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Abstract. We consider the multi-scale modeling of the isothermal chemical vapor infil-
tration (CVI) process for the fabrication of C/SiC composites. We first present a micro-
scopic model in which the preform is regarded as a two-phase porous media described
by a dynamic pore-scale node-bond network during the fabrication process. We then
develop a macroscopic model by a upscaling procedure based on the homogenization
theory.
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1 Introduction

1.1 Background

The CVI process is the chemical vapor infiltration process which is widely used in fab-
rication of ceramic matrix composite materials (CMCs). One important kind of CMCs
is the carbon fiber reinforced silicon carbide (C/SiC) composites. The principal of CVI
process is that let the agent gases pass through the reactor, and when the agent gases
reach the surface of the carbon fiber, surface reaction happens and SiC solid is generated
and deposited. When almost all the pores in the preform are occluded, we derive the
material of carbon fiber reinforced SiC. One point to be noted is the multi-scale structure
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Figure 1: (a) Cross section perpendicular to randomly positioned bundles; (b) Cross section perpendicular to
randomly positioned fibers inside a fiber bundle.

of the preform. A preform can have hundreds of fiber bundles or more woven together.
A fiber bundle has several thousands of fibers inside. There are two kinds of pores in the
preform: macro pores among bundles and micro pores among fibers inside the bundles
as in Fig. 1 [16]. In the cross section of a preform, the diameter of the micro pores is in
the magnitude order of µm, the diameter of the macro pores is in the magnitude order of
mm and the size of a preform can be several centimeters or larger. During the numerical
simulation, if we simply use the traditional numerical tools like Finite Element Method
or Finite Difference Method on this multi-scale structure, a huge amount of computer
memory and CPU time are required, which can easily beyond the limit of the computing
resources. Some macroscale models have been developed to simulate this process, see,
e.g., [9, 10, 16, 17, 19]. However, there are problems remained in these models which will
be presented in Section 1.2. So a new multiscale model is proposed in this paper.

1.2 Classical model

In the last twenty years, many works are related to the modeling of the CVI process. The
main model used in those works, e.g., in [13–17], will be described below.

Assume the chemical reaction in the preform is the following:

MTS(CH3SiCl3(v))
excess H2−→ SiC(s)+3HCl(v). (1.1)

1.2.1 Concentration equation

Assume the mass transfer in the CVI process is quasi-steady, i.e.,

dC

dt
=0.
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Then the concentration equation can be written out as

−∇·(De f f∇C)= R, (1.2)

where C is the molarity of MTS (mol/m3), De f f is the effective diffusion coefficient of
MTS. Because the deposition reaction of MTS is regarded as first order, the reaction term
R can be given as

R=−KCSv,

where K is the first-order surface reaction rate constant (m/s), and Sv is the effective
deposition surface area per unit volume (m2/m3).

1.2.2 Diffusion model

In the classical models the effective diffusion coefficient is proportional to porosity and
inversely proportional to a structural parameter of the preform, the tortuosity factor:

De f f =
ε

τ
D, (1.3)

where

τ =
τ0ε0

ε
,

τ0 is the initial tortuosity factor, ε is the porosity of the preform and ε0 is the initial poros-
ity. The diffusion coefficient D is the mixed diffusion coefficient which is described in the
following form

1

D
=

1

DAB
+

1

DK
, (1.4)

where DAB is the Fick diffusion coefficient (m2/s) which can be estimated from the
Chapman-Enskog theory [1]. Fick diffusion happens when the diameter of the diffu-
sion tunnel is much larger than the molecular mean free path and is mainly caused by
the molecular transport. DK is the Knudsen diffusion coefficient given by

DK =
2

3

(8R̄T

πM

)1/2
rs, (1.5)

where R̄ is the gas constant (J/K/mol), T(K) is the temperature, M is the molecular
weight of the diffusion gas, and rs is the mean radius of the diffusion tunnel.

Knudsen diffusion happens when the diameter of the diffusion tunnel is smaller than
the molecular mean free path and is dominated by the collision between molecular and
tunnel wall. The change of rs during the CVI process is estimated using the formula

drs

dt
=−q

MSiC

ρ
KC, (1.6)
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where q is the proportion between the stoichiometric coefficient of SiC and that of MTS
in Eq. (1.1), and MSiC is the molar mass of SiC (kg/mol).

