navier-Stokes equation in the bulk. A fractional step method pro-
posed by [16] is used for correcting by the viscosity.

The hydrodynamic variables are the pressure and both components of the fluid veloc-
ity field, instead of the 9 distributions needed in the D2Q9 model. A combined stream-
collision step is implemented. Two data-access schemes are used: push-access and pull-
access. In the pull-access each combined step starts as if a stream is getting the infor-
mation from the closest neighbours and then proceeding with collisions. The incoming
distributions are calculated as the equilibrium distribution in each neighbor node us-
ing the stored moments (hydrodynamic variables) of the distribution from the previous
step. This can be done because τ = 1 is chosen everywhere. Thus, after each collision,
all the information is known in each node. Moreover, since the scheme works by cal-
culating the equilibrium distribution, this can be calculated locally if the hydrodynamic
values are locally known. Consequently knowing the hydrodynamic values of a neigh-
bor is enough to calculate the neighbor equilibrium distribution function coming into the
updating node. Pulling access presents an easy inter-processor communication imple-
mentation when domain decomposition is adopted because the entire row (or surface in
3D) of data can be communicated between adjacent domains.

3.2 MPM-lattice Boltzmann method

The MPM is solved by the two-distribution lattice Boltzmann model [6], with fractional
step as proposed by [5].

The model used is based on the pressure and momentum distribution as suggested
by [12]. A main difference from traditional approaches is that the lattice Boltzmann equa-
tion is solved by a Crank-Nicholson scheme. The discretized Boltzmann equation for the
pressure and momentum distribution with two force terms and Crank-Nicholson scheme
is given:

~f t+1
x+e =~f t

x +
1

2

(

Ω~f t
x+Ft,DP

x +Ft,ITF
x

)

+
1

2

(

Ω~f t+1
x+e +Ft+1,DP

x+e +Ft+1,ITF
x+e

)

. (3.2)

Here ~fx = ( f1,x, f2,x,··· , fQ,x) is a vector containing a particle velocity distribution, with
Q discrete velocities in the node located at x. Superindex is used to denote time and
subindex denotes space. Two forcing terms are incorporated and will be explained later.

The Bhatnagar-Gross-Krook (BGK) approximation is adopted giving a diagonal colli-
sion operator Ωij =Ωδij, Ω=(eq f− f )/τf with single relaxation time τf . The equilibrium
distribution, f eq, is chosen arbitrarily to satisfy its moments up to a given order. Note that
there is a relationship between the number of dimensions, D, the number of discrete ve-
locities, Q, and the number of moments to be satisfied. Following traditional approaches
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the equilibrium distribution used in this work is split in two contributions, one even (con-
stant) and one odd (Vi(~u)), in the velocity space. The equilibrium distribution is written
as

eq fi =3δpwi+ρVi(~u), (3.3)

with weights w1 =4/9, w2,3,4,5 =1/9 and w6,7,8,9 =1/36.
Subindex i determines each discrete velocity for the D2Q9 model. The auxiliary func-

tion Vi has a particular notation to emphasize the fact that it is of order O(u), where
Greek letters as subindex correspond to the cartesian coordinate directions and where
the Einstein summation convention is used. The velocity dependent function is

Vi(~u)=wi

(

3ei,αuα−
3

2
u2+

9

2
uαuβei,αei,β

)

. (3.4)

The following magnitudes are defined:

δp≡∑
i

f̂i+
1

2
~u·∇ρ, (3.5a)

ρ~u≡∑
i

f̂i~ei+
1

2
~F , (3.5b)

where the f̂ is the distribution obtained after the first half-step of the scheme,

~̂f t+1
x+e =~f t

x+
1

2

(

Ω~f t
x +Ft,DP

x +Ft,ITF
x

)

. (3.6)

The kinematic viscosity is given by ν=τf c2
s in the present MPM.

