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Abstract. The coarsening kinetics of a two-phase mixture with a large diffusional mo-
bility disparity between the two phases is studied using a variable-mobility Cahn-
Hilliard equation. The semi-implicit spectral numerical technique was employed, and
a number of interpolation functions are considered for describing the change in diffu-
sion mobility across the interface boundary from one phase to another. The coarsening
rate of domain size was measured using both structure and pair correlation functions
as well as the direct computation of particle sizes in real space for the case that the
coarsening phase consists of dispersed particles. We discovered that the average size

(R) versus time (t) follows the R
10/3

∝t law, in contrast to the conventional LSW theory,

R
3

∝ t, and the interface-diffusion dominated two-phase coarsening, R
4

∝ t.

AMS subject classifications: 65M70, 35F20, 81T80

Key words: Coarsening kinetics, Cahn-Hilliard equation, phase-field method, computer simula-
tion.

1 Introduction

Coarsening is a kinetic process driven by the reduction in the total interfacial energy of
a microstructure. As the mechanical properties of a material are critically determined
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by the degree of microstructure coarsening, it has been a subject of interest in materials
science and engineering for over the last half century [1–4].

The first formal theory of coarsening was developed more than 40 years ago by Lif-
shitz and Slyozov [5], and Wagner [6], i.e. the so-called LSW theory which predicts that
the cube of average particle size, R, is linearly proportional to time t, i.e.,

R
3
−R

3
0 = kt,

where k is the rate constant and R0 is the average length at time t = 0, and the particle
sizes normalized by the average size have a unique distribution which is independent of
time. LSW theory assumes that precipitates are spherical and the volume fraction of the
coarsening phase is zero. Many attempts to improve the LSW theory by relaxing the zero
volume fraction assumption [Ardell [7], Tsumuraya and Miyata [8], Asimow [9], Sarian
and Weart [10], Aubauer [11, 12], Brailsford and Wynblatt [13], Voorhees and Glicksman
[14], Marqusee and Ross [15], Tokuyama and Kawasaki [16], Marsh and Glicksman [17],
and Davies et al. [18]] do not fundamentally change the cubic coarsening kinetics. The
LSW cubic law for bulk-diffusion-dominated coarsening was confirmed by numerical
simulations using a constant-mobility Cahn-Hilliard equation [19–22] which takes into
the effect of non-spherical particle morphologies as well as volume fractions.

There have also been a number of studies using the Cahn-Hilliard equation with the
scaled variable mobility term

M=1−aC2,

where C=C(r,t) is the compositional field, [Langer et al. [23], Kitahara et al. [24], Lacasta
et al. [25] and Zhu et al. [26]] which allow one to model two common diffusion mecha-
nisms: a constant mobility describing bulk-diffusion-dominated coarsening (R∝ t1/3) for
a = 0 and the coarsening dominated by interfacial diffusion for a = 1. These works con-
vincingly showed that the coarsening of a two-phase microstructure with predominantly

interfacial diffusion leads to R
4

∝ t [27] power law while for all other values of a between
0 and 1 (a 6=1), there is a cross-over between R∝t1/3 and R∝t1/4. Based on dimensionality
argument, Bray et al. [28] derived a growth law

R
(3+α)

∝ t

corresponding to the Cahn-Hilliard equation with a composition-dependent-mobility,

M∝ (1−C2)α,

in the Lifshitz-Slyozov limit where the minority phase occupies a vanishingly small vol-
ume fraction. This theory successfully predicted two classic coarsening kinetics regimes:
α=0 for diffusion-limited coarsening and α=1 for interfacial diffusion dominated coars-
ening.
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However, there is a class of two-phase systems in which the diffusional mobility in
the coarsening phase is dramatically smaller than the matrix or the other phase in a two-
phase mixture, common in many engineering alloys. For example, the diffusion coeffi-
cient of Al in L12 is at least an order of magnitude smaller than that in the Ni-matrix in
Ni-base alloys. It has recently been suggested that such dramatic differences in diffu-
sivities may result in fundamentally different coarsening kinetics. Based on the experi-
mental investigation in Ni-based alloys, Ardell and Ozolins argued that the coarsening
of coherent particles in which the solute diffusivity is much lower than that in the matrix

is controlled by diffusion through the precipitate-matrix interface, leading to R
2

