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Abstract. The stochastic Galerkin and stochastic collocation method are two state-of-
the-art methods for solving partial differential equations (PDE) containing random co-
efficients. While the latter method, which is based on sampling, can straightforwardly
be applied to nonlinear stochastic PDEs, this is nontrivial for the stochastic Galerkin
method and approximations are required. In this paper, both methods are used for
constructing high-order solutions of a nonlinear stochastic PDE representing the mag-
netic vector potential in a ferromagnetic rotating cylinder. This model can be used
for designing solid-rotor induction machines in various machining tools. A precise
design requires to take ferromagnetic saturation effects into account and uncertainty
on the nonlinear magnetic material properties. Implementation issues of the stochastic
Galerkin method are addressed and a numerical comparison of the computational cost
and accuracy of both methods is performed. The stochastic Galerkin method requires
in general less stochastic unknowns than the stochastic collocation approach to reach
a certain level of accuracy, however at a higher computational cost.

AMS subject classifications: 35K60, 65N35, 65C50, 78M25

Key words: Nonlinear PDE with random coefficients, polynomial chaos, stochastic collocation
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1 Introduction

Ferromagnetic cylinders rotating at high speeds can be found as part of solid-rotor in-
duction machines in various machining tools and in magnetic brakes. At high speeds,
when the surface layer of a ferromagnetic rotor gets fully saturated, solid-rotor induction
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machines and magnetic brakes produce a higher torque [7]. As a consequence, design-
ing solid-rotor devices with high-speed conductive parts requires to take ferromagnetic
saturation effects into account. These nonlinear material properties can typically not be
quantified exactly. A reliable design needs to deal with uncertainty. One of the goals of
this paper is to determine to what extent uncertainty on the magnetic material parame-
ters influences the machine properties. We will express this uncertainty by introducing
stochastic variables into the mathematical model, which will take the form of a nonlinear
stochastic partial differential equation.

A standard tool for solving stochastic partial differential equations is the Monte Carlo
simulation method [11]. Recently also other techniques have been developed that en-
able to compute high-order accurate stochastic solutions and that try to reduce the large
computational cost of Monte Carlo simulations. Amongst these, the stochastic Galerkin
finite element method [3, 14, 39] and the stochastic collocation method [1, 20, 36] turn out
to be very successful [22,35]. Similar to Monte Carlo, the stochastic collocation method is
based on sampling. The multidimensional samples, called collocation points, are chosen
in order to obtain an exponential convergence rate [1]. The stochastic collocation ap-
proach suffers from a curse of dimensionality for problems with many random variables.
This problem can be alleviated by a so-called ‘sparse grid’ construction of collocation
points [24, 36]. The stochastic Galerkin finite element method, on the other hand, applies
spectral finite element theory to convert a stochastic PDE into a set of coupled determin-
istic PDEs. The number of deterministic PDEs is in general smaller than for the stochastic
collocation method for a same level of accuracy. Yet, the coupling of the deterministic
PDEs leads to high-dimensional algebraic systems, which are expensive to solve.

In this paper, we will point out how the high-order stochastic Galerkin and collo-
cation techniques can be applied to a nonlinear stochastic model of a ferromagnetic ro-
tor. We consider randomness on the magnetic material properties, and allow variability
on the conductivity and on the boundary conditions. The application of the stochastic
collocation method to a nonlinear stochastic PDE is fairly straightforward, as it reuses
deterministic simulation code. Applying a stochastic Galerkin method to a nonlinear
stochastic problem, however, is nontrivial. Only few results on the stochastic Galerkin
method applied to a nonlinear stochastic problem are available in the literature [19–22],
and none of them treat this particular type of nonlinear convection-diffusion problem.
We address the numerical and implementation issues that arise in applying the stochas-
tic Galerkin method to the specified nonlinear model. Further, the question of which
method, stochastic Galerkin or stochastic collocation, yields the most accurate solution
in the lowest computational time, remains open. We shall compare the accuracy and
computational cost of both stochastic solution methods through various numerical ex-
periments. Comparative studies between the performance of the stochastic collocation
and Galerkin method are rare and mostly limited to linear PDEs [5, 20, 35].

This paper is organized as follows. In Section 2, the mathematical model needed
to describe a magnetic field in a ferromagnetic rotating cylinder, is presented. Uncer-
tainty on the material parameters is formulated by introducing random variables into
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the model. Sections 3 and 4 describe two solution approaches for the stochastic model,
namely the stochastic collocation and the stochastic Galerkin method. The latter requires
substantial changes to the deterministic solver routines and its computational aspects are
further detailed in Section 5. A comparison of the accuracy and the computational cost
of both stochastic solution methods is given in Section 6. In Section 7, the propagation of
the uncertainty on the material parameters towards the uncertainty on the torque is illus-
trated by numerical simulations. The main conclusions of the paper and some remaining
open issues are formulated in Section 8.

2 Magnetic field in a ferromagnetic rotating cylinder

In this section, we describe the equations that are used to model a magnetic field in a
ferromagnetic rotating cylinder. First the main characteristics of the deterministic model
and its discretization are given before randomness is introduced into the problem.

2.1 Deterministic model

Model equations. The magnetic field in a rotating cylinder can be described by an Eule-
rian formulation of the Maxwell equations [7],

∇×(ν∇× ~A)−σ~v×∇× ~A+σ
∂~A

∂t
=~Js. (2.1)

In (2.1), ~A expresses the magnetic vector potential, which is related to the magnetic flux

density ~B as ~B =∇× ~A. ~Js is the applied current density, ν the reluctivity, σ the conduc-
tivity and ~v the mechanical velocity.

We shall apply this equation to a 2D model of a ferromagnetic, hollow cylinder mod-
elling the rotor of a cylindrical magnetic brake, as depicted in Fig. 1. The inner radius of
the cylinder equals ri =0.020m, the outer radius ro =0.050m and the length lz =1m. Given
that the current is perpendicular to the plane and that the magnetic flux density lays in
the plane, (2.1) can be rewritten in a cylindrical coordinate system (r,θ,z) as

−1
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∂
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νr
∂Az
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)

− 1
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∂

∂θ

(

ν
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∂Az
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)

+σωm
∂Az

∂θ
+σ

∂Az

∂t
= Js,z, (2.2)

with ~A = (0,0,Az) and ~Js = (0,0, Js,z). The cylinder rotates with an angular velocity ωm,
which is, for our problem, in the range between 0 and 300 rad/s. We assume that the mag-
netic material behavior is isotropic and nonlinear, i.e., ~H=ν(|~B|)~B, where the reluctivity ν
depends on the magnitude of the magnetic flux density ~B=(Br,Bθ,0), and ~H=(Hr,Hθ,0)
represents the magnetic field strength. The deterministic |~B|-|~H|-characteristic is illus-
trated in the right part of Fig. 1. The conductivity σ is assumed to be linear. The cylinder
is placed in a vertical DC magnetic field with Bx = 0, By =−B̂y. The inner region is free
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Figure 1: Left: geometry of the model problem with spectral-element grid. Right: |~B|-|~H|-characteristic of the
ferromagnetic material.

of magnetic flux. These operating conditions are applied by the boundary conditions
Az(ri,θ) = 0 and Az(ro,θ) = B̂yr0cos(θ). The magnetic brake is operated without electri-
cal excitation; Js,z = 0. The applied magnetic field is steady-state, allowing to omit the
time-dependent term. Hence, we shall consider the convection-diffusion PDE:
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(

