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Abstract. A primitive variable spectral method for simulating incompressible viscous
flows inside a finite cylinder is presented. One element of originality of the pro-
posed method is that the radial discretization of the Fourier coefficients depends on
the Fourier mode, its dimension decreasing with the increase of the azimuthal modal
number. This principle was introduced independently by Matsushima and Marcus
and by Verkley in polar coordinates and is adopted here for the first time to formulate
a 3D cylindrical Galerkin projection method. A second element of originality is the use
of a special basis of Jacobi polynomials introduced recently for the radial dependence
in the solution of Dirichlet problems. In this basis the radial operators are represented
by matrices of minimal sparsity — diagonal stiffness and tridiagonal mass — provided
here in closed form for the first time, and lead to a Helmholtz operator characterized
by a favorable condition number. Finally, a new method is presented for eliminating
the singular behaviour of the solution originated by the rotation of the lid with respect
to the cylindrical wall. Thanks to these elements, the resulting Navier-Stokes spectral
solver guarantees the differentiability to any order of the solution in the entire compu-
tational domain and does not suffer from the time-step stability restriction occurring
in spectral methods with a point clustering close to the axis. Several test examples are
offered that demonstrate the spectral accuracy of the solution method under different
representative conditions.

AMS subject classifications: 65N30, 65N35

Key words: Navier-Stokes equations, finite cylindrical domain, spectral methods, Jacobi and Leg-
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1 Introduction

To simulate the flow inside cylindrical cavities or along straight tubes of circular cross
section the use of cylindrical coordinates is the natural choice and the adoption of a spec-
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tral discretization is particularly convenient when high accuracy is a major concern. In
the last two decades several numerical schemes of this type have been developed for
solving the incompressible Navier-Stokes equations to study the stability and investigate
the transition of flows within cylindrical walls.

Focusing directly on fully 3D, i.e., not axisymmetric, flows, the first successful spectral
methods for solving the equations in cylindrical coordinates were introduced by Moser
et al. [1] and by Marcus [2] to simulate the flow between concentric cylinders of infinite
axial extent. For the more challenging situation of a finite cylindrical gap the first spectral
scheme was developed by Le Quéré and Pécheux to reproduce natural convection flows
by means of Chebyshev polynomials and using the influence matrix technique [3].

Coming to cylindrical domains including the axis, a first attempt for the axially pe-
riodic case was done by Quartapelle and Verri who proposed an uncoupled Chebyshev
method employing integral conditions for pressure [4]. Then, for the very important case
of a finite cylinder, the spectral method of Lopez et al. must be mentioned [5]. It is a
projection method representing the full 3D extension of the axisymmetric spectral solver
developed by Lopez and Shen [6]. These methods stem from a Galerkin formulation of
the underlying elliptic equations and employ the hierarchical bases of Legendre polyno-
mials leading to matrices of very small bandwidth introduced by Shen in [7].

When the computational domain includes the axis or part of it, any spatial discretiza-
tion is faced with the difficulty that the system of cylindrical variables entails a coordi-
nate singularity at the axis, the so-called ”pole” or ”centre problem”. In fact, there are
regularity conditions on the Fourier expansion coefficients to be respected on the axis to
guarantee the infinite differentiability of scalar and vector functions there, as clarified by
the analysis of Lewis and Bellan [8]. For spectral methods their fulfillment can ensure the
spectral accuracy of the computed solutions.

Methods have been proposed in the last years for dealing with the axis problem in
spectral approximations for incompressible viscous flows inside cylindrical walls. Just
to mention two examples, Fornberg introduced a method consisting in extending the
radial variable also to negative values [9], see also [10, Sec. 6.2, p. 110] or [11, Chap. 11, p.
115], Speetjiens and Clercx described a Chebyshev collocation method for the vorticity-
velocity equations resorting to the influence matrix technique [12].

From the mathematical viewpoint of solving elliptic equations, the occurrence of the
singularity on the axis in cylindrical coordinates was addressed originally by Mercier and
Raugel for a finite-element-based approximation [14]. In the context of spectral methods,
the issue has been considered in the monograph [15, Sec. 3.4.1, p. 90] and a variational
formulation of scalar elliptic equations based on weighted Sobolev spaces is described in
the monograph of Bernardi et al. [16].

As a matter of fact, the difficulties associated with the pole can be actually turned
into an opportunity when discretizing the problem by means of a spectral approxima-
tion. According to the analysis of [8] the Fourier components um(r,z) of a differentiable
scalar function u(r,z,φ) of the cylindrical coordinates (r,z,φ) must satisfy the following
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conditions to be a regular function of R3:

um(r,z)= r|m|Um(r2,z),

with the function Um(s,z), s≥0, being a regular function of its two variables. If these reg-
ularity conditions are not satisfied, the pole problem arises, since the numerical scheme
provides an unwanted over-resolution near the cylinder axis which may severely limit
the time step in the solution of evolutionary problems. On the other hand, the regularity
conditions are helpful since they can be exploited to reduce the number of basis functions
employed, by omitting the functions not satisfying them.

The first well conditioned basis that satisfies all the regularity conditions above and
provides spectral accuracy has been proposed by Matsushima and Marcus [17] in the con-
text of the solution of 2D Neumann boundary value problems, see also Verkley [18, 19].
This basis has also been employed recently by Boronski and Tuckerman in a pseudo-
spectral method for the Navier-Stokes equations with the velocity field expressed in
terms of poloidal and toroidal potentials [13]. A different approach has been adopted
by Priymak and Miyazaki [20] who proposed a spectral Navier-Stokes solver with peri-
odic boundary conditions along the cylinder axis satisfying regularity conditions on the
axis by means of a suitable change of variable and employing a Chebyshev expansion in
the radial direction.

Unfortunately, the condition numbers associated with Helmholtz operator grow as
the fourth power of the degree for this basis. Moreover, its application to solve Dirichlet
problems is unduly complicated. However, an important achievement of these works is
that they have made explicit the advantage of using a spectral discretization for the ra-
dial variable that depends on the Fourier modal index. This implies the use of matrices
of different order for representing the radial operators of different Fourier modes. Ac-
tually, this principle is not entirely new. It is in fact at the heart of the representation by
spherical harmonics of functions defined over a sphere, with the number of associated
Legendre functions required for the latitudinal description decreasing with the longitu-
dinal frequency.

To exploit this idea for the Dirichlet problem in cylindrical coordinates a new Jacobi
basis has been introduced to represent radial variations by Auteri and Quartapelle for
Poisson and Helmholtz equations [21], that overcomes the disadvantages of that devel-
oped for the Neumann problem. The new basis leads to matrices for radial operators
characterized by a minimal sparsity: for any Fourier mode, the stiffness matrix turns out
to be diagonal and the mass matrix tridiagonal, and all their nonzero elements can be cal-
culated in closed form, as described in the present paper. Moreover the condition number
of the radial elliptic operator grows as the second power of the degree of the basis.