Two external terms are necessary for the density-pressure decoupling (DP) and the
interfacial tension forces (ITF). The DP decoupling has direct influence on the moments
of order 0 and 2 of the distribution, while the ITF has an effect on the moments of order
1 and 2 of the distribution. The traditional lattice Boltzmann method models an ideal
gas where the pressure is obtained directly from the density. Incompressible-like models
require a decoupling between gas and density introduced by a decoupling term. The
density-pressure decoupling simply is

DPFi =(~ei−~u)·∇ρφV(~u). (3.7)

The interfacial tension force term is best incorporated by using the following relationship:
∇(ρµ)=µ∇ρ+ρ∇µ. In this way the Gibbs-Duhem relation is added by incorporating ρµ
in the pressure of the lattice Boltzmann scheme and subtracting µ∇ρ as a force term:

Φ=ρµ+δp, (3.8a)

Ai =
27

4
δp− 15

4
Φ, i=1, Ai =3Φ, ∀i∈ [2,9], (3.8b)

eq fi =Aiwi+ρφVi(~u), ITFFi =
(~ei−~u)

c2
s
·µ∇ρ(wi+V(~u)). (3.8c)
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The differentials of the chemical potential are not needed, while the differential of the
product ρµ is implicitly calculated by the lattice Boltzmann scheme. The only gradients
needed explicitly are those of density. The term~ei·∇ρφ is computed with the second order
biased differences according to [12]. Explicitly,

(~ei ·∇ρ)|x =
−ρ|x +4ρ|x+ei

−3ρ|x+2ei

2
. (3.9)

As with the SPM, the hydrodynamic variables are stored in memory, instead of the
lattice Boltzmann distribution for the pressure and momentum distribution. The update
of the pressure and momentum distribution is implemented using a pull scheme. When
the collision operator term is calculated at the node (i, j), the incoming distributions are
calculated as the equilibrium distribution in each neighbor node using the stored mo-
ments of the distribution from the previous step.

The density distribution models the molecular concentrations in each phase and along
the interface, following the Cahn-Hilliard model, Eq. (2.2a). The lattice Boltzmann mod-
ified scheme proposed by [23] is adopted:

gt+1
i,x+e = gt

i,x +
[

1− 2

2τg+1

]

(gt
i,x+e−gt

i,x)+Ωig, D2Q5, (3.10)

with the density equilibrium distribution as:

eqgi =−2Γµ+ρ+
1

2q
ρei,αuα, i=1, (3.11a)

eqgi =
1

2
Γµ+

1

2q
ρei,αuα, i∈ [2,9]. (3.11b)

Here the parameter Γ is an extra parameter related to the Cahn-Hilliard mobility and the
stability of the model, and q=(τg+0.5)−1. The mobility is

M=Γq(τgq−0.5)=Γ
2τg−1

(1+2τg)2
.

The density is defined as the zeroth order moment of g,

ρ≡∑
i

gi. (3.12)

The incoming mass flux from the SPM to the MPM needs to be considered. The missing
part of the g distribution is calculated to match the reference value of the density,

gI =φRe f−∑
j 6=I

gj, (3.13)

where I is the index of the corresponding incoming velocity through the multiscale bound-
ary. The order parameter distribution, gi, is implemented following a push algorithm. It
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means, first the collision is computed, then the distributions are calculated and streamed
to the neighbours. This is done to achieve improved local efficiency. When the moments
of g are needed, the distribution information is known locally, and when computing the
second derivatives and laplacians, the 0th order moment of the neighbors can be com-
puted locally, i.e., only first neighbors are needed for calculation of gradients and curva-
ture of the density field. First order neighbor implementation of a third derivative, as in
the Cahn-Hilliard equation, is thereby achieved. The drawback of a push-algorithm is
clear when working in parallel processors following domain decomposition. In this case
the propagated distribution g is present in the ghost nodes and needs to be transported
to the adjacent domain.†

3.3 General considerations

The combined collision and stream distribution can easily be implemented using two
grids. A two-grid approach is adopted but they are condensed into one memory block us-
ing a grid compression [20] algorithm. Other algorithms [14] can be found which achieve
a better performance than grid compression. These more efficient algorithms reduce the
memory access per node update, but they have only been applied for pure and simple
lattice Boltzmann models. No extension of these more efficient lattice Boltzmann imple-
mentations has been seen using a fractional step [16] or modified lattice Boltzmann [23]
methods. Both methods can be successfully implemented with a grid compression tech-
nique.