ν
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∂Az
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+σωm
∂Az

∂θ
=0. (2.3)

Spectral discretization. We discretize (2.3) with a spectral method. In [7], it was shown
that this approach offers many advantages. The numerical approximation converges
faster than in the case of a finite element method and no stabilization techniques, such
as upwinding, are needed. To apply a spectral discretization, the magnetic vector poten-
tial is discretized by using Chebyshev polynomials T̂m(r) in the r-direction and harmonic
functions e−ıλθ in the θ-direction,

Az(r,θ)= ∑
m∈M

∑
λ∈Λ

Az,m,λT̂m(r)e−ıλθ, (2.4)

where M and Λ denote respectively the set of the orders of the Chebyshev polynomials
and the harmonic functions, and ı the imaginary unit. The functions T̂m(r) correspond to
Chebyshev polynomials Tm(s) with s∈ [−1,1], shifted and scaled to r∈ [ri ,ro], i.e.,

T̂m(r)=Tm

(

1

em
ln

r

rm

)

. (2.5)

Here, rm =
√

riro is the geometric mean radius of the hollow cylinder with inner radius ri

and outer radius ro, and em = ln
√

ro/ri is a form factor. The spectral method proceeds by
collocating the error at the nodes of a tensor product grid, combining Chebyshev points
in the r-direction and equidistantly distributed points in the θ-direction, see Fig. 1.

Linearization. The nonlinear reluctivity ν is linearized by means of Newton’s method.
The Jacobian of the spectral discretization of (2.3) is expressed in terms of the differential
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reluctivity tensor ¯̄νd [7]. This tensor, which is function of r and θ, equals

¯̄νd =νc

[

1 0
0 1

]

+2

[

Br

Bθ

]

(

dν

d|~B|2

)

[

Br Bθ

]

. (2.6)

The chord reluctivity νc(|~B|) and dν
d|~B|2 (|~B|) have to be evaluated from the material char-

acteristic for each spatial collocation point (rp,θp) according to the local magnitude |~B|
of the magnetic flux density, which follows from the current approximation to the solu-
tion Az. At Newton step k+1, the following linear system needs to be solved:

(

CdualM
(k)
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)

A
(k+1)
z =−CdualH

(k)
f . (2.7)

In Eq. (2.7), the matrices Cdual ∈ R
N×2N, Cprim ∈ R

2N×N and Wconv ∈ R
N×N represent

respectively the dual curl matrix, the primary curl matrix and the convection matrix,
with N the total number of spatial collocation points used to discretize Az (2.4). The

matrix M
(k)
¯̄νd

∈ R
2N×2N is a 2 by 2 block matrix, composed of four diagonal blocks that

respectively correspond to ¯̄ν
(k)
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d,rθ , ¯̄ν

(k)
d,θr and ¯̄ν

(k)
d,θθ . Each entry of the right-hand side

H
(k)
f ∈R

2N×1 represents the magnetic field strength at the crossing point of the tangent

line that linearizes the |~B|-|~H|-curve in the operation point B
(k)
p : H

(k)
f ,p =

(

ν
(k)
c,p − ¯̄ν

(k)
d,p

)

B
(k)
p .

Further details on the linearization can be found in [8]. In [8], also a comparison of the
solution resulting from a linear and a nonlinear reluctivity is given in order to determine
the effect of the nonlinearity induced by ν.

Motional eddy current density. Because of the rotation of the cylinder, a current density
is induced, which is equal to

Jz =σωm
∂Az

∂θ
. (2.8)

Torque calculation. The simulation procedure is set up to compute the torque as a func-
tion of the mechanical velocity. The torque around the rotor axis is computed using the
Lorentz-force method from the θ-component of the force density fθ , as

Mz = lz

∫ ro

ri

∫ 2π

0
fθr2dθdr. (2.9)

For an incompressible, nonlinear, isotropic material, the θ-component of the force density
is given by [33]

fθ = JzBr+
B

r

∂H

∂θ
− 1

r

∂wmagn,co

∂θ
, (2.10)

where r is the radius and wmagn,co =
∫ H

0 BdH the magnetic co-energy. Notice that H, B
and wmagn,co are scalar fields. The first term in (2.10) is the Lorentz force whereas the
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other terms represent the reluctance force. If the material distribution is homogeneous
and invariant in the direction of motion, the reluctance force vanishes. Here, the nonlin-
earity introduces a heterogeneity in the permeability. The torque calculation by volume
integration combined with a spectral-element method enables to obtain highly accurate
torque values. The alternative Maxwell stress approach is known to be less accurate and
is therefore not considered in this work.

2.2 Stochastic model

In the stochastic model, random variables ξ1, ξ2, ξ3 are introduced to represent the vari-
ability of the material parameters and the imposed boundary conditions. The stochastic
equivalent of (2.3) corresponds to

−1

r

∂

∂r

(

ξ1νr
∂Az

∂r

)

− 1

r

∂

∂θ

(

ξ1ν

r

∂Az

∂θ

)

+ξ2σωm
∂Az

∂θ
=0, (2.11)

for r∈]ri ,ro[ satisfying (2.5) and θ ∈ [0,2π[. Periodic boundary conditions are applied in
the θ-direction, while for r= ri and r= ro Dirichlet boundary conditions hold,

Az(ri,θ,ξ)=0 and Az(ro,θ,ξ)= ξ3 B̂yro cos(θ). (2.12)

In (2.11)-(2.12), ξ is a random vector collecting the random variables present in the model.
Besides ξ1, ξ2 and ξ3, additional random variables are introduced in the definition of the
parameters that describe the |~B|-|~H|-characteristic. In this paper, we focus on a tanh
magnetization curve, as shown in the right panel of Fig. 1. The description of this curve
depends on the magnitude of the magnetic flux density at a so-called knee point, Hknee,
on the final reluctivity at the full saturated range, νfinal, and on two reference values for
the magnetic flux densities, B1

ref and B2
ref:

|~H|=C(|~B|)(ξ4Hknee+ξ5νfinal|~B|) (2.13)

with

C(|~B|)=
1

2
tanh

(

|~B|
ξ6B1

ref

)

+
1

2
tanh

(

|~B|
ξ7B2

ref

)30

.

We randomize these parameters by respectively ξ4, ξ5, ξ6 and ξ7. We denote by L the total
number of random variables. Note that this stochastic model can easily be extended to
other |~B|-|~H|-characteristics, in which case other parameters can be perturbed in a similar
way. Since the reluctivity ν is nonlinear, it depends on the entire ξ-vector.

We assume that all random variables are independent. A joint probability density
function ρ(y) can then be computed as ρ(y)=∏

L
i=1ρi(yi), where ρi(yi) corresponds to the
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marginal probability distribution of ξi with yi ∈Γi, the support of ξi. The expected value
of ξ, denoted by 〈ξ〉, is defined as

〈ξ〉=
∫

Γ
yρ(y)dy, with y=(y1,··· ,yL)∈Γ=

L

∏
i=1

Γi.