The aim of the present paper is to employ the new Jacobi basis to develop a spectral
method for the simulation of incompressible viscous flows inside a cylinder. The solution
algorithm for the primitive-variable Navier-Stokes equations is formulated according to
the incremental fractional-step method of Guermond and Quartapelle [22] and extends
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the Cartesian spectral method developed by Auteri and Parolini [23] to cylindrical do-
mains of finite axial extent.

The paper is organized as follows. In Section 2, the incompressible Navier-Stokes
problem is stated and the basic elements of the second-order incremental fractional-step
method are recalled. In Section 3, the spectral approximation of elliptic equations in a
cylindrical domain is described. In Section 4, the evaluation of the explicit terms, namely,
gradient, divergence and nonlinear terms, in weak form is outlined. Section 5 describes
an original analytical method for removing the singularity of the velocity boundary con-
ditions when one lid of the cylindrical container or both rotates while the lateral surface is
fixed. Section 6 contains the results of some numerical tests on the Navier-Stokes solver.
The last section is devoted to the concluding remarks.

2 Navier-Stokes equations and projection method

This paper deals with the motion of a viscous fluid of uniform density inside a cylinder
of finite axial extent, governed by the incompressible Navier-Stokes equations







∂u

∂t
+(u·∇)u−ν∇2u+∇p= f (r,t), ∇·u=0,

u|∂Ω =b, u|t=0 =u0,
(2.1)

where u is the velocity, p = P/ρ is the pressure per unit density of the fluid, ν is the
kinematic viscosity and f (r,t) is an external force field (per unit mass) possibly acting on
the fluid, for example the gravitational field. In the problem above, b(r∂Ω,t), with r∂Ω ∈
∂Ω, represents the velocity prescribed on the boundary and u0(r) is the initial velocity
field. The domain Ω is a finite cylinder of radius a and height 2h so that its boundary ∂Ω
consists of the lateral cylindrical surface a×[−h,h]×[0,2π), and of the top and bottom
circular lids [0,a]×{±h}×[0,2π).

The Navier-Stokes problem (2.1) is solved by means of the second-order BDF incre-
mental projection method described in [22] with reference to a finite element spatial dis-
cretization and assuming a semi-implicit treatment of the nonlinear term. The uncon-
ditional stability and the time convergence of that integration scheme has been demon-
strated by Guermond [24]. In the spectral discretization of interest here, the nonlinear
term is taken into account only explicitly by means of linear extrapolation for approxi-
mating the velocity field at the new time level, so that a conditionally stable scheme is
obtained, with the time-step size limited by a suitable stability restriction.

The fractional-step approach is based on splitting the time advancement of the mo-
mentum equation in two distinct phases or sub-steps. The first sub-step consists in the
following viscous problem for the vector unknown uk+1:







3uk+1−4uk+uk−1

2∆t
−ν∇2uk+1 = f k+1−∇pk

⋆−(uk+1
⋆ ·∇)uk+1

⋆ ,

uk+1
|∂Ω =bk+1,

(2.2)
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where f k+1 = f (r,tk+1), and bk+1 = b(r∂Ω,tk+1). Here the extrapolated velocity and pres-
sure fields are defined respectively by

uk+1
⋆ =

{

u0, for k=0,

2uk−uk−1, for k≥1,
(2.3)

and

pk
⋆ =























p0, for k=0,

3p1−2p0, for k=1,
1
6 (14p2−11p1+3p0), for k=2,
1
3 (7pk−5pk−1+pk−2), for k≥3,

(2.4)

with p0 denoting an initial pressure field which must be provided or calculated insofar
as the incremental method is employed since the first time step.

The second sub-step consists in projecting uk+1 onto the space of the divergenceless
vector fields that are tangent to the boundary ∂Ω and can be formulated as the following
Poisson problem for pressure







−∇2(pk+1−pk)=− 3

2∆t
∇·uk+1,

∂n(pk+1−pk)
∣

∣

∂Ω
=0,

(2.5)

subject to a homogeneous Neumann boundary condition. A review of projection meth-
ods is given by Guermond et al. [25].

3 Discretized equations in cylindrical coordinates

3.1 Helmholtz equation for velocity

At each viscous step one has to solve the vector Helmholtz equation
(

−∇2+γ
)

u= f (r,z,φ), (3.1)

in cylindrical coordinates (r,z,φ), with γ>0, supplemented by the Dirichlet condition

u(r,z,φ)|∂Ω =b(r,z,φ),

where b is defined on the entire boundary ∂Ω of the cylindrical domain. The domain of
definition goes all around the z-axis, that is, 0≤φ<2π. Since we are interested only in real
vector fields, the velocity u(r,z,φ) will be represented by means of a real discrete Fourier
expansion

u(r,z,φ)=u0(r,z)+2
N−1

∑
m=1

(

um(r,z)cos(mφ)−u−m(r,z)sin(mφ)
)

+uN
z (r,z)cos(Nφ) ẑ. (3.2)
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This particular form of the Fourier expansion is requested by the FFT library adopted for
the implementation of the algorithm. The Fourier vector coefficients are

um(r,z)=um
r (r,z) r̂+um

φ (r,z)φ̂+um
z (r,z) ẑ, (3.3)

with r̂, φ̂ and ẑ denoting the unit vectors of the cylindrical coordinate system.
Introducing the expansions for u and f into the Helmholtz equation (3.1) and equat-

ing similar terms with respect to the angular basis functions, we obtain a series of systems
of equations. Each system is uncoupled from the others and reads, for any integer m,

(

−∂2
m+γ

)





um
r

u−m
φ

um
z



=





f m
r (r,z)

f−m
φ (r,z)

f m
z (r,z)



, (3.4)

where

∂2
m =











∂2
m−

1

r2

2m

r2
0

2m

r2
∂2

m−
1

r2
0

0 0 ∂2
m











, with ∂2
m =

1

r

∂

∂r

(

r
∂

∂r

)

+
∂2

∂z2
−m2

r2
. (3.5)

For m = 0 the system consists of three uncoupled equations since the vector differential

operator ∂2
0 is diagonal. For any |m|≥1, we have a series of systems each consisting of a

subsystem of two coupled equations for the radial and angular components of velocity
plus an uncoupled equation for the axial component.