3.4 Domain decomposition and multiscale

Each model is solved independently and the multiscale coupling is performed as a special
boundary treatment. The SPM is, in general, less demanding in time and resolution. The
MPM models a structure which is smaller in nature and therefore needs to be updated
with its own time characteristic: T and t for SPM and MPM respectively. When T = t,
communication between scales occurs. The space and time resolution increase from the
SPM to MPM are denoted Sx = ∆X/(δx) and St = ∆T/(δt) respectively. The modeling
of two different scales with large values of S is desirable, in particular Sx≫ 2 (see [7])
compared to most of the application examples found in the literature, where Sx=2 (see [4,
17, 18, 21]).

The three variables δt, ∆T and S are related because lattice Boltzmann methods relates
the pseudofluid properties of the grid and time scales. Without working with thermal
lattice Boltzmann or the addition of a correction term [11], the speed of sound in the

†For solving this increase in complexity in the inter-processor communication algorithm, this distribution
streamed to the ghost nodes is reflected and folded as the distribution coming from the ghost node. It is
unfolded after the communication between sub-domains is complete.
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present models are

cs =

√

1

3

δx

δt
and Cs =

√

1

3

∆X

∆T
,

for MPM and SPM respectively. The lattice viscosity coefficients are respectively defined
as νMPM = c2

s τMPMδt and νSPM = C2
s (τSPM−0.5)∆T, where the later is usually bound to

the problem Reynolds number. The fluid properties need to be continuous along the
multiscale boundary. Two constraints can be satisfied in different ways among the three
free parameters τMPM, Sx and St. The present suggestion is to incorporate two addi-
tional conditions related to the interface properties which are usually not satisfied in two
phase flow high resolution simulations. The value of the interface thickness, wδx, and
the diffusion coefficient, Mδx2/δt, can be used to determine Sx and St. As an example of
model limitations, w cannot be subgrid, i.e., w<1. Thermodynamic consistency suggests
4<w<7 (see [19]).

For a droplet: the amount of sublattices, N f , can vary during the simulation. For a
circular case an estimation can be done using w, Sx and the droplet radius, R∆X

N f =2πR
(

1+12
w

Sx

)

, (3.14)

valid in the range w>4, R>2, and S>2. Under the physical constraint of fixed radius to
interface thickness ratio, CwR =SxR/2, the total amount of nodes can be estimated to

N f S2
x =2πCwRw(Sx+12w). (3.15)

Assuming w=4.5, CwR =1000 the total amount of nodes for the MPM model can be esti-
mated as 1.5+0.03Sx mega-lattice sites (106 nodes). The state of the art lattice Boltzmann
performance tests are of the order of the MLUPS (mega-lattice site updates per second),
see [10].

Some grid refinement techniques increase only the spatial resolution. More works can
be found where both space and time refinement factors are based in having consistency
in either velocity [4] or viscosity [7]. The present method does not necessarily follow one
of these two approaches but instead prioritizes the modeling correct physic.

The multiscale jump is implemented in two steps: Explode and Coalesce, following
the nomenclature proposed by [4]. The following algorithm was implemented:

1. Coarse lattice update (T =T+∆T).

2. Explode (T).

3. Loop while t≤T.

4. -Interpolate (t).

5. -Fine lattice update (t= t+δt).

6. Coalesce (T).

The non-trivial algorithm steps are given below.
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Figure 2: Domain decomposition and multiscale. The MPM region is intercommunicated through traditional
domain decomposition technique. MPM and SPM regions are communicated through multiscale coupling steps.

3.4.1 Algorithm Step 2: Explode-Scatter

A scatter step consists of distributing the information from the coarse mesh (SPM) to the
fine meshes (MPM). The pressure and the velocity field are first assigned to each fine
domain. This is then used to write the ghost nodes in an associated interpolation step.
The fine mesh in Fig. 2 receives pressure and velocity field information from coarse nodes
xc

1, xc
2, xc

3, etc.