Remark 2.1. In our numerical simulations, we will model the random variables ξi, i =
1,··· ,L, as uniformly or lognormally distributed random variables. In the case of a log-

normal random variable we have that ξ
log
i = exp(ξ

g
i ), where ξ

g
i is a Gaussian random

variable with mean µg and standard deviation σg. A lognormal random variable ξ
log
i can

be approximated by a Hermite polynomial expansion [13],

ξlog =exp
(

µg+
1

2
σ2

g

) P̃

∑
q=0

σ
q
g

√

q!
ψq(ξn). (2.14)

In (2.14), ξn is a standard normally distributed variable and ψq a normalized 1D Hermite
polynomial of degree q. This transformation is particularly important for the stochas-
tic Galerkin method, as it enables to represent the solution by a similar expansion with
Hermite polynomials. In that case, when the maximum degree of the polynomials used
for the discretization of the solution equals P, the maximum degree of the polynomials
in (2.14) should be at least 2P, i.e., P̃ ≥ 2P [21]. The mean µlog and variance σ2

log of a

lognormal random variable can be determined from µg and σg as follows:

µlog =exp
(

µg+
1

2
σ2

g

)

and σ2
log =µ2

log

(

exp(σ2
g )−1

)

.

3 Stochastic collocation method

The stochastic collocation method [1, 36] represents the stochastic solution discretely by
an expansion with multivariate Lagrange polynomials, lk(ξ),

Az(r,θ,ξ)≈
Nc

∑
k=1

Az(r,θ,ζk)lk(ξ). (3.1)

The Lagrange polynomials lk(ξ) are interpolatory polynomials, defined by a set of multi-
dimensional collocation points, {ζ1,··· ,ζNc}. Each collocation point ζk consists of L com-
ponents, ζk =(ζk,1,··· ,ζk,L), according to the L random variables present in the problem.
The set of polynomials, {l1(ξ),··· ,lNc(ξ)}, belongs to the space of tensor product polyno-
mials with degree at most P=(p1,··· ,pL). For example, in the case of a full tensor product
construction of the polynomials lk, we have that Nc =∏

L
i=1(pi +1).

The collocation approach proceeds by requiring that the residual, R(Az)=L(Az)− f ,
with L(Az) the differential operator given by (2.11), vanishes at each collocation point,

R(Az(r,θ,ξ))|ζk
=0 for k=1,··· ,Nc.
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From the properties of Lagrange interpolation, this is equivalent to solving a set of Nc

decoupled deterministic PDEs, each of type (2.11), with ξ replaced by the appropriate
collocation point ζk.

3.1 Solution statistics

After solving the deterministic PDEs, the mean of the solution, denoted by 〈Az〉, is ob-
tained by evaluating the expected value of (3.1):

〈Az〉(r,θ)=
Nc

∑
k=1

Az(r,θ,ζk)〈lk〉 with 〈lk〉=
∫

Γ
lk(y)ρ(y)dy,

where ρ(y) is the joint probability density function of the random vector ξ and y∈Γ, the
support of ξ. In a similar way other moments of the solution can be obtained, for example
the variance corresponds to

var(Az)(r,θ)=
∫

Γ

(

Az(r,θ,y)2−(〈Az〉(r,θ))2
)

ρ(y)dy.

Note that an explicit evaluation of the Lagrange polynomials when computing the ex-
pected values 〈lk〉 can be avoided by choosing the set of collocation points to be a cu-
bature point set [35, 36]. In that case, the integrals 〈lk〉 reduce to the cubature weights
w1,··· ,wNc and the variance can be written as [18]

var(Az)(r,θ)=
Nc

∑
k=1

A2
z(r,θ,ζk)wk−(〈Az〉(r,θ))2

.

Remark 3.1. Instead of an expansion with Lagrange polynomials, also an expansion with
multivariate orthogonal polynomials can be employed [34]. The solution is then repre-
sented by the same type of expansion, called generalized polynomial chaos (gPC) expan-
sion, as in the stochastic Galerkin method, see also Section 4 and Eq. (4.1). As in the case
of expansion (3.1), the stochastic collocation method results in a number of decoupled
deterministic PDEs. The solution statistics are readily obtained from the gPC expansion.
Since the stochastic collocation method only computes an approximation for the gPC ex-
pansion of the solution, an aliasing error occurs [35].

3.2 Construction of collocation points

The main advantage of the stochastic collocation method is that it leads to a set of decou-
pled deterministic PDEs. Simulation code available for the deterministic problem [7] can
immediately be reused and parallelization of the algorithm is straightforward. However,
to obtain a high accuracy and at the same time a limited computational complexity, the
choice of the set of collocation points turns out to be crucial.
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The multidimensional collocation points are based on one-dimensional collocation
points which are typically constructed as Clenshaw-Curtis points or as Gauss points,
i.e., zeros of polynomials that are orthogonal w.r.t. the probability density function of a
random variable [24]. A multidimensional set is then obtained by either considering a
tensor product grid or a sparse grid of the one-dimensional points.

Tensor product grid. Given a 1D set of collocation points, yi = {yi
1,··· ,yi

pi+1}, a 1D La-

grange interpolation operator is defined for a smooth function f (y) as

U i( f )(y)=
pi+1

∑
j=1

f (yi
j)hi

j(y) with hi
j(y)=

pi+1

∏
m=1,m 6=j

y−yi
m

yi
j−yi

m

, (3.2)

where hi
j(y) is a basis Lagrange polynomial of degree pi. A tensor product formula com-

bines sequences of 1D interpolation operators into a multidimensional operator:

(U i1 ⊗···⊗U iL )( f )(y)=

pj1
+1

∑
j1=1

···
pjL

+1

∑
jL=1

f (yi1
j1

,··· ,yiL
jL
)
(

hi1
j1
(y)⊗···⊗hiL

jL
(y)
)

.

This multidimensional operator defines the interpolatory polynomials lk(ξ) in Eq. (3.1),
with y replaced by ξ. The tensor product collocation method based on Gauss points
results in an exponential convergence of the probability error w.r.t. the degree of the La-
grange polynomials [1]. It requires however Nc =∏

L
j=1(pj+1) deterministic simulations.

This amount becomes rapidly impractical for a large L or pj.

Sparse grids. The sparse grid construction of the collocation points aims at reducing the
number of points needed for a full tensor product grid, while maintaining the approxi-
mating quality up to a logarithmic factor. An algebraic convergence of the error w.r.t. the
total number of collocation points was demonstrated in [24]. Sparse grids correspond to
a subset of full tensor product grids. The Smolyak algorithm [4,29] introduces an integer
w, called level, and defines an L-dimensional interpolation operator A(w,L) as

A(w,L)= ∑
w−L+1≤|i|≤w

(−1)w−|i| ·
(

L−1
w−|i|

)

·(U i1 ⊗···⊗U iL ), (3.3)

with |i|= i1 +···+iL, i∈N
L and U im defined by (3.2). To compute A(w,L)( f ), one only

needs to know function values evaluated at the sparse grid,
⋃

w−L+1≤|i|≤w

(yi1 ×···×yiL).

When Clenshaw-Curtis points are used, the collocation points corresponding to various
Smolyak levels are nested by choosing the number of collocation points, pi+1, in each
level according to the relation pi = 2i for i > 0 and p0 = 0 [12, 24]. As a consequence,
fewer deterministic simulations are needed in comparison to a non-nested sparse grid
construction with Gauss points, for a fixed Smolyak level w.
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4 Stochastic Galerkin method

The stochastic Galerkin method [14,39] proceeds in two steps. First, a spectral discretiza-
tion of the stochastic space is constructed. This enables to represent the stochastic solu-
tion discretely as

Az(r,θ,ξ)≈
Q

∑
q=1

Az(r,θ)(q)Ψq(ξ). (4.1)

Expansion (4.1) is called a generalized polynomial chaos (gPC) expansion. It employs
a set of multivariate, orthogonal polynomials Ψ = [Ψ1,··· ,ΨQ]T that are defined on the
random variables ξ present in the stochastic model. By choosing the polynomials to be
orthogonal w.r.t. the joint probability density function of ξ, exponential convergence can
be achieved [3, 38]. In the case of Gaussian distributed random variables, Hermite poly-
nomials will be chosen, and, in the uniformly distributed case, Legendre polynomials.
The total number of polynomials Q in expansion (4.1) depends on the number of random

variables L and on the order P of the polynomials Ψq as follows: Q= (L+P)!
L!P! [16].