In the CVI process, the Knudsen diffusion has significant effect on the gas diffusion
in micro pores among fibers and less effect on the gas diffusion in macro pores among
bundles.

1.2.3 Evolution equation of porosity

The evolution equation of local porosity in CVI process can be written as:







dφ
dt

=−q MSiC
ρ SvKC, t>0,

φ=φ0, t=0,
(1.7)

where ρ is the density of SiC (kg m−3), φ0 the initial porosity of the preform, and Sv the
effective deposition surface area per unit volume (m2/m3).

By calculating the porosity, the procedure of CVI process can be tracked. When the
porosity ε is sufficiently small, the CVI process terminates.

1.2.4 Discussion about classical model

The classical model can describe the change of the pore structure during the CVI process.
However, there are problems in this model.

The preform has the multi-scale pore structure. The micro pores inside the fiber fil-
aments are much smaller than the macro pores among fiber bundles. During the CVI
process, in the initial stage, the deposition mainly happens in the micro pores. After the
micro pores are almost closed, the deposition will turn to happen in the macro pores. At
this point, only Fick diffusion happens in the macro pores and the Knudsen diffusion
coefficient DK ≈ 0. Then by (1.4) we have D ≈ 0, i.e., the effective diffusion coefficient
De f f ≈ 0. This result contradicts the real experiments. The whole CVI process may last
for several hundreds of hours, and the initial stage only last for tens of hours. After the
initial stage, the diffusion rate in the preform is determined by the size of macro pores.
So the effective diffusion coefficient can not tend to 0 at the initial tens of hours. To avoid
this, some simulations choose the rs in (1.6) as the average radius of all the pores in the
preform so it will not quickly decrease to 0. But this approach is unreasonable. Another
problem is that the classical models only involve the overall porosity to track the CVI
process which cannot naturally distinguish the two different deposition stages, i.e., we
can not tell when the micro pores in the bundles is closed. So some modified models
should be investigated to fix the problems for the classical models.

2 A revised model

To avoid the problems in the classical macroscopic model, we first go back to see what
happens in a ’microscopic’ scale. At first, we need to make some basic Assumptions:
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• H1: Fiber bundle fraction all over the preform before infiltration is uniform
and the preform is considered as isotropy.

• H2: The macro pore structure of the preform is periodic before infiltration and
locally periodic during all the CVI process.

• H3: The micro pore structure inside fiber bundle is uniformly distributed dur-
ing all the CVI process.

• H4: Chemical reaction is regarded as an isothermal irreversible first-order re-
action.

2.1 Micro model

2.1.1 Deal with multi-scale structure

The diffusion types in the macro pores and micro pores are different. So the preform can
be viewed as a material with two different phases. Phase I is the fiber bundles, which
consists of fibers and micro pores among fibers, and Phase II is the macro pores among
bundles.

Phase I is regarded as a homogeneous porous material. Define the diffusion coeffi-
cient D1 in Phase I as:

D1 =







φsb DAB : rs ≥ r0,
φsb DK : rs ≤ r0, φsb >φsc,
0 : φsb≤φsc.

(2.1)

If the micro pore radius rs is smaller than the molecular mean free path r0,the diffusion
type is the Knudson diffusion. In (2.1), φsb is the porosity of the micro pores inside fiber
bundle defined as following:

φsb =
volume of micro pores in a fiber bundle

volume of the fiber bundle
;

φsc is the critical (residual) porosity of the micro pores inside fiber bundle, under which
the micro pores will be closed.

Diffusion in Phase II, D2 is the Fick diffusion DAB at the beginning of the CVI process.
As chemical reaction happens, the radius rl of macro pores will decrease. Near the end
of the reaction process, rl may be smaller than the molecular mean free path r0, and the
diffusion type will change to Knudson diffusion, i.e.,

D2 =

{

DAB : rl ≥ r0,
DK : rl < r0.

(2.2)

During the CVI process, surface reaction happens and more and more SiC solid is
generated and deposited. So the structure of the micro and macro pores change all the
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way. We assume that the radius of micro pores in the same fiber bundle decrease uni-
formly but the decrease rate may be different at different bundles in the preform and
assume that the shrink direction of the macro pores be along the outer normal of their
surface and the rate be determined by the generation rate of the deposited solid.