∝ t kinet-
ics [29]. In contrast, in another experimental study, Seidman et al. [30] investigated the
kinetics of γ′ coarsening in Ni-5.2 at.%Al-14.2 at.%Cr at 873K by 3D Atom Probe Tomog-

raphy (APT) and reported a value of 3.33±0.45 for n in R
n

∝ t. In this case the mobility of
Al in the precipitate is about one order of magnitude smaller than that in the matrix [31],
according to the atomic mobility database of the Ni-Al-Mo system [32] as a reference,
which is similar to Ni-Al-Cr system.

The main objective of this work is, therefore, to systematically study the coarsen-
ing kinetics with large diffusional mobility disparity between the coarsening phase and
the matrix. We employ a variable-mobility Cahn-Hilliard equation [33] which allows us
to vary the diffusion coefficients by orders of magnitude within a two-phase mixture.
Long-time simulations under various mobility functions were made possible using the
semi-implicit numerical technique [26, 34]. We study the coarsening kinetics of both in-
terconnected two-phase microstructures and isolated precipitate particles embedded in a
matrix. The kinetics is analyzed by determining the average spatial scale of a two-phase
mixture as a function of time for different ratios of diffusivity in the precipitates and in
the matrix.

2 Variable mobility Cahn-Hilliard equation

We employ a single compositional field C(r,t) to describe two-phase microstructure.
Within the bulk of the two phases, the composition field is equal or close to their equi-
librium values determined by thermodynamics. The composition is continuous across
the interfaces from one phase to another. The total free energy of an inhomogeneous
two-phase mixture is then described by the Cahn-Hilliard free energy functional [33],

F=
∫

V

[

f (C)+
1

2
κ(∇C)2

]

dV, (2.1)

where f (C) is the local free-energy density and κ is the gradient energy coefficient that
can be related to inter-atomic interaction parameters.

The evolution of the composition profile is then modeled by the Cahn-Hilliard equa-
tion [33],

∂C

∂t
=∇

(

M∇
δF

δC

)

, (2.2)
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where t is time, M is the diffusional mobility, and δF/δC is the variational derivative of
the total free energy.

The difference in diffusion coefficients between the two phases is described by a
composition-dependent mobility M(C). With a double-well potential function for the
local free-energy density,

f (C)=−
1

2
C2+

1

4
C4,

the Cahn-Hilliard equation with composition-dependent mobility can be presented in a
scaled form as

∂C(r,t)

∂t
=∇·

(

M(C)∇[−C+C3−κ∇2C]
)

, (2.3)

which is similar to the form presented by Langer et al. [23] and Kitahara and Imada [24].

3 Semi-implicit Fourier spectral method

A high-quality numerical study of the Cahn-Hilliard equation firstly requires a large sys-
tem size to have good statistics and to minimize the effect of periodicity imposed by
periodic boundary conditions. Secondly, longer enough evolution time is necessary in
order to understand the scaling behavior of morphological patterns. Our previous stud-
ies [26, 34] showed the semi-implicit Fourier-spectral method of the variable mobility
Cahn-Hilliard equation made it possible to use large time steps without losing stability
and accuracy. Consequently, we can perform long-time simulations with large system
sizes.

We use a Fourier spectral approximation to (2.3) by transforming the partial differen-
tial equation into a sequence of ordinary differential equations in the Fourier space,

∂C̃(k,t)

∂t
= ik·

{

M(C)[ik′({−C+C3}
′

k+κk′
2
C̃(k′,t))]r

}

k
, (3.1)

where k=(k1,k2) is a vector in the Fourier space,

k=
√

k2
1+k2

2

is the magnitude of k, and ˜C(k,t) and {−C+C3}
′

k represent the Fourier transform of
C(r,t) and the bulk driving force term −C+C3, respectively.