3.4.2 Algorithm Step 4: Explode-Interpolate

Information from the surroundings is interpolated in order to write the ghost nodes and
the incoming gI . Both spatial and temporal interpolation are considered. For example in
Fig. 2, the velocity and pressure fields of x

g
1 are those of xc

1, the velocity and pressure field
of x

g
2 are obtained by linear interpolation between xc

1 and xc
2. The coarse lattice time, jump

∆T, and the fine lattice time, timestep δt, are not necessarily equal. The most general case
is ∆T >δt, one jump equals several timesteps. The interpolated value at T−∆T < t<T is

xc
t = xc

T +(xc
T−xc

T−∆T)
t−T

∆T
. (3.16)

3.4.3 Algorithm Step 6: Coalesce-Gather

The gather step distributes the information from the fine meshes (MPM) to the coarse
mesh (MPM). A phase average is done over the fine mesh. For a gas and liquid example,
six variables are calculated altogether and distributed to the corresponding nodes in the
coarse scale.
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3.4.4 In algorithm Step 6: Coalesce-Average

This step computes an average over the pressure and velocity variables for each phase.
Two ways of phase averaging are proposed here: an arithmetic mean (V0) and fitting a
plane by least squares to extrapolate the value (Ve) in the center of the fine mesh

V0=
∑

N
∈φV

N
, X0=

∑
N
∈φ x

N
, Y0=

∑
N
∈φ y

N
, (3.17a)

a=
N

∑
∈φ

(
(x−X0) ·(x−X0)

)
, d=

N

∑
∈φ

(
(y−Y0) ·(x−X0)

)
, (3.17b)

b=
N

∑
∈φ

(
(x−X0) ·(y−Y0)

)
, e=

N

∑
∈φ

(
(y−Y0) ·(y−Y0)

)
, (3.17c)

c=
N

∑
∈φ

(
(x−X0) ·(V−V0)

)
, f =

N

∑
∈φ

(
(y−Y0) ·(V−V0)

)
, (3.17d)

Ve =V0+
X0(b f−ec)+Y0(a f−dc)

ae−bd
. (3.17e)

The sum ∑
N
∈φ is a sum over the N points that satisfies ρ < ρg+ǫ or ρ > ρl−ǫ for the

gas or liquid phases respectively and where the constant value ǫ = 10−5φ∗ is arbitrarily

chosen. In the mesh example presented in Fig. 2 the ∑
N
∈φ sums over x

f
1 ,x

f
2 ,x

f
3 ,x

f
6 ,x

f
7 ,x

f
11,x

f
14

and x
f
17, i.e., far away from the interface. The averaging procedure accomplishes two

more functions besides calculating gas and liquid averages. It returns the maximum
and minimum values of x and y and the number of averaged nodes, N. This additional
information is used as an indicator for the re-meshing procedure, to be reported in future
works.

4 Simulation results

4.1 Young-Laplace

A steady stationary droplet is well known benchmark for two-phase flow fluid solvers. It
is based on predicting the correct pressure difference as described by the Young-Laplace
equation. Moreover the initial transient is of interest, since this process is not trivial
and pressure waves evolve together with a non trivial velocity field. A steady droplet
is placed in the domain center with the same pressure inside and outside. The droplet
slightly shrinks driven by capillary forces. The entire velocity field is pushed inwards
raising the pressure in the interior of the droplet. It is interesting to examine what hap-
pens from the liquid SPM point of view. Pressure waves and the velocity field are trans-
mitted through the multiscale boundary since the SPM has no contact with the interface.

Fig. 3 shows a final state of the simulated case (T = 120). The fine mesh boundaries
are represented with squares. The pressure of the liquid SPM is plotted only through
contour lines varying only within 1%, i.e., contour lines shown only inside the droplet.
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Figure 3: contour plot of simulated droplet. Diameter to interface thickness ratio of 280, the droplet contour
is drawn for φ=(−0.5,0,0.5). Liquid pressure contours at δp=(0.99,1,1.01)σ/R.
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Figure 4: Pressure difference between X=25 and X=15, and between X=19.2 and X=19.8 intersecting Y=30,
see Fig. 3.