3.2 Uncoupling the cylindrical components

The z component of the vector field um being uncoupled, we focus our attention on the
algorithm for the uncoupled solution of the other two components, namely, we consider
the two-component vector unknown

um(r,z)=um
r (r,z) r̂+um

φ (r,z)φ̂, −∞<m<∞, (3.6)

for which the system above reduces to

(

−∂2
m+γ

)

(

um
r

u−m
φ

)

=

(

f m
r (r,z)

f−m
φ (r,z)

)

, with now ∂2
m =







∂2
m−

1

r2

2m

r2

2m

r2
∂2

m−
1

r2






. (3.7)

Let us introduce the following symmetric and orthonormal transformation matrix

Q=
1√
2

(

1 1
1 −1

)

, (3.8)
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whose action on the Fourier modes is defined by
(

f m−1
1

f m+1
2

)

=Q

(

f m
r

f−m
φ

)

, and

(

um
r

u−m
φ

)

=Q

(

um−1
1

um+1
2

)

. (3.9)

By left multiplying the system (3.7) for m 6=0 by Q and exploiting the properties of Q, we
obtain

Q
(

−∂2
m+γ

)

Q

(

um−1
1

um+1
2

)

=Q

(

f m
r (r,z)

f−m
φ (r,z)

)

, (3.10)

and

Q∂2
m Q=

(

∂2
m−1 0
0 ∂2

m+1

)

. (3.11)

In other words, the matrix Q defines the following transformation Q of the full set of the
vector Fourier modes

{(um
1

um
2

)

, m=0,±1,±2,···
}

=Q

{(um
r

um
φ

)

, m=0,±1,±2,···
}

. (3.12)

3.3 Uncoupled scalar Dirichlet problem

The transformation Q uncouples the system (3.7). The Helmholtz equation for the veloc-
ity vector (3.1) reduces to three uncoupled scalar equations for the velocity components
um

χ , χ=1,2,3, with the understanding that u3≡uz, that will be written as

(

−∂2
m+γ

)

um = f m(r,z). (3.13)

Eq. (3.13) is supplemented by Dirichlet boundary conditions, obtained introducing the
truncated Fourier expansion of the boundary data

um(a,z)=bm
c (z), |z|≤h, (3.14a)

um(r,∓h)=bm
b,t(r), 0≤ r≤ a, (3.14b)

for the modal unknown um(r,z). Here bm
c (z), with |z|≤ h, denotes the Dirichlet data for

the Fourier components m on the outer side, while bm
b (r) and bm

t (r), with 0≤r≤a, denote
those on the bottom and top sides.

To represent the modal unknown um(r,z), with −N+1≤m≤N, we first introduce the
dimensionless variables ρ = r/a, with 0 < ρ ≤ 1, and ζ = z/h, with |ζ| ≤ 1, and indicate
the new unknown ũm(ρ,ζ)= um(r,z) by the same symbol u, as um(ρ,ζ). The new modal
unknown um(ρ,ζ) is given the spectral representation employed in [21] for the solution
of Dirichlet problems. One first introduces the polynomials in the mapped variable s =
2ρ2−1, for m≥0,

P⋆m
0 (s)=1, (3.15a)

P⋆m
i (s)=

1−s

2
P

(1,m)
i−1 (s), i=1,2,··· , (3.15b)
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where P
(α,β)
i (s), −1 ≤ s ≤ 1, denotes the Jacobi polynomials. Then, one introduces the

expansion functions

Qm
i (s)≡

(1+s

2

)m/2
P⋆m

i (s), i=0,1,2,··· , (3.16)

as well as their counterparts dependent on the dimensionless radial variable ρ

Bm
i (ρ)≡Qm

i

(

2ρ2−1
)

=ρm P⋆m
i

(

2ρ2−1
)

. (3.17)

For each value of m, only one basis function assumes nonhomogeneous values on the
outer radius thus enabling to easily impose Dirichlet boundary conditions by means of a
lifting.

Then, the axial variations when Dirichlet conditions apply are represented by em-
ploying the basis {L∗

j (ζ)}, −1≤ ζ≤1, introduced by Shen [7] defined as

L∗
0(ζ)=1, L∗

1(ζ)=
ζ√
2

, (3.18a)

L∗
n(ζ)=

Ln−2(ζ)−Ln(ζ)
√

2(2n−1)
, n≥2. (3.18b)

This basis contains linear combinations of two Legendre polynomials which vanish at the
extremes ζ =±1 to satisfy homogeneous Dirichlet conditions.

The spectral expansion to um(ρ,ζ) is obtained by the double series

um(ρ,ζ)=
N−|m|
∑
i=0

B
|m|
i (ρ)um

i;j L∗
j (ζ)

J

∑
j=0

, (3.19)

where the inverted summation symbol is used to denote the sum over the second summa-
tion index. Notice that different expansion functions are used to express the dependence
of each Fourier component um(ρ,ζ) on the radial variable ρ. The number of involved
functions decreases with m, going from N+1, for the first component with m=0, to only
1, for the last Fourier component with m = N. Correspondingly, the rectangular array of
the expansion coefficients

Um ={um
i;j, 0≤ i≤N−|m|; 0≤ j≤ J}, (3.20)

will be of dimensions (N−|m|+1)×(J+1), with a number of rows dependent on the
Fourier modal index m.

Introducing this expansion in the Galerkin counterpart of Eq. (3.13) and choosing the

weighting function v(ρ,ζ) as the product B
|m|
i (ρ)L∗

j (ζ) of the same basis functions used

to expand the solution, the weak formulation leads to the following system of equations

(

a−2D
�m

+γM
�m

)

UmM+ M
�m

UmDh−2 =Gm+〈B.I.〉m. (3.21)
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The special subscript used in D
�m

and M
�m

is to hallmark that the order of the correspond-
ing square matrix is dependent on the Fourier index m. The boundary term 〈B.I.〉m will
disappear when the Dirichlet boundary condition will be imposed by means of a lifting,
see below. The matrices occurring in this system are defined as follows:

D
�m i,i′ =

∫ 1

−1

[

4
(1+s

2

) dQm
i (s)

ds

dQm
i′ (s)

ds
+

m2

4

(1+s

2

)−1
Qm

i (s)Qm
i′ (s)

]

ds, (3.22)

M
�m i,i′ =

1

4

∫ 1

−1
Qm

i (s)Qm
i′ (s)ds, (3.23)

with 0≤ (i,i′)≤N−m, for the operators associated with the radial variable r. Matrix D
�m

is diagonal [21] and its nonzero elements are defined by

D
�m i,i =







m, for i=0,

2i2

2i+m
, for i≥1,

(3.24)

while matrix M
�m

is symmetric tridiagonal [21] and its nonzero elements are defined by

M
�m i,i =















1

2(m+1)
, for i=0,

i2

(2i+m−1)(2i+m)(2i+m+1)
, for i≥1,

(3.25a)

M
�m i,i+1 =















1

2(m+1)(m+2)
, for i=0,

−i(i+1)

2(2i+m)(2i+m+1)(2i+m+2)
, for i≥1.