For a constant mobility Cahn-Hilliard equation with M(C) = 1, Eq. (3.1) will be re-
duced to

∂C̃(k,t)

∂t
=−k2{−C+C3}k−κk4C̃(k,t). (3.2)

Different from the traditional explicit Euler Fourier spectral method, here we treat the
linear fourth-order operators implicitly and the nonlinear terms explicitly. Then the re-
sulting first-order semi-implicit Fourier-spectral scheme under a constant mobility could



G. Sheng et al. / Commun. Comput. Phys., 8 (2010), pp. 249-264 253

be represented as [26, 34]:

(1+∆tκk4)C̃n+1(k,t)= C̃n(k,t)−∆tk2{g̃(Cn(k,t))}k, (3.3)

where g(C)=−C+C3. For a variable mobility Cahn-Hilliard equation, the explicit Euler
Fourier spectral treatment of (3.1) is

C̃n+1(k,t)−C̃n(k,t)

∆t
= ik·

{

M(C)[ik′({−C+C3}n
k′+κk′

2
C̃n(k′,t))]r

}

k
. (3.4)

The idea of semi-implicit treatment for the above equation is to split the variable mo-
bility M(C) into A and M(C)−A, where A is a suitable constant, and the scheme could
be written as [34]:

(

1+A∆tκk4
)

C̃n+1(k,t)

=
(

1+A∆tκk4
)

C̃n(k,t)+∆tik·
{

M(C)×
[

ik′({−C+C3}n
k′+κk′

2
C̃n(k′,t))

]

r

}

k
, (3.5)

where A = 1
2 [max(M(C))+min(M(C))]. In this paper, all the composition dependent

mobility functions M(C) has the scaled maximum value M=1 and minimum M=0, thus
A=1/2 is a good approximation for all the simulations.

4 Simulation results

To model the coarsening kinetics, the simple double-well free energy function

f (C)=−
1

2
C2+

1

4
C4

has two minima located at Cp =−1 and Cm =+1, respectively, representing the equilib-
rium compositions of the two phases.

To introduce the diffusional mobility difference between the two phases in a two-
phase mixture, we employ a number of functions to describe its compositional depen-
dence (Table 1). For example, for the case of M=(1+C)/2, the diffusional mobility in the
Cp =−1 phase is reduced to zero, whereas that in the Cm =+1 phase is close to one. This
produces a large mobility difference between the two phases.

The simulations are performed on a 2D square domain using 1024×1024 grid points
with a grid size 1.0 and 2048×2048 grid points with a grid size 0.5. For both cases, the
time step ∆t is taken to be 1.0. We consider two overall compositions values: C0 = 0 for
interconnected two-phase microstructure with 50% volume fraction for each phase and
C0 =0.4 for coarsening of isolated precipitate particles (∼30% volume fraction) in a con-
tinuous matrix. Periodic boundary conditions are employed. The system is initially pre-
pared in a homogeneous state by assigning a random number to each grid point around
their overall composition. The random numbers are uniformly distributed between 0.1
and −0.1 corresponding to a high-temperature initial state where the composition devi-
ation from the average value is only caused by fluctuations. Averages are taken over 4
simulation runs using a different set of random numbers for each initial state.
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Table 1: Scaled mobility function related to different mechanisms.

Scaled Mobility function Mm(C=1) Mp(C=−1) Mechanisms
1 1 1 bulk diffusion dominated

1−C2 ≈0 ≈0 interface controlled
(1+C)/2 1 ≈0 huge mobility disparity

exp[0.5−1/(0.9+C)] 1 ≈0 huge mobility disparity
0.45sin(0.5πC)+0.55 1 0.1 10 times difference

0.495sin(0.5πC)+0.505 1 0.01 100 times difference

Figure 1: Morphological patterns during spinodal decomposition and subsequent coarsening for different dy-
namics at t=10000 (top) and t=30000 (bottom): (a) bulk-diffusion-dominated (b) large-mobility-disparity (c)
interface-controlled.