Secondly, a Galerkin projection is applied to the residual, R(Az)=L(Az)− f ,

〈R(Az)Ψq〉≡
∫

Γ
R(Az)Ψq(y)ρ(y)dy=0 ∀q=1,··· ,Q. (4.2)

This yields a set of Q coupled deterministic PDEs. For general nonlinearities, the integral
in (4.2) cannot be calculated analytically [22]. It can either be numerically approximated
or the problem can be linearized first before applying the Galerkin condition. In the for-
mer case, linearization can be avoided by applying a quasi-Newton method [21]. The lat-
ter approach enables to apply standard stochastic Galerkin techniques for linear stochas-
tic PDEs to the linearized problem. Since a Newton linearization is already available
for the deterministic problem, we consider the second approach and extend the Newton
linearization to the stochastic Galerkin case.

4.1 Newton linearization

Differential reluctivity tensor. The differential reluctivity tensor, ¯̄νd, defined in (2.6),
becomes for the stochastic model (2.11) a random field that depends on r, θ and ξ. Based
on the gPC representation of Az in (4.1), ¯̄νd can be reformulated by a similar expansion:

¯̄νd(r,θ,ξ)=
∞

∑
q=1

¯̄ν
(q)
d (r,θ)Ψq(ξ). (4.3)

We consider first an infinite term expansion. After constructing the linearized systems
and applying the stochastic Galerkin projection, we will show that the high-order terms
for

q>Qν =
(L+2P)!

L!(2P)!
(4.4)
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cancel out due to the orthogonality properties of the polynomials Ψq. This corresponds
to using a gPC expansion of order 2P, with P the order for approximating the solution
in (4.1).

To calculate the coefficient functions ¯̄ν
(q)
d , we start from definition (2.6) where we rep-

resent ~B by a polynomial chaos expansion:

~B=(Br,Bθ,0)≈
Q

∑
q=1

(B
(q)
r ,B

(q)
θ ,0)Ψq(ξ), with B

(q)
r =

1

r

∂A
(q)
z

∂θ
, B

(q)
θ =−∂A

(q)
z

∂r
. (4.5)

Eq. (4.5) immediately follows from (4.1) and the relation ~B=∇× ~A. The stochastic differ-
ential reluctivity tensor ¯̄νd then results in

¯̄νd(r,θ,ξ)=νc(r,θ,ξ)

[

1 0
0 1

]

+2
Q

∑
i=1

Q

∑
j=1

[

B
(i)
r

B
(i)
θ

](

dν(r,θ,ξ)

d|~B|2

)

[

B
(j)
r B

(j)
θ

]

ΨiΨj. (4.6)

This tensor is to be computed for each spatial collocation point (rp,θp) and evaluated
for the current approximation to the solution Az. In order to represent (4.6) by expan-
sion (4.3), a separate gPC representation for the two terms in the right-hand side of (4.6) is
constructed. First, a gPC representation for the chord reluctivity νc(r,θ,ξ) is constructed,

νc(r,θ,ξ)=
∞

∑
q=1

νc(r,θ)(q)Ψq(ξ) with νc(r,θ)(q) = 〈νc(r,θ,ξ)Ψq〉/〈Ψ2
q〉. (4.7)

From the orthonormality of the polynomials Ψq, it follows that 〈Ψ2
q(ξ)〉 ≡ 1. The chord

reluctivity is defined as νc = |~H|/|~B|, where the magnitude of ~B is given by

|~B|=

√

√

√

√

(

Q

∑
q=1

B
(q)
r Ψq

)2

+

(

Q

∑
q=1

B
(q)
θ Ψq

)2

=

√

√

√

√

Q

∑
i=1

Q

∑
j=1

(

B
(i)
r B

(j)
r +B

(i)
θ B

(j)
θ

)

ΨiΨj, (4.8)

as follows from Eq. (4.5), and where |~H| depends on the definition of the magnetization
curve (2.13). Since |~B| cannot be exactly represented by a polynomial chaos expansion
— due to the square root in (4.8) — the gPC coefficients νc(r,θ)(q) need to be calculated
approximately by using numerical integration methods. Therefore, no separate gPC ex-
pansion is constructed for |~B|, but Eq. (4.8) is applied directly to evaluate νc in the nu-
merical integration procedure. The numerator 〈νc(r,θ,ξ)Ψq〉 in (4.7) corresponds to an
L-dimensional integral. It can be approximated by using sparse cubature rules [15, 21]:

〈νc(r,θ,ξ)Ψq(ξ)〉=
∫

Γ1

···
∫

ΓL

νc(r,θ,z)Ψq(z)ρ(z)dz

≈
Nc

∑
k=1

wkνc(r,θ,ζk)Ψq(ζk)ρ̂(ζk), (4.9)
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where {ζ1,··· ,ζNc} is a set of Nc integration points with corresponding weights w1,··· ,wNc.
The construction of the integration points is similar to the sparse grid construction de-
scribed in Section 3.2 based on Gauss points. The scaling factor ρ̂(ζk) takes the difference
between the weighting function used to compute the Gauss points and the probability
density function ρ(z) into account. For example, in the case of L random variables ξi,
uniformly distributed on [−1,1], and Gauss-Legendre cubature points, ρ̂=1/2L.

Next, a gPC representation for the second term in (4.6) is constructed. A small deriva-
tion shows that the derivative dν/d|~B|2 is equal to

dν

d|~B|2
=

d|~H|/d|~B|−νc

2|~B|2
,

where d|~H|/d|~B| can be determined from the derivative of the magnetization curve w.r.t.
|~B|. As before, dν/d|~B|2 cannot exactly be represented by a gPC expansion. Therefore, no
gPC expansion is constructed separately for dν/d|~B|2, instead an approximate gPC ex-
pansion is numerically computed for the entire second term in (4.6). The gPC coefficients
are calculated by sparse high-dimensional cubature rules similar to (4.9).

Linearized system. The gPC representation of ¯̄νd (4.3) together with a spectral spatial
discretization results in the following linearized system at Newton step k+1:

(

∞

∑
i=1

ΨiCdualM
(k)

¯̄ν
(i)
d

Cprim+(1+ξ2)Wconv

)(

Q

∑
q=1

A
(q)(k+1)
z Ψq

)

=−
(

∞

∑
i=1

ΨiCdual

(

M
(k)

ν
(i)
c

−M
(k)

¯̄ν
(i)
d

)

Cprim

)(

Q

∑
q=1

A
(q)(k)
z Ψq

)

,

where M
(k)

¯̄ν
(i)
d

∈R
2N×2N is composed of 4 diagonal (N×N)-matrices containing respectively

¯̄ν
(k)(i)
d,rr , ¯̄ν

(k)(i)
d,rθ , ¯̄ν

(k)(i)
d,θr , ¯̄ν

(k)(i)
d,θθ on the diagonal. The computation of the right-hand side relies

on a gPC expansion for the chord reluctivity νc, as defined in (4.7).