2.1.2 Reaction-diffusion equation

Based on the above process, the preform includes two scales. The characteristic size at
microscale is the scale of a macro pore. With this point of view, the preform is regarded
as heterogenous porous media. The macroscale is the scale of the whole preform. At this
scale, the preform is viewed as a homogeneous material.

First, certain geometry model needs to be used to describe the initial shape and struc-
ture of the preform, like the location of the macro pores and fiber bundles. Based on
this model, we introduce the character function χ(x, x

ǫ ,t) to depict the structure of the
preform, which is defined as

χ
(

x,
x

ǫ
,t

)

=

{

1, x in macro pores,
0, otherwise.

(2.3)

According to the mass conservation, in micro-scale the quasi-steady reaction diffusion
equation can be written as

−∇·(Dǫ∇C)+Rǫ =0. (2.4)

At different place diffusion situation is different, so the diffusion coefficient Dǫ is a func-
tion of x=(x1,x2,x3), defined as

Dǫ := D
(

x,
x

ǫ
,t

)

= D1

(

1−χ(x,
x

ǫ
,t)

)

+D2χ
(

x,
x

ǫ
,t

)

. (2.5)

At the beginning the structure of the preform is assumed to be periodic. As the reac-
tion happens and the solid generates, the inside structure of the preform will change and
as a result its micro structure is no longer periodic. But we can still assume the structure
is locally periodic (Assumption H2). ǫ can be chosen as the initial period of the preform
structure which is of the same order of magnitude as the characteristic diameter of the
macro pore. According to the structure of the preform, the characteristic function and Dǫ

should be locally periodic with period ǫ.
Assume the reaction is first order so only surface reaction is considered. We also

regard Phase I as a homogeneous porous material. So the reaction term can be written as

Rǫ =KCδl(x,t)+KCSvs

(

1−χ(x,
x

ǫ
,t)

)

, (2.6)

where δl(x,t) is the surface dirac delta function defined as
∫

Ω

δ(x,t) f (x,t)dx=
∫

Sl

f ds,
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for any smooth function f (x,t) and Sl is the surface of the macro pores. The Svs is the
effective deposition surface area of micro pores in Phase I defined as

Svs =
surface of micro pores in a fiber bundle

volume of the fiber bundle
·
( φsb−φsc

φsb0−φsc

)γ
, 0<γ≤1, (2.7)

when the micro porosity is above its critical point φsb > φsc, otherwise the effective de-
position surface area is set to be zero Svs = 0. φsb0 is the initial porosity of micro pores
in a fiber bundle. Note that some part of the micro pores may have been closed above

the critical porosity φsc, so we introduce the term ( φsb−φsc

φsb0−φsc
)γ to control the decrease of the

effective deposition area.
In (2.6), we simply divide the reaction term into two parts according to the preform

structure characteristic. The first term KCδl(x,t) is the reaction on the surface of the macro
pores. The second term KCSvs(1−χ(x, x

ǫ ,t)) is the surface reaction in Phase I. This sepa-
ration enables us to know (1) how much solid is deposited on the surface of macro pores
and then how the macro pore structure changes; and (2) how much solid is deposited in
phase I and then the corresponding D1 and Svs.

However, the time cost for solving this problem in the micro view is tremendous espe-
cially when the preform domain is large, the pore structure of the preform is complicated,
and the reaction time is quite long. So we have to sacrifice some details to save our com-
putational cost. In other words, the micro-problem should be converted to macro-scale.

2.2 Macro-model

2.2.1 Macro molarity equation

We follow the step in the homogenization theory [7] to solve the periodic problem. Let
y= x/ǫ be the fast variable and x the slow variable. Consequently, C(x, x

ǫ ,t)=C(x,y,t).
The homogenized molarity equation with the quasi-steady assumption can be written

out: Find C0 =C0(x,t) such that

−∇x ·(De f f (x,t)∇xC0)=−R, (2.8)

De f f (x,t)=< D(x,y,t)(I+∇yN(x,y,t))>, (2.9)

where y= x
ǫ ,D(x,y,t)= D(x, x

ǫ ,t)= Dǫ and the average symbol < .> is defined as

< ·> =
1

|�|
∫

�

· dy, (2.10)

where � is the unit cube [0,1]3 which is a period cell, and |�| is the volume of �. In
(2.8), N = N(x,y,t)=(N1,N2,N3) is a vector periodic function about y, which satisfies the
following cell problem:

−∇y ·(D(x,y,t)∇y N)=∇y ·D(x,y,t), y∈�, (2.11a)

N is � periodic about y, and
∫

Y
Ndy=0. (2.11b)



604 Y. Bai, X. Yue and Q. Zeng / Commun. Comput. Phys., 7 (2010), pp. 597-612

The right-hand side term R of (2.8) is the macro reaction term, which has the form

R=KSvlC
0(x,t)+KSvs(1−φl)C0(x,t), (2.12)

where Svl is the effective deposition surface area of macro pores per unit volume and φl

the porosity of macro pores among fiber bundles.