4.1 Morphological evolution

Fig. 1 shows a typical example of temporal evolution of morphological patterns during
coarsening using the mobility function M =(1+C)/2. For comparison, we also include
a morphology obtained assuming M =1, i.e., bulk-diffusion-dominated coarsening, and
M = 1−C2 for interface-diffusion-dominated dynamics, all started with the same initial
condition. In Fig. 1, the local composition is represented by different colors with red
representing positive values and blue negative values. For the critical overall compo-
sition at C0 = 0, the volume fractions of the two phases are about the same, leading to
interconnected morphologies. Domain coarsening is evident in all the three cases. How-
ever, the coarsening rates are quite different as shown from the morphology, and the
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Figure 2: Morphological patterns during coarsening at 30% second-phase volume fraction from the numerical
solutions of the Cahn-Hilliard Equation at t = 10000s (top) and t = 30000s (bottom) with (a) bulk-diffusion-
dominated and (b) large disparity mobility.

average domain sizes decrease from left to right at both time steps, indicating that the
bulk-diffusion-dominated case has the highest coarsening rate (R ∝ t1/3) while interface-
diffusion-dominated coarsening is the slowest (R∝ t1/4). The coarsening rate for the case
of a large mobility disparity between the two phases is slower than the bulk-diffusion-
dominated coarsening but faster than the interface-dominated case. Morphological pat-
terns and coarsening rates obtained using other mobility functions from Table 1 show
similar results as the M=(1+C)/2 case.

The microstructure evolution for a 30% volume fraction of the second phase (C0=0.4)
at two different times is shown in Fig. 2. Different from the previous case with almost
equal volume fractions for the two phases, the two-phase microstructure in this case
consists of second-phase particles dispersed in a continuous matrix phase. Due to the
well-known Gibbs-Thomson effect, the chemical potential within the smaller particles is
higher than that of the larger particles [25], and thus coarsening proceeds by a diffusional
mass transfer process of atoms near the smaller particles towards the larger particles. The
larger particles then grow at the expense of the smaller particles. According to the clas-
sical theory, it is expected that coarsening in this case is controlled by diffusion in the
matrix. We compare the morphologies at a later time (t=30000) for the constant mobility
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and large-disparity-mobility cases. It can be seen that the total number of particles in
Fig. 2(a) is less than that in Fig. 2(b) and hence the average particle size is larger for the
constant mobility case, indicating that the coarsening rate is faster than the latter case.
Since the diffusion coefficients in the matrix are the same for the case of a constant mobil-
ity M=1 and the case of a variable mobility M=(1+C)/2, the observed coarsening rate
reduction for the latter case is mainly due to the reduction of the diffusion coefficient in
the two-phase diffuse-interface regions, i.e., the reduction of interface diffusion.

4.2 Coarsening kinetics

To analyze the coarsening kinetics, we employed a number of different approaches to de-
termine the average length scale,R,as a function of time,t, including the temporal struc-
ture function, pair correlation function as well as the direct counting of particle sizes in
real space [21, 26, 35]. The time-dependent structure factor, S(k,t), is defined as [21]

S(k,t)=
1

N

〈

∑
r

∑
r′

e−ik·r[C(r+r′,t)C(r′,t)−〈C(r,t)〉2]

〉

, (4.1)

where both sums run over the lattice of linear size L and N = L2 is the total number of
points in a two-dimensional lattice. For an isotropic microstructure, one can also define
a circularly averaged structure factor S(k,t).

The corresponding pair correlation function, G(r,t), can be obtained from the struc-
ture function,

G(r,t)=∑
k

eik·rS(k,t). (4.2)

The circularly averaged and normalized correlation function, g(r,t), is

g(r,t)=
G(r,t)

G(0,t)
, (4.3)

where G(r,t) is the circularly averaged pair correlation function and

G(0,t)= 〈C2(r)−〈C(r)〉2〉. (4.4)

The structure factor normalized by G(0,t) is then

s(k,t)=S(k,t)/G(0,t). (4.5)

Fig. 3 shows an example of the normalized and circularly averaged structure function
s(k,t) at eight different time steps for the large-mobility-disparity dynamics at C0 = 0.0.
The lines are spline fits to the simulation data. As expected, as time increases, the maxi-
mum value of the structure function increases and shifts to lower k, indicating an increase
in the real-space average length scale.
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Figure 3: Structure factor s(k,t) with wave vector k at eight different time steps for large-mobility-disparity
coarsening (M =(1+C)/2,C0 =0.0).