It is of interest to follow the evolution of the pressure with time. The pressure at 4 dif-
ferent points are plotted in Fig. 4, along a radial direction. The points (15,30) and (25,30),
both correspond to SPMs. The points (19.2,30), (19.8,30) belong to the same fine mesh.
Due to the incompressibility constraint inside the droplet, any oscillation will be mani-
fested through the lowest oscillation modes of the droplet. In the tridimensional case, the
oblate/prolate deformation is the first oscillation mode. A similar behavior is observed
in the pressure isolines inside the droplet (Fig. 3), which are the only traces left of the
oscillations observed in Fig. 4 at T =120.

Generally, after the pressure compensation process driven by the interfacial tension,
a pseudo-steady state is achieved [6, 12]. Concentration equilibrium, as a slow process
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will follow hydrodynamic equilibrium. The small pressure increase in the interior of the
droplet takes the fluid to a higher pressure than the equilibrium pressure producing mass
transfer out of the droplet according to the fluid equation of state. In the present work,
the reference density is fixed in the bulk of each SPM to constant values as mentioned.
Concentration equilibrium is achieved rapidly after hydrodynamic equilibrium.

A scaling factor of 60 is used in the present simulation for both: time and space. The
simulation was run up to the time T=120, in 24 real time seconds on an Intel(R) Xeon(R)
CPU E5520 2.27GHz with 8192KB of cache size. The streaming-collision combined op-
erator, algorithm Step 5, for the 130 fine grids used 89% of the total computational time.
Linear time interpolation was used, and spatial averages were calculated as V0. The sim-
ulation parameters were w = 4.5δx, D = 2R = 21∆X = 1260, σ = 0.45, M = 2×10−4 and a
liquid to gas density ratio of ρlg =600.

4.2 Capillary wave

A more dynamic case is studied here. A small non-coalesced droplet is added to the large
droplet as an initial condition, see Fig. 5. This is an intrinsically unstable situation and
can be followed by the model. The small droplet has a curvature 42 times larger than the
large droplet.
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Figure 5: Solution at simulation times T =(0,40,120).

The small droplet is absorbed propagating capillary waves. The interface is shown for
three different times in Fig. 5. The order parameter is plotted versus time for three points
(shown as circles in Fig. 5) fixed to the domain to track the movement of the interface.
The first point is placed where the perturbation begins. The transition to liquid is nearly
complete at the time T≈ 20 as can be seen in Fig. 6. A capillary wave propagates and
reaches the second point at T≈30. The perturbed front reaches the third point at T≈70.
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Figure 6: Value of the order parameter at three points. The points are located at the intersection of the interface
at equilibrium and Y=(28,29,30).

This capillary wave is damped by viscosity. Moreover, it can be seen how each point
tends asymptotically towards the original value. Simulation parameters were w = 9δx,
σ=0.1 and ρlg =10 and the geometry and configuration similar to the previous case.

5 Conclusions

A framework for coupling scales is given for two phase flow simulations. The present
work is different from other mesh refined lattice Boltzmann implementations by coupling
different physics at different scales. We claim that this framework can be used in the case
where no free parameters need to be tuned and is more suitable when doing simulations
for predicting multiphase phenomena. All parameters have their physical counterpart.

Contrary to the three most known strategies for choosing the refinement factors, i.e.,
constant time, velocity or viscosity, the present multiscale method prioritizes the model-
ing of each physics correctly.

Future works can be taken in different directions. A three dimensional implemen-
tation seems straightforward [22]. A description about how to dynamically set coarse
nodes into fine meshes and vice versa was only briefly introduced here. The set of fine
lattices is suitable for parallel implementations. Furthermore, gradient theory of inho-
mogeneous species provides a multicomponent framework where various species have
a concentration jump over the same interface. This is also the case when working with
surfactants.

The simulations performed verify the multiscale coupling for a jump of more than
two orders of magnitudes. The droplet-diameter to interface-thickness ratio in the simu-
lations was up to 280.
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