Remark 2.1. It can be proved that the micro reaction term Rǫ converges to the macro
reaction term R when ǫ tends to zero, though the original reaction term Rǫ is singular
due to the existence of the surface dirac delta function. Actually, for a simplified linear
micro model:

−∇·
(

D(x,
x

ǫ
)∇C

)

=−KCδl(x)−KCSvs

(

1−χ(x,
x

ǫ
)
)

in Ω, (2.13a)

C= C̃ on ∂Ω, (2.13b)

its corresponding macro model is

−∇x ·
(

De f f (x)∇xC0
)

=−KC0(x)Svl−KSvsC
0(x)(1−φl) in Ω, (2.14a)

C= C̃ on ∂Ω. (2.14b)

By the homogenization theory, we can derive the following error estimate under H1

norm:
‖C−(C0+ǫN(x,y)·∇C0)‖1≤A

√
ǫ,

where A is a constant independent of ǫ. The key point is to prove the convergence of the
singular reaction term KCδl(x) to KC0(x)Svl. This can be achieved by an observation that
the term

∫

Sl
KC0wds, where Sl is the collection of all macro pore surface, is in some sense

a ‘numerical quadrature’ of
∫

Ω
KSvlC

0wdx for any proper test function w. The detail of its
proof and the proof of the convergence for the real micro model leave to the future work.

2.2.2 Porosity evolution

The overall porosity φ can also be divided into two parts naturally, φl the porosity of
macro pores among fiber bundles and φs the porosity of micro pores in the bundles. So
φ=φl +φs. Base on (2.12), rewrite the porosity evolution equations:

dφs

dt
=−q

MSiC

ρSiC
Svs(1−φl)KC0, (2.15)

dφl

dt
=−q

MSiC

ρSiC
SvlKC0. (2.16)

Note that the surface of macro pores (i.e., the surface of fiber bundles) actually consists
of the surface of fibers lying on the outer boundary of fiber bundles (see Fig. 1), which
is only a small part of all fibers. So at the initial stage the micro pores provide most
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deposition surface (i.e., the surface of all fibers inside the bundles) and its total area is
larger than the area of the surface of macro pores for several magnitudes. So the chemical
deposition almost happens in micro pores. As a result, the porosity of the micro pores
decreases very quickly at this stage, but the macro pores change a little. After the micro
pores are almost closed, i.e., there exists a critical porosity φsc when φs≤φsc, the chemical
deposition does not happen in the micro pores any longer and so that in the later stage
only the porosity of macro pores decrease. At this moment, Svs = 0. Eq. (2.16) is not
calculated and D1 the diffusion coefficient in Phase I is set to be zero in (2.5).

Remark 2.2. When micro pores are closed, the diffusion coefficient in Phase I is D1 = 0.
At this moment, the effective diffusion coefficient in (2.9) does not equal to 0, which is
different from the classical model. The dominant part in the effective diffusion coefficient
is the diffusion in the macro pores.

Remark 2.3. By Eqs. (2.15) and (2.16), the volume of the solid deposited in the macro
pores and Phase I can be calculated separately. Therefore, we can detect the structure
of the macro pores change and calculate the character radius rs of micro pores. Conse-
quently, the calculation for De f f based on Eqs. (2.9) and (2.11) can be realized as the pore
structure change. More importantly, we can clearly monitor the time when the micro
pores are almost closed.

3 Numerical simulation and results

3.1 Numerical simulation

3.1.1 Domain description and pore structure modeling

(a) 3-D display (b) Cross section

Figure 2: The preform.