Galerkin condition. The stochastic Galerkin method proceeds by imposing orthogonal-
ity of the residual w.r.t. the polynomial chaos. This yields a linear algebraic system of
NQ equations:

(

Qν

∑
i=1

Di⊗CdualM
(k)

¯̄ν
(i)
d

Cprim+(IQ+G2)⊗Wconv

)

A
(k+1)
z

=−
Qν

∑
i=1

Di⊗Cdual

(

M
(k)

ν
(i)
c

−M
(k)

¯̄ν
(i)
d

)

CprimA
(k)
z with A

(k)
z =[A

(1)(k)
z ···A(Q)(k)

z ]T . (4.10)

The matrix IQ = 〈ΨΨT〉∈R
Q×Q is an identity matrix, as follows from the orthonormality

of the polynomials Ψq. The matrices Di,G2 ∈ R
Q×Q characterize the stochastics of the
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problem and are respectively defined by Di = 〈ΨiΨΨT〉 and G2 = 〈ξ2ΨΨT〉. Properties of
these matrices are given in [10, 27]. Each individual matrix is a sparse matrix, however

the sum, ∑
Qν

i=1Di, is a full matrix [15]. Due to the orthogonality of the polynomials, all
matrices

Di = 〈ΨiΨΨT〉 with i>
(L+2P)!

L!(2P)!

are identically zero so that the gPC expansion of ¯̄νd (4.3) and νc (4.7) can be truncated
after Qν terms, where Qν is defined by (4.4). This explains the range of the summations
in (4.10). The gPC expansions (4.3) and (4.7) can therefore be limited to a gPC order 2P,
with P the order used for approximating the solution in (4.1).

4.2 Post-processing

Solution statistics. As noted in Remark 3.1, solution statistics can be easily obtained
from a polynomial chaos representation (4.1). For example, the mean and variance of Az

correspond respectively to

〈Az〉(r,θ)= Az(r,θ)(1) and var(Az)(r,θ)=
Q

∑
q=2

(

Az(r,θ)(q)
)2

. (4.11)

Torque calculation. Since the torque (2.9) indirectly depends on Az, a gPC representation
for Mz can be constructed as follows:

Mz≈
Qν

∑
i=1

M
(q)
z Ψq,

M
(q)
z =−lzσωm

Q

∑
i=1

Q

∑
j=1

〈ξ2ΨqΨiΨi〉
∫ ro

ri

∫ 2π

0

∂A
(i)
z

∂θ
B

(j)
r r2dθdr

+lz

Q

∑
i=1

Q

∑
j=1

〈ΨqΨiΨi〉
∫ ro

ri

∫ 2π

0

|~B|(i)

r

∂|~H|(j)

∂θ
r2dθdr

−lz

∫ ro

ri

∫ 2π

0

1

r

∂w
(q)
magn,co

∂θ
r2dθdr,

with Jz replaced by ξ2σωm
∂Az
∂θ and |~B| given by (4.8). This gPC expansion is based on

gPC expansions for |~B|, |~H| and wmagn,co, which can be constructed approximately by
using the definition of the tanh magnetization curve and sparse cubature rules, as in
(4.9). From this representation, statistics of the torque can be computed, in a similar way
to (4.11). Alternatively, one could sample the gPC representation of the solution Az, and
apply a Monte Carlo approach to determine the statistics of the torque.
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5 Computational aspects of the stochastic Galerkin method

5.1 Newton’s method

Existence of a solution and convergence. Newton’s method applied to the deterministic
problem (2.3) converges generally within 10 to 20 iterations. A similar convergence is
observed for the stochastic nonlinear problem. This property does only hold, however,
when the introduction of random variables into the model does not violate the necessary
conditions so that a solution to (2.11) exist. These conditions include that the stochastic
coefficient ν(r,θ,ξ;Az) is bounded and strictly positive [2], i.e., that there exist positive
constants α and β such that

P(0<α≤ν(r,θ,ξ;Az)≤β<∞)=1 ∀(r,θ)∈ [ri,ro]×[0,2π[,

where P is the probability measure used to describe the probability space upon which
the random variables ξ are defined.

In practice, we have observed that the convergence of the Newton’s iteration (4.10)
can deteriorate in the presence of roundoff and approximation errors. Especially the
computation of the gPC representations for νc (4.7) and ¯̄νd (4.3) is a potential source of
roundoff errors: the numerical integration should be accurate enough. The Smolyak
cubature formulas applied in (4.3) and (4.7) integrate multivariate polynomials exactly if
their total polynomial degree is at most 2w+1 [21], with w the Smolyak level as defined in
(3.3). Besides these errors it is also important to note that certain parameter variations do
not yield convergent Newton iterations. This issue originates from the description of the
magnetization curve: also for the deterministic problem not all parameter combinations
lead to convergent Newton iterations. Therefore, for some parameters, for example B1

ref,
only small variances of the corresponding random variables are allowed.

Remark 5.1. The solution (4.1) is represented by a global polynomial approximation as a
function of the random input variables. This global approximation can only be justified
when the behavior of the solution does not abruptly change with respect to the random
input parameters. Otherwise, local polynomial approximations could be a solution, e.g.,
a multi-element generalized chaos or multi-wavelet expansion as discussed in [3, 17, 31].
The derivation of the linear algebraic systems (4.10) remains the same in the case of a
multi-element polynomial approximation. Only the matrices Di = 〈ΨiΨΨT〉 and G2 =
〈ξ2ΨΨT〉 will change and might require other iterative solvers than the ones proposed
in Section 5.2. For the relatively small uncertainty on the input parameters considered
here, a smooth behavior of the solution is observed, thus enabling the use of a global
polynomial approximation.

Initial guess. Each Newton iteration (4.10) involves an expensive solve of a large system.
As such, the choice of a good initial guess can reduce the computational time significantly.
The hierarchical structure of the polynomial chaos enables a straightforward procedure
for determining a good initial guess:



E. Rosseel, H. De Gersem and S. Vandewalle / Commun. Comput. Phys., 8 (2010), pp. 947-975 961

• set Az =0;

• for p from 0 to P:

– initial guess Âz =[AT
z 0T]T ∈R

NQ×1, with Q= (L+p)!
L!p! and 0∈R

NQd×1, an all-zero vector

with Qd = (L+p−1)!
(L−1)!p!

;

– solve the nonlinear stochastic problem (2.11) with initial guess Âz for Az represented by a

chaos expansion (4.1) of order p.

Note that the first iteration, with chaos order 0, corresponds to solving a deterministic
problem. The following example illustrates the possible reduction in computational time
by using the above initialization procedure.

Example 5.1. The stochastic problem (2.11) is solved with 5 uniformly distributed ran-
dom variables: ξ1 on [−0.97,1.03], ξ2 and ξ3 on [−0.99,1.01], ξ5 and ξ6 on [−0.98,1.02].
The boundary condition (2.12) is imposed with magnitude B̂yro =1 Tm. The conductivity
σ is equal to 107 S/m. The spatial discretization, represented in Fig. 1, uses 16 degrees of
freedom in both the r- and θ-dimension, corresponding to N=256 spatial unknowns. The
angular velocity ωm equals 291 rad/s. In Table 1, a comparison of the number of Newton
steps and the total computational time is given between using an all-zero initial guess or
an initial guess created by the described procedure. The computations were performed
on a 2.00 GHz Intel Dual Core processor T7300 with 2.0 GByte RAM.