(3.25b)

The tridiagonal character of the mass matrix M
�m

follows from the definition of the basis

functions Qm
i (s) and from the orthogonality of the Jacobi polynomials P

(1,m)
i (s)

∫ 1

−1
(1−s)(1+s)mP

(1,m)
i (s)P

(1,m)
k (s)ds=

2m+2(i+1)

(2i+m+2)(i+m+1)
δi,k, (3.26)

with i,k≥ 0. The values of the nonzero elements of the mass matrix are obtained using

this relation. The diagonal character of the stiffness matrix D
�m

can be proved by starting
with the integral of the weak equation before integrating by parts and using the Jacobi
differential equation

(

1−s2
)d2P

(1,m)
i (s)

ds2
+[m−1−(m+3)s]

dP
(1,m)
i (s)

ds
+i(i+m+2)P

(1,m)
i (s)=0, (3.27)

similarly to what suggested for the spherical case by P. W. Livermore in a private com-
munication (2008).
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On the other side, the matrices D and M for the operators in the axial variable are
defined by

Dj,j′ =
∫ 1

−1

dL∗
j (ζ)

dζ

dL∗
j′(ζ)

dζ
dζ, and Mj,j′ =

∫ 1

−1
L∗

j (ζ)L∗
j′(ζ)dζ. (3.28)

Matrix D is the identity matrix but for its first diagonal element which is zero: D0,0 = 0.
Matrix M is symmetric pentadiagonal. The elements of the array Gm on the right-hand
side are defined by

gm
i;j =

1

4

∫ 1

−1

∫ 1

−1
Q

|m|
i (s) f m

(

a
(

1+s
2

)1/2
,hζ

)

L∗
j (ζ)dsdζ. (3.29)

3.4 Lifting of the Dirichlet condition

The nonhomogeneous Dirichlet value bm(ℓ) is taken into account by means of a lifting,
a classical procedure for making the boundary conditions homogeneous. The need of a
lifting for developing multidimensional spectral solvers achieving a complete variable
separation at the level of the spectral expansion coefficients is described in detail for a 3D
rectangular domain in [26].

For the considered problem, the lifting of nonzero Dirichlet boundary values leads to
the following linear system of discrete equations

(

a−2
D

�m
+γM

�m

)

U
m
M+M

�m
U

m h−2 =G
m, (3.30)

where the matrices D
�m

,M
�m

and M denote the lifted counterpart of the matrices D
�m

,M
�m

and M, and similarly the array U
m denotes the lifted version of the unknown Um and

the array G
m is the right-hand side of the lifted system including the effect of the lift-

ing. The linear system is solved by double diagonalization. The diagonalization on the
left requires to solve generalized symmetric eigenvalue problems for the matrix pairs

(D
�m

,M
�m
), m=0,1,··· ,N−1, and is dealt with by the LAPACK routine dsygvd. The diag-

onalization on the right for banded symmetric matrix M is obtained by dsbev.

In Fig. 1 we report the condition numbers of the matrices
(

a−2D
�m

+γM
�m

)

. The left
plot shows the dependence of the condition number on Fourier modal index m for dif-
ferent truncations N, with γ = 1000. The maximum condition number is found to cor-
respond to the intermediate wavelengths of the truncated radial expansion. The plot on
the right gives the maximum condition number for different truncations N and for γ=1
and γ=103. The maximum condition number grows quadratically with N, thus confirm-
ing the optimal conditioning of the proposed spectral approximation for the Dirichlet
problem in cylindrical coordinates.
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Figure 1: Condition numbers of matrices (3.30) of the Dirichlet problem. Left: distribution of the condition
number with the Fourier modal index m for different truncations N and γ =1000. Right: maximum condition
number as a function of the truncation N for different values of γ.

3.5 Poisson pressure equation

At each incompressible step the Poisson equation in cylindrical coordinates −∇2p =
q(r,z,φ) must be solved, supplemented by the homogeneous Neumann boundary condi-
tion (∂n p)|∂Ω=0. The source term q=q(r,z,φ) satisfies the compatibility condition

∫

Ω
q=0,

as a consequence of the imposition in the viscous step of the normal velocity boundary
condition for incompressible flows. The unknown pressure field p is expanded in the
finite Fourier series,

p(r,z,φ)=p0(r,z)+2
N−1

∑
m=1

[

pm(r,z)cos(mφ)−p−m(r,z)sin(mφ)
]

+pN(r,z)cos(Nφ), (3.31)

where the presence of the last term for the component N without the coefficient 2 must
be noticed. The equation for pm(r,z), with −N+1≤m≤N, is

−∂2
m pm =qm(r,z), (3.32)

and is supplemented by homogeneous Neumann conditions:

∂r pm(a,z)=0, for |z|≤h, (3.33a)

∂z pm(r,±h)=0, for r≤ a. (3.33b)

The functions qm(r,z) are the Fourier expansion coefficients of the source q(r,z,φ), with
q0(r,z) satisfying the compatibility condition

∫ a

0

∫ h

−h
q0(r,z)rdrdz=0. (3.34)
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The dependence on r is defined employing a basis similar to the one proposed for the
radial direction in polar coordinates by Matsushima and Marcus [17], see also Verkley
[18]. Reminding the definition of the dimensionless variables ρ= r/a, with 0<ρ≤1, and
ζ = z/h, with |ζ|≤1, we introduce the expansion functions, for m≥0,

B̂m
ı̂ (ρ)=ρm P̂

(0,m)
ı̂

(

2ρ2−1
)

, (3.35)

where P̂
(0,m)
ı̂ (s) are the normalized Jacobi polynomials defined in [21].

The basis L̂ ̂(ζ) used to represent the dependence on the axial variable ζ consists of
the normalized Legendre polynomials, namely,

L̂ ̂(ζ)≡
√

̂+
1

2
L ̂(ζ), for ̂≥0, (3.36)

where L ̂(ζ), ̂≥0, are the Legendre polynomials.
The spectral approximation to pm(ρ,ζ) is defined by

pm(ρ,ζ)=
N−|m|
∑
ı̂=0

B̂
|m|
ı̂ (ρ) p̂m

ı̂; ̂ L̂ ̂(ζ)
Ĵ

∑
̂=0

. (3.37)

By using the Galerkin method, the discrete form of the Poisson-Neumann problem con-
sists of the following linear system of equations, for −N+1≤m≤N,

a−2D̂
�m

P̂m + P̂mD̂h−2 = Q̂m, (3.38)

where

P̂m ={p̂m
ı̂, ̂, 0≤ ı̂≤N−|m|, 0≤ ̂≤ Ĵ}. (3.39)

For the first mode m = 0 matrix D̂
�

is singular. Since also matrix D̂ is (always) singular,

the singularity of the linear system (3.38) for m=0 implies that the unknown P̂0 is inde-
terminate by an arbitrary additive constant. This is in conformity with the presence of
the compatibility condition satisfied by q0. For details about the expression of the matri-

ces D̂
�m

, D̂ and of the array Q̂m, see [21]. The linear systems (3.38) are solved by double
diagonalization.