The initial preform shown in Fig. 2 is a cylinder with the wall thickness 28.5745 cm
and height 28.5745 cm. Set up cylinder coordinates (r,θ,z) on this preform and make the
preform to be axis symmetric. The intersection of the preform in the r-z plane is shown
contains 1000 fiber bundles. Assume the reactor is also cylinder and axis symmetric.
Consequently, we only need to solve a 2-D problem here.
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Figure 3: Node-Bond model.

We need to introduce pore structure to simulate the pore shape and distribution in the
preform so that we can locate the initial position where the deposition happens. There
are a lot of models to simulate the pore structure, including single pore model [6, 12],
the parallel bundle model [14, 15], the overlap model [3, 11] and the node-bond network
model [13]. However, most models deal with single scale pore. So for this multi-scale
problem, we need to combine different models together to solve our problem. Consid-
ering the periodic structure of the initial preform, we follow the method in [16, 17] by
choosing node-bond network model in Fig. 3 to simulate the fibre bundle and macro
pore distribution in the preform. The grey part is fibre bundles and white part is macro
pores. For the micro pores inside the fibre bundle, we assume they are uniformly circle.

As the reaction happens, the radius of micro pores in the same fiber bundle decrease
uniformly but the decrease rate may be different at different bundles in the preform. The
shrink direction of the macro pores is along the outer normal of their surface and the rate
is determined by the generation rate of the deposited solid.

The effective deposition surface area of macro pores can be estimated as following:

Svl =
surface of large pores in node-bond model

total area
. (3.1)

3.1.2 Molarity equation

According to homogenization theory and the assumption of axis symmetry, we have the
homogenized molarity equation in the cylinder coordinate:

D11

(∂2C0(r,z)

∂r2
+

1

r

∂C0(r,z)

∂r

)

+D12
∂2C0(r,z)

∂r∂z
+D21

(1

r

∂C0(r,z)

∂z
+

∂2C0(r,z)

∂z∂r

)

+D22
∂2C0(r,z)

∂z2
=−

(

KSvlC
0(r,z)+KSvs(1−φl)C0(r,z)

)

, (3.2)

where (r,z) are slow variable and r̄, z̄ are fast variables, defined as r̄ = r/ǫ, z̄= z/ǫ, and

D(r,z,r̄, z̄,t)= D1(1−χ(r,z,r̄, z̄,t))+D2χ(r,z,r̄, z̄,t), (3.3a)
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D11 =
〈

D(r,z,r̄, z̄)(1+
∂N1(r̄, z̄)

∂r̄
)
〉

, D12 =
〈

D(r,z,r̄, z̄)
∂N1(r̄, z̄)

∂z̄

〉

, (3.3b)

D21 =
〈

D(r,z,r̄, z̄)
∂N2(r̄, z̄)

∂r̄

〉

, D22 =
〈

D(r,z,r̄, z̄)(1+
∂N2(r̄, z̄)

∂z̄
)
〉

. (3.3c)

In (3.3), < ·> is defined by (2.10), �∈R2 is the unit square, N1(r̄, z̄) and N2(r̄, z̄) satisfy
the auxiliary problems:























∂
∂r̄

(

D ∂N1
∂r̄

)

+ ∂
∂z̄

(

D ∂N1
∂z̄

)

=−∂D
∂r̄

, in �,

∂
∂r̄

(

D ∂N2
∂r̄

)

+ ∂
∂z̄

(

D ∂N2
∂z̄

)

=−∂D
∂z̄

, in �,

N1(r̄, z̄),N2(r̄, z̄) is periodic about (r̄, z̄).

(3.4)

3.1.3 Implementation

Table 1 shows the data for implementation.

Table 1: Area 28.5745×28.5745 (mm2) γ=0.5.

Parameter Value
Db, radius of bond 0.01571(mm)
Lb, length of bond 0.16923 (mm)
Rn, radius of node 0.07324 (mm)

R f , radius of a fiber bundle 0.3 (mm)

φs0, initial porosity of micro pores 0.3336
φl0, initial porosity of macro pores 0.2224

φ0, initial porosity of preform 0.556

The computational domain is divided into 16×16 elements, the coarse mesh. Each el-
ement contains 4×4 cells, see Fig. 4. The 16 cells inside an element assume to be periodic,
and the pore structure in different elements may be different as the chemical deposition
happens. The substructure of a cell is node-bond pore structure. The computation pro-
cess of each time step is following:

1. Solve auxiliary problem (3.4) on a sample cell with fine mesh in each element. Then the effective
diffusion coefficient on each element can be obtained by (3.3).