Table 1: Number of Newton steps and total computational time when solving the stochastic problem (2.11)
starting from an all-zero initial guess for Az or an iteratively refined initial guess.

all-zero initial guess: total time = 8187 sec.
P=4, Q=126 13 Newton steps
hierarchically constructed initial guess: total time = 1984 sec.
P=4, Q=126 2 Newton steps
intermediate Newton steps for p< P 13 steps for p=0,Q=1

6 steps for p=1,Q=6
3 steps for p=2, Q=21
3 steps for p=3, Q=56

Remark 5.2. The choice of a good initial guess might also speed-up the stochastic collo-
cation method. When using the solution obtained with a previous stochastic collocation
point as initial guess for computing the solution with another collocation point, this will
generally not result in a reduction of the number of Newton steps, unless perhaps a cer-
tain pre-ordering of the stochastic collocation points is applied. However, as each New-
ton iteration for the stochastic collocation method is relatively cheap — the size of the
Jacobian just equals the number of deterministic unknowns, finding a good initial guess
is less important for the stochastic collocation method.
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5.2 Solving the linearized systems

A spectral spatial discretization of the linearized deterministic problem (2.2) typically
leads to small, but almost dense systems as in Eq. (2.7). The systems are nonsymmetric
and poorly conditioned. To solve these systems, direct solution methods are generally
most appropriate [6]. The stochastic Galerkin method results after linearization in a Kro-
necker product system matrix (4.10) containing such dense blocks. For a small number of
spatial and random unknowns, direct solution methods can still be applied. The number
of random unknowns, however, rapidly increases when a high order polynomial chaos
is used. For increasing system sizes, the computational cost and memory requirements
of direct solution methods become prohibitively large. In that case, iterative solution
schemes are required for solving (4.10).

Iterative solvers. In [27], various iterative solvers for linear stochastic finite element dis-
cretizations with the same Kronecker product structure as (4.10) are discussed. It was
shown there that a multigrid based solver [28] yields optimal convergence properties,
i.e., a convergence rate independent of the spatial and stochastic discretization parame-
ters. For spectral spatial discretizations, multigrid methods can be designed [40]. How-
ever, their improvement in convergence rate compared to single grid schemes is rather
modest, especially for variable-coefficient problems [6].

Alternatively, block splitting methods that make use of the Kronecker product struc-
ture of (4.10), can be applied [27]. These methods only split the stochastic discretization
matrices, i.e., the Di and G2 matrices in (4.10), so that in every iteration several systems
with the size of the number of deterministic unknowns need to be inverted. When these
block systems are exactly solved, the cost of one Newton iteration (4.10) is proportional
to the cost of Q deterministic Newton iterations, with Q the number of stochastic un-
knowns. The block systems can be factorized once at the beginning of the block splitting
iteration so that in every iteration only triangular solves of the factorized system have to
be carried out. The convergence rate of block splitting methods typically decreases with
increasing polynomial chaos order or input variance. In practice however, depending on
the chaos type used, low computing times can be obtained, especially when the block sys-
tems are solved approximately. We shall apply these splitting methods as preconditioner
for the Generalized Minimum Residual (GMRES) method.

In Table 2, the performance of several block splitting based preconditioners is illus-
trated. We consider the mean-based preconditioner [25], the Kronecker product precon-
ditioner [30] and a symmetric block Gauss-Seidel splitting. The deterministic model is
described in Section 2.1 and Fig. 1. The angular velocity ωm is set to 151 rad/s. The spa-
tial discretization uses 16 degrees of freedom in the r- and θ-dimension, corresponding to
N=256 spatial unknowns. We consider 6 random variables (ξ1, ξ3, ξ4, ξ5, ξ6 and ξ7), that
are either lognormally (configuration A) or uniformly (configuration B) distributed. The
former corresponds to a Hermite expansion of the solution (4.1), the latter to an expan-
sion with Legendre polynomials. A second-order and a third-order chaos is considered,
corresponding to Q=28, respectively Q=84 random unknowns. In configuration (A) the
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Table 2: Number of iterations and solution time in seconds for solving one linearized system (4.10) with
GMRES, preconditioned by a mean-based preconditioner, a Kronecker product preconditioner and a symmetric
block Gauss-Seidel preconditioner.

Preconditioner Number of iterations Solution time
lognormal (A) uniform (B) lognormal (A) uniform (B)

chaos order 2
mean-based 41.8 23.5 18.0 9.9
Kronecker product 40 23 17.3 10.2
symmetric Gauss-Seidel 16.4 11.8 183 149

chaos order 3
mean-based 69 29.7 344 176
Kronecker product 65 30.7 362 189
symmetric Gauss-Seidel 22.6 14 3958 2724

lognormal distribution (see also Remark 2.1) of the random variables is based on µg = 0
and σg = 0.05. In configuration (B) the random variables are uniformly distributed on
[−0.95,1.05]. The linear systems are solved to a relative accuracy equal to 10−12. Table 2
presents the average number of iterations and solution time needed for solving the lin-
earized systems, when performing several Newton iterations until convergence of the
nonlinear solution. The initial guess for the Newton iterations was constructed with the
procedure described in Section 5.1.

The tests indicate that the mean-based preconditioner yields the best performance.
Despite the good results for the Kronecker product preconditioner in [30], it does not
improve the results of the mean-based preconditioner for this problem. In [30] it was
reported that the convergence of the Kronecker product preconditioner is less sensitive
to large variations of the random variables than the convergence of the mean-based pre-
conditioner. Therefore, such a preconditioner might perform better than the mean-based
preconditioner in the case of a large standard deviation of the random variables.

Because in the mean-based and Kronecker product preconditioner case all block sys-
tems use the same system matrix, these methods result in a lower computational cost
compared to the block Gauss-Seidel splitting method. The block system matrix needs to
be factorized only once and the factorized blocks are then used to apply the precondi-
tioner. The mean-based preconditioner is used in subsequent numerical experiments.

Memory requirements. As the linearized systems (4.10) are almost dense, a lot of mem-
ory is required for storing and solving these systems. In practice the linearized systems
are not stored entirely, but only the tensor product blocks [26]. For example, a problem
with 7 random variables and a 4th order chaos results in a total of 330 random unknowns.
Combined with 256 unknowns from the spatial discretization, system (4.10) has dimen-
sion 84480×84480. When storing only the dense blocks of the Kronecker product, 6435
matrices of size 256×256 are to be stored. This amounts to about 5.9% of the storage that
would be required for the full matrix.
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6 Stochastic collocation versus Galerkin method: numerical

results

This section deals with a numerical comparison between the stochastic collocation and
Galerkin method. While both methods enable to compute all statistics of the stochastic
solution of (2.11), their difference in implementation cost, computation cost and accuracy
can be significant. The difference in implementation cost was addressed in the previ-
ous sections. The stochastic collocation method showed a definite advantage over the
stochastic Galerkin method since the former can reuse a deterministic simulation code.
To compare the computational cost and accuracy, a set of numerical simulations was per-
formed. In this section we focus on solving the magnetic vector potential from Eq. (2.11).
In that case the mechanical velocity ωm remains fixed and we set ωm=151 rad/s in our ex-
periments. In the next section, the mechanical velocity is varied and the statistics of the
torque are computed. As the torque computations are directly related to the magnetic
vector potential, its accuracy obviously follows the accuracy of the latter. The second set
of experiments is used to reveal the influence of uncertainty on the magnetic material
parameters onto the torque.