4 Evaluation of the explicit terms

To complete the description of the algorithm for the spectral simulation of incompressible
flows it is necessary to show how the explicit terms of the equations are evaluated. In the
momentum equation two terms, the pressure gradient and the nonlinear term, must be
considered, while in the pressure Poisson equation only a divergence term must be eval-
uated. In the proposed method all these terms, expressed in weak form, are calculated
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by a pseudospectral technique, which requires to introduce the following sets of points
along the three cylindrical ”directions”:

rg =
(1+sg

2

)
1
2
, 1≤ g≤N+1, (4.1)

zℓ =hζℓ , 1≤ ℓ≤ J+1, (4.2)

φk =
(k−1)π

N
, 1≤ k≤2N, (4.3)

where sg are Gauss-Legendre quadrature points over the interval |s|≤1 and similarly the
points ζℓ over the interval |ζ|≤1.

The pseudospectral technique amounts to the following two steps:

1. Compute the point values of the required term (gradient, divergence, nonlinear);

2. L2 project the term on the basis functions by Fourier transform and Gaussian quadrature.

The two steps are performed by standard techniques, so that it will suffice to give
here only the essential elements required by the present method.

A scalar function u=u(r,z,φ) defined over the cylinder will be represented either by
its expansion coefficients, organized in the structured three-dimensional array,

U =
{

um
i,j, 0≤ i≤N−|m|, 0≤ j≤ J, −N+1≤m≤N

}

, (4.4)

or by the three-dimensional rectangular array

U =
{

u(rg,zℓ, φk), 1≤ g≤N+1, 1≤ ℓ≤ J+1, 1≤ k≤2N
}

, (4.5)

of its point values over the aforementioned cylindrical grid.
The point values U are computed from the expansion coefficients U by the following

transformation
U = F−1

(

L
(

B (U)
)

)

, (4.6)

where F denotes the Fourier transform and L and B amount to multiply each coeffi-
cient by the value assumed by the corresponding basis functions, Legendre axial basis
functions and radial basis functions respectively, on the Gauss points.

The L2 projection of the point values U onto the basis functions requires to introduce
the weights vg and wℓ of the Gauss-Legendre quadrature formula with N+1 and J+1
points, respectively. One has

UUU=
1

4
BG

(

LG

(

F(U )
)

)

, (4.7)

where the operators BG and LG include the multiplication by the appropriate weights of
the Gaussian quadrature and by the point values of the basis functions. Transformations
L , LG, B , BG are actually performed by matrix-matrix multiplications.
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We analyze first the transformations needed to evaluate the nonlinear term. The trans-
formations for vector fields in cylindrical coordinates are more complicated since point
values are required for the cylindrical components of the velocity field, which are indicated
by ur,uφ and uz, to give

~U =
(

U ,V ,W
)

=
(

U r,Uφ,U z

)

, (4.8)

whereas the structured arrays of the expansion coefficients are known for the uncoupled
components u1,u2 and u3 =uz, denoted collectively as

~U =
(

U1,U2,U3

)

. (4.9)

These two sets of vector components are related by the transformation operator Q de-
fined in Section 3.2, which is acting in the space of the Fourier coefficients of the velocity
components. By taking into account the role of the uncoupling transformation Q, the
transformations for the velocity vector variable and the L2 projection of the nonlinear
term will be indicated formally as

~U = F−1
(

Q−1
(

L(B (~U))
))

, and ~NNN=
1

4
BG

(

LG

(

Q(F( ~N ))
)

)

, (4.10)

respectively. The evaluation of the nonlinear term (u·∇)u in weak form proceeds as fol-
lows. First transform the expansion coefficients ~U of the uncoupled velocity components

to the values ~U of the cylindrical components in the physical space by means of

~U = F−1
(

Q−1
(

L(B (~U))
)

)

. (4.11)

Second, evaluate the derivatives U ∂r, U ∂z and U ∂φ, and similarly for the other two cylin-
drical components V and W . This requires to know the point values of the derivative of
the radial basis functions, namely, dBℓ

i (rg)/ds, and of the basis functions L∗
j (ζ), namely,

dL∗
j (ζℓ)/dζ.

Then determine the cylindrical components of the nonlinear term (u·∇)u through
the expressions

N r =U ⋆U ∂r +(aR)−1V ⋆
(

U ∂φ−V
)

+W ⋆U ∂z, (4.12a)

N φ =U ⋆V ∂r +(aR)−1V ⋆
(

V ∂φ+U
)

+W ⋆V ∂z, (4.12b)

N z =U ⋆W ∂r +(aR)−1V ⋆W ∂φ+W ⋆W ∂z, (4.12c)

where ⋆ denotes the element-by-element multiplication of arrays and where we have
introduced the diagonal matrix

R≡diag
(

rg, 1≤ g≤N+1
)

. (4.13)

We notice that the left multiplication by R−1 must be done on any column and for any
plane k = constant of the subsequent 3D array. Finally evaluate the L2 projection of the
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nonlinear term by means of

~NNN=
1

4
BG

(

LG

(

Q(F( ~N ))
)

)

. (4.14)

The evaluation of the gradient term proceeds along the same lines. From the expansion
coefficients

P̂=
{

p̂m
ı̂, ̂, 0≤ ı̂≤N−|m|, 0≤ ̂≤ Ĵ, −N+1≤m≤N

}

, (4.15)

of the pressure, one first evaluates the cylindrical components of its gradient in the
Fourier space, but at the grid points (rg,zℓ), i.e., F−1 is omitted. Then, the transformation
Q is applied to yield the gradient components in the uncoupled basis. Finally, the term is
projected to give its contribution to the momentum equation in weak form.

The divergence of velocity is evaluated by first transforming the expansion coeffi-

cients ~U into the values at the grid points (rg,zℓ), and obtaining also the corresponding
derivatives with respect to r and z. Then, the transformation Q−1 is applied to obtain the
cylindrical velocity components and their derivatives. Finally, the expression of diver-
gence is evaluated and projected to have the weak term contributing to the right-hand
side of the scalar pressure equation.

5 Removal of corner singularity

Typical velocity boundary conditions for flow problems in cylindrical cavities involve a
discontinuous distribution of the boundary values of some component where the bottom
or top walls touch the lateral side. For instance, in the axisymmetric flow within a cylin-
der driven by the rotation of the top side with angular velocity Ω around the axis, the
angular component of velocity is prescribed to vanish on the lateral curved surface but
also to be aΩ at the external limit of the circular top side. Thus the boundary value to be
imposed on uφ is discontinuous in the corner (a,h). As well known, such a discontinuity
prevents the solution uφ to belong to the Sobolev space H1(Ω) so that it is necessary to re-
move it, especially in the context of a spectral approximation to the governing equations.
We describe a method to remove the corner singularity. The method is the simple adap-
tation to cylindrical coordinates of the technique already applied in the spectral solution
of the 3D driven cavity problem [28].