Figure 4: Normalized pair correlation function g(r,t) with rk1 for large-mobility-disparity coarsening (M =
(1+C)/2,C0 =0.0).

We also plotted the circularly averaged pair correlation function for the large mo-
bility disparity dynamics at C0 = 0.0 after t = 30000. A main feature of the dynamical
scaling is that the pair correlation function and the structure function s(k,t) depend on
time through the typical length scale R(t) only. As is shown in Fig. 4, the pair correlation
function exhibits characteristic oscillations about zero, which reflects the composition
domain structure. Comparing with the earlier work on bulk-diffusion-dominated and
interface-diffusion-dominated dynamics [21], the shape of the curve is rather similar in
spite of their different dynamics.

The average domain size R(t) can be obtained from the structure function [26, 36], or
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Figure 5: Nonlinear-fitting of the average domain size measured from different methods: C0 = 0.0, grid size
1024×1024. (a) by 1/k1(t), (b) by Rg.

the radial distribution function [25, 26] or direct counting of grid points in the real space.
For example, one could characterize R(t) using the first moment of s(k,t), defined by

k1(t)=
∑ks(k,t)

∑s(k,t)
. (4.6)

One could also determine R(t) by locating the first zero of the real-space pair correlation
function, Rg, computed by a linear interpolation of the two points closest to the first sign
change in g(r,t).

Fig. 5 shows the time dependence of R(t) characterized by both 1/k1(t) (a) and Rg (b)
as a function of time for the case of average composition C0 = 0 and mobility function
(1+C)/2. To determine the coarsening exponent, we fit the data from the simulations to

R
n
−R

n
0 = kt, (4.7)

where R(t) is the average domain size at a given time t, R0 is the initial length scale at
t = 0, and k is the coarsening rate constant. The scatter circles are plots of the simulated
data and solid lines are from non-linear fitting. Using non-linear regression, we found
the exponent n is around 3.3 for both 1/k1(t) (a) and Rg (b).

For the non-critical composition with particle coarsening case as shown in Fig. 2, we
can also calculate the average size of spherical particles through direct measurement of
individual particle sizes. As shown in Fig. 6(c), the average particle size is determined
from a system with about 30% volume fraction. The diffusional mobility in precipitates
is assumed to be near zero through the function M = (1+C)/2. Consistent with those
determined from 1/k1(t) (a) and Rg (b), the corresponding coarsening exponent n directly
from counting the particle sizes is around 3.3.

Our simulation results demonstrate that, this R
3.3

∝ t growth law is independent of
the volume fraction of the second phase. In both Fig. 5 and Fig. 6, the growth laws for
two initial average compositions, C0=0.0 and C0=0.4, have similar coarsening exponents
which are very close to 3.3.
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Figure 6: Nonlinear-fitting of the average
domain size measured from different meth-
ods: C0 = 0.4, grid size 1024×1024. (a) by
1/k1(t), (b) by Rg, (c) by direct measure-
ment.

5 Discussions

The coarsening time exponent, 3.3 or ∼ 10.0/3, as presented in the result section above,
was obtained using a specific mobility function

M=
1

2
(1+C). (5.1)

The equilibrium compositions of the two phases are at C=−1 and +1 respectively. There-
fore, this mobility function was expected to lead to a zero mobility in the phase with
C =−1 and a finite mobility within the other phase with C = +1. However, it should
be noted that due to the capillarity effect, the concentrations within the composition do-
mains may not be exactly +1 or −1. Therefore, the mobility is not close to zero or one
even with the mobility function (1+C)/2 (with C = −1 in the particles). To evaluate
whether this capillarity effect has any significant effect on the coarsening kinetics, we
conducted an additional test with the mobility function

M=exp[0.5−1/(0.9+C)], (5.2)

which will result in a mobility which varies from 1.0 in the matrix to close to 0.0 very
quickly across the interface. As shown in Fig. 7, this mobility function leads to a similar
coarsening time exponent.
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Figure 7: Nonlinear-fitting of the average domain size vs time using mobility function M=exp[0.5−1/(0.9+C)]:
C0 =0.4, grid size 1024×1024.