2. Solve the macro concentration equation (3.2) on the coarse mesh.

3. Solve the porosity evolution equations (2.15) and (2.16) on the coarse mesh.

4. According to the current porosity, calculate the volume change of the macro pores and micro
pores and then determine the new node-bond structure and calculate the current radius of node
and bond, rs, Svl and Svs.

5. Computation ends when the porosity of the macro pores is small enough. If computation does
not end, return to step 1 for next time step.



608 Y. Bai, X. Yue and Q. Zeng / Commun. Comput. Phys., 7 (2010), pp. 597-612

Figure 4: Macro mesh, node-bond structure and local cell.

Remark 3.1. The algorithm above falls into the framework of Heterogeneous Multiscale
Methods (see [4, 5]), for we estimate the macro data De f f for the macro model though
solving the local cell problems in micro scale. Its complexity is independent of the char-
acteristic size of the macro pore structure ε. When the assumption (H2) is false, i.e., pore
structure is not initially periodic or not locally periodic during the CVI process, our al-
gorithm will also work, if we could properly choose the local sample cells instead of the
period cell used here, see [18] for the principle of choosing the local samples.

3.2 Result and analysis

Numerical experiments are carried out to simulate the chemical experiment under 1000◦C
and 0.05 atm. Fig. 5 shows the porosity distribution of Phase I at the initial stage. At the
center of the preform, the agent gases diffuse slower than at the boundary so that the
chemical deposition is constrained at the center. Porosity change at the center is slower
than at the boundary. So the porosity at the center is larger than that the boundary.

Fig. 6 is the concentration distribution at later stage when chemical deposition hap-
pens in the macro pores. The concentration gradient still exists because of the diffusion
and keeps increase as the pores getting smaller. Fig. 7 is the porosity of the preform at
later stage. The change of porosity gets slower at this stage than the initial stage. At this
stage, chemical reaction is less than at the initial stage because most micro pores which
provide quite a lot deposition surface are closed so the chemical deposition only happens
on the surface of macro pores which is quite less than that the micro pores can provide.

In Fig. 8, the change of concentration in the center of the preform with time is clear.
It should be noted that the profile of concentration first decrease then increase, and then
decrease again. The first decrease is caused by the fast chemical reaction at the beginning.
As micro pores are gradually closed, the reaction term KSvs(1−φl) decreases fast but the
diffusion does not decrease too much so diffusion begins to be dominant, which causes
the increase in the profile. The second decrease is caused by the close process of the
macro pores. At this stage the diffusion which is mainly decided by the size of macro
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Figure 5: Porosity of Phase I distribution at initial stage.
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Figure 6: Concentration distribution at later stage.
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Figure 7: Porosity of macro pores distribution at later stage.

pores decreases so the concentration at the center goes down again. This result matches
the real experiment better and is similar to the result described in [2] which exploits the
pore model with micro pores and macro pores. If the micro and macro pores are not
considered separately, this result will not be shown. Fig. 9 shows the porosity change of
macro pores and micro pores with time. In the initial stage, the porosity of micro pores
quickly decrease to its critical point (i.e., residual porosity), and the porosity of macro
pores changes slowly. After the micro pores are almost closed, the concentration of MTS
inside the preform increases because of the sharp decrease of the effective deposition
area and large pressure outside the preform, so that the porosity of macro pores begins
to decrease more quickly in the later stage.

4 Conclusion

We developed a multi-scale model for the isothermal chemical vapor infiltration (CVI)
process for the fabrication of C/SiC composites, which fixed some drawbacks of the ex-
isting macroscopic models. However, we still need some ad hoc assumptions and inputs,
such as the local periodic Assumption (H2), the critical porosity φsc, and the parameter
γ in (2.1) and (2.7). Furthermore, the residual pore structure in the composite affects the
properties of the material. Our model can not predict the residual pore structure correctly
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Figure 9: The change of porosity in the center of the preform with time.

yet. We plan to construct a macro-micro coupling model. MTS concentration evolves in
macro scale, while the pore structure evolution in the local cells (samples) will be sim-
ulated directly in micro scale by, e.g., level-set method [8]. Simulations on these local
samples will yield not only the macroscopic parameter such as effective diffusion coeffi-
cient, effective reaction surface area and porosity of macro pores, but also the statistic for
the residual pore structure.
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