Let us consider the following axisymmetric elliptic boundary value problem


























(

−∂2
0+

1

r2
+γ

)

u= f (r,z),

u(r,h)=Ωr, r≤ a,

u(a,z)=0, |z|≤h,

u(r,−h)=0, r≤ a.

(5.1)

In the spectral solution of this singular problem, the boundary value imposed at the dis-
continuous corner is the average of the two different values, namely, u(a,h)= aΩ/2.
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To regularize such a discontinuity in the boundary values at the upper-right corner
(a,h) we introduce the function

ψ(r,z)=







1− 2

π
tan−1

(h−z

a−r

)

, 0≤ r< a, z≤h,

0, r= a, z≤h.
(5.2)

The unknown variable u is replaced by the ”nonsingular” unknown v defined such as

u=v+S, (5.3)

where S(r,z)≡Ωrψ(r,z) inside the rectangular domain of the problem. In this way the
condition of differentiability to all orders of the original unknown u=uφ for the axisym-
metric problem is satisfied also by the new variable. The new unknown v is solution of
the ”desingularized” boundary value problem:



























(

−∂2
0+

1

r2
+γ

)

v= g(r,z),

v(r,h)=0, r≤ a,

v(a,z)=0, |z|≤h,

v(r,−h)=−Ωrψ(r,−h), r≤ a,

(5.4)

where

g(r,z)≡ f (r,z)− 6Ω

π

h−z

(a−r)2+(h−z)2
−γΩrψ(r,z). (5.5)

The application of this technique to the Navier-Stokes problem with one or two rotating
lids is immediate. Supposing that only the top lid is rotating with angular velocity Ω,
one introduces the modified velocity field v(r,t), as the new unknown, by means of the
definition

u(r,t)=v(r,t)+Ωrψ(r)φ̂. (5.6)

It follows that the initial and boundary conditions for the nonsingular unknown v read

v(r,0)=u0(r)−Ωrψ(r)φ̂, (5.7a)

v(r,t)|∂Ω =b(r∂Ω,t)−Ω [rψ(r)]|∂Ω φ̂. (5.7b)

The elliptic equation for the angular component of velocity will be modified by augment-
ing its right-hand side with the additional source term −6Ω(h−z)

/

π
(

(a−r)2+(h−z)2
)

.

Finally, the nonlinear vector term will be evaluated by replacing the angular compo-
nent of the velocity V with the sum V+S , where S denotes the values of the singular
function

S(r,z)=Ωrψ(r,z) (5.8)
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at the Gauss points. Thus the nonlinear term of the desingularized velocity equation
becomes





N r

N φ

N z



=





U ⋆U ∂r+(aR)−1(V+S)⋆
(

U ∂φ−V−S
)

+W ⋆U ∂z

U ⋆
(

V ∂r +S∂r

)

+(aR)−1(V +S)⋆
(

V ∂φ+U
)

+W ⋆
(

V ∂z+S∂z

)

U ⋆W ∂r +(aR)−1(V+S)⋆W ∂φ+W ⋆W ∂z



, (5.9)

where U ,V and W are the 3D arrays of values at Gauss points of the cylindrical compo-
nents of the nonsingular unknown v.

Notice that in the viscous problem for the vector velocity the desingularization proce-
dure regards the full Navier-Stokes problem, not a single uncoupled scalar elliptic equa-
tion, since evaluation of the nonlinear term (5.9) involves the singular function S(r,z)=
Ωrψ(r,z). It must be remarked that the procedure for desingularizing the problem can
be implemented in the proposed method thanks to the fact that no quadrature point lies
on the boundary and that the derivatives S∂r and S∂z, needed in (5.9), are evaluated only
at internal points of the rectangle [0,a]×[−h,h] where they are finite.

We have solved the Navier-Stokes problem with Re=10 in the cylinder [0,a]×[−h,h],
for a=1.5 and h=1, with the bottom lid rotating. Spectral discretizations with N=J=16,24
and 32 have been considered, with the LBB condition respected both in the radial and
axial directions. The former condition is fulfilled by suppressing the last radial basis
function of the first Fourier mode m = 0 of pressure, as detailed in the next section. The
solutions without desingularization are compared with a reference spectral solution to
the desingularized problem with N = J = 64 by evaluating the relative L2 and L∞ errors
of the azimuthal velocity component, which are reported in Table 1.

Table 1: Relative L2 and L∞ errors of uφ for the spectral solutions without desingularization, second and fourth
column, and with desingularization, third and fifth column. The error is calculated with respect to a reference
spectral solution to the desingularized problem with N = J = 64. In all cases the LBB condition is respected.
The domain is the cylinder r≤1.5, |z|≤1.

N = J L2 L2 L∞ L∞

16 1.4×10−2 1.7×10−4 5.4×10−1 1.9×10−3

24 6.4×10−3 4.2×10−5 4.0×10−1 8.2×10−4

32 3.6×10−3 1.6×10−5 3.9×10−1 3.8×10−4

We note that the singular solution uφ converges in the L2 norm but presents local er-
rors which are almost constant as witnessed by the L∞ error. On the contrary, the desin-
gularized solution displays a faster convergence rate and a more uniform distribution of
the error as shown by the errors in the two considered norms. As far as the other velocity
components are concerned, the accuracy of the singular and desingularized solutions is
almost identical at the considered Reynolds number.

A plot of the difference between the solutions to the singular and desingularized
problems is provided in Fig. 2 in terms of the level curves ∆uφ = 0,±10−2,±10−3 and
±10−4, for N= J=16. The maximum difference is 0.27 and located in the lower right cor-
ner of the section of the cylindrical domain. The strongest spatial oscillations are located
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Figure 2: Difference between the spectral solutions uφ, with and without the desingularization technique.

in this corner and along the two intersecting sides but are of an appreciable intensity
throughout the entire computational domain, as clearly illustrated in Fig. 2.

6 Numerical tests

Several numerical solutions have been computed to validate the Navier-Stokes solver.
First of all, our solution is shown to agree with an exact steady-state solution of the flow
equations and the fundamental importance of satisfying the LBB condition is also doc-
umented. Then the time accuracy of the numerical scheme is assessed by considering a
time-dependent analytical solution of the Navier-Stokes equations. We finally test our
solver against well documented solutions available in the literature: an axisymmetric
flow with bubble formation and a fully 3D flow exhibiting rotating waves.