Figure 8: Coarsening exponents as a function of the different ratio between the mobility in precipitate Mp and

in matrix Mm from different mobility functions. Scaling methods include 1/k1(t), Rg and direct measurement

of the particle size (noncritical case), the data point at Mp/Mm =0 is taken from the function M =(1+C)/2
and M =exp[0.5−1/(0.9+C)].

To investigate how the degree of mobility disparity between the matrix and precip-
itate affect the coarsening kinetics, we also perform a series of simulations with differ-
ent ratios between the mobility in precipitate Mp and in matrix Mm from Mp/Mm = 1
to Mp/Mm = 0 and measure the coarsening exponents. Fig. 8 represents the results as a
function of mobility ratios from different mobility functions (Table 1). The error bars indi-
cate the variation of data from non-linear fitting. The data at Mp/Mm=0 is collected from
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Figure 9: Nonlinear-fitting of the average domain size vs time at different time stages of coarsening at 10 times
difference mobility: C0 =0.0, grid size 2048×2048. (a) overall, (b) beginning, (c) middle, (d) end.

the function (5.1) (Fig. 5 and Fig. 6) and (5.2) (Fig. 7), others are all from sine functions.
Different symbols stand for the variation of measurement methods including 1/k1(t), Rg

and direct measurement of the non-critical particle case (Fig. 6(c)). The coarsening mech-
anisms changes with mobility ratio could be divided into two groups. The coarsening
exponent remains around 3.0, indicating a bulk diffusion controlled cubic law for mo-
bility ratios Mp/Mm from 1.0 to 0.8, 0.6, 0.4 until 0.2. The exponent increase from 3.0
(Mp/Mm =0.2) to 3.3∼3.4 when the ratio continues reducing to around 0.1 and further,
which indicates that an order of magnitude difference between the mobility in matrix

and precipitate leads to the R
3.3

law. The coarsening exponent stays with 3.3∼ 3.4 even
with the mobility ratio reduced to near zero.

We also examined whether the coarsening time exponents at different stages might
be different by running much longer simulations. Fig. 9 and Fig. 10 show the non-linear
fitting results at different time stages during the coarsening process at different com-
positions and mobility ratios. The coarsening exponent n remains within a close range
around 3.3, demonstrating that the coarsening behavior is independent of the different
time stages.

The predicted coarsening exponent from this work, 3.3 or ∼10/3, seems to be consis-
tent with experimental results on the coarsening kinetics of γ′ precipitates in Ni-5.2Al-
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Figure 10: Nonlinear-fitting of the average domain size vs time at different time stages of coarsening at 100
times difference mobility: C0 =0.0, grid size 2048×2048. (a) overall, (b) beginning, (c) middle, (d) end.

14.2Cr aged at 873 K [30]. The diffusional mobility in the precipitates is about one order
of magnitude smaller than that in the matrix. The average radius R of the γ′ precipitates
is determined by Atom Probe Tomographic and a coarsening exponent of 3.33±0.45 is
obtained.

6 Summary

The coarsening kinetics with large diffusional mobility disparity was studied using the
variable mobility Cahn-Hilliard equation. It is shown that the morphological pattern
evolution in large-mobility-disparity coarsening is slower than the diffusion-limited but
faster than interface-controlled coarsening, closely related to the slow interface diffusion.
Based on our simulation results, we obtained a growth law

R
3.3

∝ t

for two-phase systems with mobility disparity differing by one order of magnitude or
higher, which is shown to be also independent of second-phase volume fraction in the
volume fraction range studied.
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