The Newton iterations for both stochastic solvers are performed until the relative
norm of the Newton increments

∥

∥

∥
Anew

z −Aold
z ‖/‖Ainit

z

∥

∥

∥

2
<10−12

and the absolute norm
∥

∥

∥
Anew

z −Aold
z

∥

∥

∥

2
<10−2.

The linear systems within a Newton step are solved until the relative residual is smaller
than 10−12. When a larger tolerance is used for the linear systems — as is often done in
a Newton-Krylov strategy — errors tend to accumulate and disturb the Newton conver-
gence, especially in the stochastic Galerkin case.

A spatial discretization based on 16 degrees of freedom in the r- and θ-dimension is
used, which corresponds to N=256 spatial unknowns. The computations are performed
on a 2.2 GHz Dual Core Opteron processor with 4 GByte RAM.

Remark 6.1. In order to compare the accuracy of the stochastic collocation and Galerkin
approach, an “exact” stochastic solution is needed. However, since no analytic solu-
tion can be calculated, a high order stochastic solution has been used as reference solu-
tion Aref

z . The error on the mean and variance of Az is then respectively calculated as

Emean =
‖〈Az〉−〈Aref

z 〉‖2

‖〈Aref
z 〉‖2

, Evar =
‖var(Az)−var(Aref

z )‖2

‖var(Aref
z )‖2

. (6.1)

Approximating an exact solution by a high-order stochastic solution is widely applied in
the literature [9, 31, 36].
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6.1 Lognormal random variables and Hermite polynomials

As a first problem, we consider the stochastic problem (2.11), perturbed by 4 indepen-
dent, lognormally distributed random variables, ξ = {ξ1,ξ4,ξ5,ξ7}, all based on a Gaus-
sian variable with µg = 0 and σg = 0.08. Since the lognormal random variables are ap-
proximated by a Hermite polynomial expansion with standard normal random vari-
ables (2.14), the stochastic Galerkin method also uses a Hermite chaos for representing the
solution (4.1). The stochastic collocation method constructs 4D collocation points from a
full tensor product or a Smolyak sparse grid based on the zeros of Hermite polynomials.
The error computation in (6.1) applies a stochastic collocation solution corresponding to
a full tensor product grid of 4096 collocation points based on the zeros of 7th degree
Hermite polynomials as reference solution.

Convergence and accuracy. In Fig. 2 the error of the mean and variance of Az is presented
as a function of respectively the polynomial order in the stochastic Galerkin case, the
polynomial degree pi in the dense stochastic collocation case, or the Smolyak level w in
the sparse stochastic collocation case. The same polynomial degrees pi, i = 1,··· ,L, are
used for all random variables. We observe that the convergence rate of the stochastic
Galerkin and the dense stochastic collocation solution is fairly similar. Although the
stochastic discretization is based on scaled Hermite polynomials which are normalized
w.r.t. the normal probability density function and the lognormal random variables are
approximated following (2.14) by normally distributed random variables, neither of the
methods attain exponential convergence w.r.t. to the polynomial degree or polynomial
order. In [1], the stochastic collocation method applied to a linear diffusion problem
with lognormal diffusion coefficient yielded an exponential convergence of the error w.r.t.
polynomial degree. These results apparently do not extend to this nonlinear convection-
diffusion problem.

Computational cost. While Fig. 2 illustrates the convergence rate, it does not give infor-
mation on the computational cost of the various methods. A certain polynomial chaos
order P does not require the same number of stochastic unknowns as a certain Smolyak
level or polynomial degree used to construct stochastic collocation points. More impor-
tantly, the computational cost of the stochastic Galerkin method for a certain number of
stochastic unknowns is generally substantially higher than the cost of the stochastic col-
location method for the same number of unknowns due to the coupling of the stochastic
unknowns in the Galerkin case. To illustrate the computational cost, Fig. 3 displays the
decay of the error as a function of either the number of stochastic unknowns or the total
computational time.

For this problem the stochastic Galerkin method is more expensive than the stochastic
collocation method to attain a similar accuracy.

Remark 6.2. It is remarkable that a sparse grid construction of stochastic collocation
points leads for a same number of random unknowns to a substantial less accurate solu-
tion than a full tensor product grid collocation point construction. It is possible that the
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Figure 2: Error of the mean and variance of Az as a function of respectively the polynomial order in the
stochastic Galerkin case, the polynomial degree pi in the dense stochastic collocation case, or the Smolyak
level w in the sparse stochastic collocation case. Problem (2.11) is solved with ξ1, ξ4, ξ5 and ξ7 modeled as
independent, lognormally distributed random variables.
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Figure 3: Error of the mean of Az as a function of either the number of random unknowns (left) or the total
computational time (right). Problem (2.11) is solved with ξ1, ξ4, ξ5 and ξ7 lognormally distributed.

number of stochastic dimensions, i.e., only 4, is not large enough for demonstrating the
effectiveness of the sparse collocation method over the dense collocation method. Also
we note that the convergence rate of the sparse stochastic collocation solution apparently
slows down for the higher Smolyak levels. This might be an artifact of using an insuf-
ficiently accurate reference solution, as also occurred in [9]. The reference solution was
chosen experimentally as the best possible reference out of the set of obtained solutions.

6.2 Uniform random variables and Legendre polynomials

We consider (2.11)-(2.12) with 7 random variables, uniformly distributed on [−0.97,1.03].
The uniform distribution leads in the stochastic Galerkin case to a Legendre polynomial
chaos expansion of the solution (4.1). The stochastic collocation points are constructed in
a sparse Smolyak or a full tensor product grid framework, based on 1D Clenshaw-Curtis
or Gauss-Legendre points. In the full tensor product grid case, the 1D grids correspond
to Gauss-Legendre points. Fig. 4 illustrates the mean and variance of the z-component
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Figure 4: Mean (left) and variance (right) of Az, the stochastic Galerkin solution of (2.11)-(2.12) with 7 random
variables, all uniformly distributed on [−0.97,1.03]. The solution is based on a third-order Legendre chaos.

Az of the magnetic vector potential. A stochastic collocation solution based on 279936
stochastic collocation points that were built by a tensor product grid of zeros of 5th degree
Legendre polynomials, is used as reference solution for the error computations.

Convergence and accuracy. In Fig. 5, the error of the mean and variance of Az is pre-
sented as a function of either the polynomial chaos order, or the degree of the polynomi-
als to construct the Gauss points in the stochastic collocation case, or the Smolyak level.
An exponential decay of the error as a function of the polynomial degree or the polyno-
mial chaos order is observed. This is consistent with the exponential convergence of the
stochastic Galerkin and collocation solution reported in [1,37] which results from the cor-
respondence between the weighting function of Legendre polynomials and an uniform
probability density function. A collocation solution based on Clenshaw-Curtis points
does not possess such a convergence rate since Clenshaw-Curtis points do not have a
similar connection to the uniform distribution function as Gauss-Legendre points.

Computational cost. The computational cost is illustrated in Fig. 6 which displays the
error decay as a function of either the number of stochastic unknowns or the total compu-
tational time. The stochastic Galerkin method clearly results in the most accurate solution
for a fixed number of random unknowns. With respect to the total solution time however,
the stochastic Galerkin method does not longer perform better than the stochastic collo-
cation method due to the large cost of solving the high-dimensional linearized systems.

6.3 Combination of distributions

In a third set of experiments, the stochastic model (2.11) contains 7 random variables:
ξ1, ξ2, ξ3 ξ5 and ξ6 are uniformly distributed on [−0.99,1.01]; ξ4 and ξ7 are lognormally
distributed based on a Gaussian random variable with µg = 0 and σg = 0.05. Both Her-
mite as well as Legendre polynomials are used for representing the stochastic Galerkin
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solution (4.1) and for calculating the stochastic collocation points. The reference solution
is based on a sparse collocation grid with Smolyak level 7 and 163213 collocation points.