6.1 Convergence to steady-state solution and LBB condition

To test the spatial convergence of the Navier-Stokes solver, an exact steady-state solution
to the nonlinear equations is taken in the following form

ux(x,y,z)=(sinx)(cosy)(sinz), uy(x,y,z)=(cosx)(siny)(sinz),

uz(x,y,z)=2(cosx)(cosy)(cosz), p(x,y,z)=
3

Re
(cosx)(cosy)(cosz).

The 3D Cartesian velocity field above is solenoidal and the Cartesian-coordinate-based
problem above represents a quite general test for the cylindrical spectral solver. The
corresponding source term is calculated analytically and the steady numerical solution is
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Figure 3: Convergence rate of the spatial discretizations respecting or violating the LBB condition. The three
curves of the velocity errors are almost identical and they collapse in the single continuous curve which is the
lowest of the plot.

compared with the exact one after the velocity is transformed in cylindrical components.
The error is evaluated using the weighted L2

r (Ω) norm, defined by

L2
r error=‖ucomputed−uexact‖L2

r
,

where

‖u‖2
L2

r
=

∫ a

0

∫ h

−h

∫ 2π

0
[u(r,z,φ)]2 rdrdzdφ.

The L2
r norm of a vector function is defined in the standard way by

‖u‖2
L2

r
=‖ur‖2

L2
r
+‖uφ‖2

L2
r
+‖uz‖2

L2
r
,

which allows the definition of the corresponding L2
r error of the velocity spectral solution.

In Fig. 3 we plot the error for three spectral discretizations with N = J = 15,20,25 for the
velocity field. The computational domain is the cylinder with a = 6 and h = 4 and the
Reynolds number is Re=10.

For the incompressible equations the spatial discretization of the pressure is known to
be subject to a stability constraint, called LBB condition. When this condition is violated,
spurious pressure modes appear in the computed pressure field. Moreover, for spatial
discretization of local type, such as finite elements or differences, unphysical spatial os-
cillations are generated also in the velocity field, provided the time-step is sufficiently
small.
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The situation is slightly different for approximations of global type, such as the spec-
tral method, of interest here. It has been found in [27] for Galerkin Legendre approxi-
mations to the Cartesian Navier-Stokes equation that the violation of LBB condition pro-
duces spurious spatial oscillations, but only in the pressure field while the convergence
of the velocity is unaffected. In any case the development of spurious pressure mode is
prevented in the spectral solution simply by using a polynomial representation for the
pressure of two degrees lower than that used for the velocity. This treatment must be
adopted for the spatial discretization in each space direction with two boundary condi-
tions.

In the present case of cylindrical domain with one periodic direction, the LBB con-
dition can be violated when choosing the bases to represent either the axial dependence
or the radial dependence or both. For the former direction, the LBB stability condition is
satisfied simply by taking Ĵ = J−2. For the latter, radial, direction the required modifica-
tion in the radial expansion can be obtained instead by reducing the dimension only of
the subspace of the mode m = 0. The expansion in Jacobi polynomials in this subspace
is easily reduced by eliminating only the highest mode. The complete expansion of the
pressure field including the order reduction to satisfy the LBB stability condition both in
the radial and axial direction would therefore read:

p(ρ,ζ,φ)=
N−1

∑
ı̂=0

B̂0
ı̂ (ρ) p̂0

ı̂; ̂ L̂ ̂(ζ)
Ĵ

∑
̂=0

+2
N−1

∑
m=1

[N−m

∑
ı̂=0

ρm B̂m
ı̂ (ρ) p̂±m

ı̂; ̂ L̂ ̂(ζ)
Ĵ

∑
̂=0

] cos(mφ)

−sin(mφ)

+ρN
[

p̂N
0; ̂ L̂ ̂(ζ)

Ĵ

∑
̂=0

]

cos(Nφ).

We compare the errors of pressure and velocity obtained by means of the Navier-Stokes
spectral solver including three different treatments of the LBB condition: the first spectral
approximation fulfills the LBB condition both in the axial and radial direction; the second
approximation violates the LBB condition only for the radial expansion; finally, the third
approximation violates the LBB condition only for the axial expansion.

The convergence curves of the velocity error are given in Fig. 3. The computational
domain is the cylinder with a = 6 and h = 4. The three curves are almost identical and
appear as the single lowest line in the plot. Therefore, the spectral convergence of velocity
field is achieved irrespective of the satisfaction or violation of the LBB condition.

On the contrary, the pressure error depends on whether LBB condition is satisfied or
not and three different curves indicate that only when the LBB constraint is respected
the convergence of the computed pressure field to the exact pressure can be assured.
The other two schemes with only a partial fulfillment of the stability condition cannot
converge with spectral accuracy even though the solution of the velocity field does.

The violation of the stability condition in the axial expansion is more severe than that
in radial direction. However, the latter violation also prevents spectral convergence. In
Fig. 4 the difference between exact and computed pressure is shown for the LBB correct
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Figure 4: Pressure error and fulfillment of the LBB stability condition, for N = J = 25 and Ĵ = 23. Left: LBB
fully satisfied; Right: LBB not satisfied in the radial direction.

method (left plot) and for the method violating LBB only radially (right plot), for the
steady-state spectral solution with N = J = 25 and Ĵ = 23. In the right plot the spatial
oscillations in an axial plane are clearly seen and are of the same nature in any other axial
plane. By contrast the pressure error of the LBB-correct method shown in the left plot is
three orders of magnitude smaller, is free from spurious spatial oscillations and displays
the spectral rate of convergence.

6.2 Time accuracy of the BDF solver

To assess the convergence rate of the algorithm with respect to the step-size we have
taken a transient analytical solution defined as follows. Consider the stationary 2D ve-
locity field

us
x(x,z)=−cosx sinz, us

z(x,z)=sinx cosz,

which develops in the vertical plane x-z and is solenoidal. The time-dependent veloc-
ity field solution to the unsteady Navier-Stokes equations in three dimensions and the
corresponding source terms are given by

u(r,t)=us(x,z)g(t), f (r,t)=us(x,z)
[

g′(t)+
2g(t)

Re

]

,

with uy =0 and fy =0. The pressure field of this time-dependent solution is given by

p(x,z,t)=−1

4

[

cos(2x)+cos(2z)
]

g2(t).

We assume g(t)=sin2 t. This Cartesian velocity field is transformed in cylindrical compo-
nents ur,uφ and uz to test the Navier-Stokes spectral solver inside the cylinder. The veloc-
ity boundary values are determined from the exact unsteady solution as b=u(r,z,φ,t)|∂Ω.
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Figure 5: Convergence rate of time discretization, for N = J =25, Ĵ =23 and LBB condition fulfilled.

Similarly, the initial velocity field is taken as

u0(r)=u(r,0)=us(r)g(0)=0.