Fig. 7 shows the norms of the relative error of the variance of Az. In contrast to the
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former example with lognormal random variables in Section 6.1, the error of the stochas-
tic collocation and Galerkin solution behaves decreases exponentially, except for the last
result of the sparse collocation solution. The use of Legendre and Hermite polynomi-
als to approximate the solution could explain this convergence rate due to the above-
mentioned relationship between these polynomials and the probability density function
of uniform and Gaussian random variables. This example might indicate that the first
example with lognormal random variables is not representative for the general conver-
gence behavior of the discussed stochastic solution methods.

Secondly, we remark that the sparse stochastic collocation method achieves the most
accurate solution for this example, although its convergence rate is not completely mono-
tone. This latter effect could be a result of an insufficiently accurate reference solution, as
also encountered in Remark 6.2.

7 Influence of uncertainty on the torque

In this section, we describe how uncertainty on the material parameters influences the
torque statistics. The mean behavior of the torque corresponds in each case to the solution
of the deterministic model. This section demonstrates how a small input uncertainty can
lead to a large uncertainty of the corresponding torque and thus motivates the use of
stochastic models for reliably designing machining tools composed of a ferromagnetic
rotor. The torque is calculated as a function of the mechanical velocity, ωm, in the range
of 0 to 300 rad/s. First, we focus on modelling this uncertainty by only one random
variable — either ξ1 or ξ2. Next, we consider the effect of uncertainty on the parameters
of the magnetization curve, i.e., ξ4 up to ξ7.

7.1 Modeling uncertainty by one random variable

First, we express the uncertainty on the magnetic material parameters by one random
variable, ξ1. In the left column of Fig. 8, the mean, standard deviation and probability
density function of the torque is illustrated for the case ξ1 is uniformly distributed on
[1−0.08

√
3,1+0.08

√
3]. The probability density function corresponds to ωm =111 rad/s.

The results for the stochastic collocation and stochastic Galerkin method are given, with
the number of random unknowns indicated between brackets. The mean solution corre-
sponds to the solution of the original deterministic problem. In case of only 4 random
unknowns, the stochastic collocation and Galerkin results visually coincide. We observe
that the variance on the torque — which corresponds to the square of the standard devi-
ation, is substantially larger than the variance on the underlying magnetic potential Az,
see for example Fig. 4. This confirms that the torque is highly sensitive to uncertainty on
the magnetic material parameters. Moreover, this effect becomes more important at high
speeds.

In the right part of Fig. 8, similar results are shown for the case ξ1 is modeled as a
lognormal random variable, based on a Gaussian variable with mean µg=0 and standard
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Figure 8: Statistics of the torque, in the case of one random variable ξ1 in the stochastic model, either uniformly
(left) or lognormally (right column) distributed.

deviation σg =0.08. The lognormal case requires more stochastic unknowns, i.e., a larger
number of stochastic collocation points or a high order polynomial chaos, to obtain an
accurate solution in comparison to the uniformly distributed case.

Fig. 8 shows that a similar standard deviation of the torque results from using the
same input standard deviation both in the uniform case as well as for the underlying
Gaussian variable in the lognormal case. This suggests that the variance of the torque
is mainly determined by the input variances and not by the type of probability density
function.

Similarly, we can consider the case of uncertainty on the conductivity, as expressed
by ξ2. Fig. 9 presents the results for ξ2 either uniformly distributed on [1−0.08

√
3,1+
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0.08
√

3], or lognormally with µg =0 and σg =0.08. The range of the uniformly distributed
variable is chosen so that its standard deviation equals σg. The mean value of the torque
is not shown, as it corresponds to Fig. 8(a). The uncertainty on the torque is even more
influenced by ξ2 then by ξ1, as indicated by the larger standard deviation in Fig. 9 com-
pared to Fig. 8. The standard deviation of the torque in the uniform and lognormal case
are again vary similar by using the same input standard deviation σg.

7.2 Uncertainty on the parameters of the magnetization curve

Instead of considering only one random variable ξ1, the uncertainty on the magnetiza-
tion curve can be expressed by 4 random variables, ξ4 up to ξ7, each perturbing one of the
parameters in (2.13). Since multiple random variables are present, both a tensor product
as well as a sparse stochastic collocation point grids can be applied. Fig. 10 illustrates
statistics of the torque. In the uniform case, all 4 random variables are uniformly dis-
tributed on [1−0.08

√
3,1+0.08

√
3]; in the lognormal case they correspond to µg =0 and

σg =0.08. Between brackets, the number of random unknowns is given. The mean value
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of the torque is not shown, as it corresponds to the solution of the deterministic prob-
lem (2.2). Comparing these results to Fig. 8, we note that modeling the uncertainty on the
magnetic material by one random variable instead of the more accurate representation by
4 random variables, yields already a first approximation to the variability of the torque.

8 Conclusion

This paper considers a nonlinear stochastic model which represents a solid-rotor mag-
netic brake as a ferromagnetic cylinder rotating at high speed. High-order stochastic
solutions have been obtained with both the stochastic Galerkin as well as the stochastic
collocation approach. Both approaches were compared w.r.t. their computational cost,
implementation cost and accuracy. For the considered stochastic model, the stochastic
collocation approach scores better than the stochastic Galerkin method w.r.t. the imple-
mentation and computational cost. Concerning the implementation cost, the stochastic
Galerkin method requires a re-implementation of the nonlinear solver routine whereas
deterministic simulation code can be reused in the stochastic collocation case. Moreover,
convergence of the Newton iterations can become problematic for the stochastic Galerkin
method. This problem occurs particularly in case of a high-order polynomial chaos and
requires good initial guesses. Concerning the computational cost, numerical experiments
illustrate that more computational time is required by the stochastic Galerkin approach
to reach the same level of accuracy as the stochastic collocation method.

We note that the stochastic Galerkin method can achieve a more accurate solution
than the stochastic collocation method for the same number of unknowns. Further re-
search to improve its computational cost can make the use of the stochastic Galerkin
method more interesting compared to the stochastic collocation method. The large com-
putational cost of the stochastic Galerkin method is caused by the expensive solution of
the large linearized systems. Due to the spectral discretization in space, these systems
are almost dense and difficult to solve. For other spatial discretizations, for example a
finite element discretization, it may well be possible to create specialized fast solvers for
the linearized systems, for example based on multigrid techniques.

In order to further improve the stochastic Galerkin method, an alternative basis could
be used for the polynomial chaos representation of the solution (4.1). An adapted poly-
nomial basis might reduce the Newton convergence problems in case of a high-order
polynomial chaos. For example, the convergence problems of time-dependent problems
in case of a high-order polynomial chaos are partly resolved by the use of a multi-element
polynomial chaos [32]. The efficiency of the chaos expansions could be increased by tak-
ing the anisotropy of the problem into account: not all random variables require the
same order of polynomials. The anisotropy can also be used in the stochastic collocation
method when constructing multidimensional collocation points [23].

Numerical experiments revealed how uncertainty on the magnetic material param-
eters has a large influence on machine properties such as the torque, especially at high
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speeds. With the described stochastic solvers, the randomness or uncertainty on other
material properties, for example in the case of a different description of the magnetiza-
tion curve, can be investigated in a similar way.
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