Finally, the initial pressure field required by the second-order incremental BDF scheme is
taken as p0(r)=p(r,0)=0. The temporal convergence is measured in the norm l∞(0,T;L2).

In Fig. 5 the l∞(1,2;L2) errors of the spectral solutions for N = J = 25, fulfilling the
LBB condition, over the computational domain a = 6 and h = 4 for Re = 10 are reported
as a function ∆t. The expected O(∆t2) accuracy of the second-order BDF time integration
scheme with a full respect of the LBB stability condition is confirmed.

6.3 Axisymmetric bubble formation

We consider the rotor-stator configuration with aspect ratio 2h/a = 2 at Re = 1850, for
which Daube [29] found numerically a steady-state solution characterized by two recir-
culation bubbles, located on the axis at z = 0 and z = 0.5, approximately. This flow was
also investigated experimentally by Escudier [30].

The spectral solution has been obtained setting N = J =48 and fulfilling the LBB con-
dition. In Fig. 6 the streamlines of the velocity vector field in the axial plane are shown,
which compare well with the contours of the Stokes streamfunction previously com-
puted by Daube [29]. Note that this solution is also similar to the steady-state solution
computed by Lopez and Shen [6] for Re = 2494 and for the slightly larger aspect ratio
2h/a=2.5.

A more quantitative comparison is made by superimposing the distribution of the ax-
ial velocity uz on the cylinder axis obtained by Daube, using a vorticity-velocity formu-
lation, and with the present method. As shown in Fig. 7 there is a very good agreement
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(a) (b)

Figure 6: (a) Streamlines of the velocity vector field obtained from the present Navier-Stokes solver. (b)
Contours of the Stokes streamfunction from [29].
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Figure 7: Distribution of the axial velocity on the cylinder axis obtained using the present method (continuous
line) and from [29] (◦).

between the profiles of uz and, in particular, between the predicted position of the two
recirculation bubbles.

6.4 3D flow with rotating waves

The capability of the Navier-Stokes solver to represent correctly the dynamics of a purely
three-dimensional flow has been assessed by reproducing the onset of rotating waves in
a rotor-stator configuration for 2h/a=1.72 and Re=4500.

The flow under investigation exhibits a complex nonlinear spatial structure, as may be
deduced from Fig. 8, where the contours of the radial velocity component ur are plotted in
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z=0.6h z=1.2h z=1.6h z=1.8h

Figure 8: Contour lines of the radial component ur of the velocity vector for different distances z from the
bottom end wall.

Figure 9: Contour lines of the radial component ur of the velocity vector for different distances z from the
bottom end wall from Lopez [31].

0 π/6 2π/6 3π/6 4π/6 5π/6

Figure 10: Contour lines of the axial component uz of the velocity vector at different azimuthal angles.

Figure 11: Contour lines of the axial component uz of the velocity vector at different azimuthal angles, from
Lopez [31].
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planes at different distances from the bottom wall. These contours rotate rigidly around
the cylinder axis with a constant angular velocity and in the same direction of the rotating
end wall. Analyzing Fig. 8 it is also clearly seen that the flow has a spatial symmetry Z2=
{1,Rπ}. There is an excellent match between the presented solution and that presented
in Lopez [31] reported here in Fig. 9.

Fig. 10 presents the contour lines of the axial velocity uz in planes at various azimuthal
angle φ ∈ [0,π). Inspecting the contours at φ = 3π/6, the presence of two small spiral
separation zones may be clearly seen near the fixed top wall. The same structures can be
observed also in the reference solution reported in Fig. 11.

7 Conclusions

A new primitive variable spectral method for simulating incompressible viscous flows in-
side a finite cylinder has been presented. The solver is based on the Galerkin formulation
of a second-order BDF projection method for the Navier-Stokes equations in cylindrical
coordinates. The velocity and pressure fields have been expanded using one-sided Ja-
cobi polynomials with a parabolically stretched variable for representing the radial struc-
ture of the solution and Legendre polynomials for its axial dependence, combined with
Fourier analysis. Apart from the Fourier representation which is common to the velocity
and pressure fields, different bases are adopted for expanding the pressure and velocity
fields.

The pressure is advanced in time by a scalar Poisson equation with Neumann bound-
ary condition and is expanded in normalized Jacobi and Legendre polynomials. While
the latter expansion for the axial coordinate is one and the same for all Fourier modes
the former expansion for the radial variable has a size decreasing with the Fourier modal
index. As a consequence, the number of radial modes involved is minimal and the dis-
crete approximation does not introduce an artificial clustering of the integration points
close to the centre, present instead in other spectral methods. The matrices representing
the differential operators in the radial and axial directions are full and the solution of
the discrete pressure equations of each Fourier mode are calculated by means of double
diagonalization.

Coming to the velocity, this field is advanced in time by a Helmholtz equation sup-
plemented by Dirichlet condition and is expanded on a basis constructed from Jacobi
polynomials different from that used for the pressure and which has been introduced
recently by two of the present authors [21]. As far as the dependence on the axial coordi-
nate is concerned, the basis for velocity is built on Legendre polynomials as proposed by
Jie Shen for a Cartesian coordinate. The radial discretization of the velocity is of a differ-
ent order depending on the Fourier modal index m, with the same decrease at higher m
occurring for the pressure. Moreover, the discrete representation of the radial differential
operators is optimal since the matrix corresponding to the second radial derivative is di-
agonal and that corresponding to the mass matrix is tridiagonal, for all Fourier modes. In
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this sense the solution algorithm for the Dirichlet problem represents the true extension
to cylindrical coordinates of the algorithms introduced by Shen for elliptic equations in
Cartesian coordinates. The sparse structure of the matrices for both the radial and axial
operators leads to eigenvalue problems for very simple matrices in the construction of
the double diagonalization algorithm for solving the velocity equation.

By summarizing, the spectral solver for the Navier-Stokes problem in a finite cylindri-
cal domain is a purely variational mixed basis method without any collocation. It is also
characterized by the presence of Gaussian quadrature points for evaluating the nonlinear
term as well as the gradient and the divergence in weak form.

The method has been verified to be very accurate and to have the expected spectral
convergence. Moreover the BDF time discretization adopted has been verified to achieve
the second order accuracy for both velocity and pressure in the L2 norm, provided the
LBB condition is satisfied by a judicious but natural choice of the order of pressure inter-
polation, consisting in using two less spectral modes in the axial directions and one less
mode in the radial direction only for the first Fourier component with m=0.

The comparisons with known solutions, both axisymmetric and nonaxisymmetric, as
well as steady and unsteady, have shown that the proposed method is correct and reaches
the spectral accuracy. Different bases are employed to expand the Fourier coefficients of
pressure and velocity in the azimuthal plane. This is the only element of algorithmic
complexity of the projection method which for the rest can be defined indeed truly prim-
itive.
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