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Abstract. Based on the recent development in shallow flow modelling, this paper
presents a finite volume Godunov-type model for solving a 4×4 hyperbolic matrix
system of conservation laws that comprise the shallow water and depth-averaged so-
lute transport equations. The adopted governing equations are derived to preserve
exactly the solution of lake at rest so that no special numerical technique is necessary
in order to construct a well-balanced scheme. The HLLC approximate Riemann solver
is used to evaluate the interface fluxes. Second-order accuracy is achieved using the
MUSCL slope limited linear reconstruction together with a Runge-Kutta time integra-
tion method. The model is validated against several benchmark tests and the results
are in excellent agreement with analytical solutions or other published numerical pre-
dictions.
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1 Introduction

Solute transport is a common process that may take place in rivers, lakes and estuarine
and coastal areas where the flows have horizontal dimensions much larger than their
vertical extent (shallow flows). It may be closely related to the water quality in these
shallow water bodies and have great impacts on the local environment and ecosystem. It
may also cause potential risk on public health and local economy, e.g. when it is associ-
ated with an urban flood event. To understand the solute transport process in a shallow
flow is thus of fundamental and practical importance to hydraulic and environmental
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engineering. In this work, we consider the passive solute transport driven by shallow
flows, where ’passive’ essentially means that the solute particles (or concentration) are
drifted by the fluid velocity and their feedback to the flow is negligible. This assumption
is realistic for most of the engineering problems with low solute concentration.

In practice, it is common to assume that shallow flows are predominantly horizon-
tal with hydrostatic pressure distribution so that they can be mathematically described
by the 2D shallow water equations. For solute transport, if the pollutant is vertically
well-mixed, their dynamics may be represented by a depth-averaged advection-diffusion
equation [17, 39]. Taking place in domains with irregular geometries and topographies,
shallow flows are normally hydrodynamically complex and the associated solute parti-
cles are hence subject to random and complicated movement. Therefore, analytical so-
lutions to these governing equations are generally impossible to obtain and numerical
methods must be employed. Accurate numerical modelling thus provides an essential
tool for water quality management, environmental impact assessment and hydraulic de-
sign [14].

It is not easy to design an accurate and efficient numerical model for solving the shal-
low water and advection-diffusion equations as both the flow and solute concentration
may be non-smooth and contain simultaneously nonlinear bore and rarefaction waves
and linear discontinuities [12]. Traditionally, a decoupled strategy is often used, i.e. the
flow field is first obtained by analytical, numerical or experimental approaches and then
used to drive the solute motions [3, 10, 12, 17, 31, 33]. However, Murillo et al. [34] im-
plies that a coupling system provides a better choice in avoiding numerical instabilities
in the solute concentration when it is applied to simulate complex situations where so-
lute transport occurs in natural environmental flows with steep or even discontinuous
gradients.

When discussing the Godunov-type numerical scheme for solving the 2D shallow wa-
ter equations, Toro [39] suggested that the behaviour of the advection-diffusion equation
for passive transport problems is identical to that of the y-direction momentum equa-
tion in the Riemann solution structure. This idea was adopted by Liang et al. [28] and
they integrated the advection-diffusion equation into a pre-balanced formulation of the
2D shallow water equations to form a 4×4 hyperbolic matrix system of conservation
laws. The numerical properties of the coupled system are identical to the hyperbolic
shallow water equations and so most of the modern numerical techniques developed
for the shallow water equations can be directly applied to solve the new 4×4 system.
Liang et al. [23] solved the coupled hyperbolic conservation laws using a finite volume
Godunov-type scheme on adaptive quadtree grids. This coupling strategy was also used
by Murillo et al. [34] in which the integrated shallow water and solute transport equations
were solved by a first-order Godunov-type scheme on unstructured grids. The scheme
was later extended to include applications involving wetting and drying over complex
domains [35]. A similar coupled system is also solved by Benkhaldoun et al. [4] using a
non-homogeneous Riemann solver for applications involving complex bed topographies.

As mentioned before, the numerical techniques derived for the shallow water equa-
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tions may be directly applied to solve the integrated system of shallow water and solute
transport equations. Zhao et al. [42] pointed out that a good 2D shallow flow model
should be able to handle complex topography, repeatedly wetting and drying, high rough-
ness value, steady or unsteady flow and flow involving different regimes (e.g. trans-
critical flow). All of these aspects have received intensive attentions in the past three
decades and numerous mathematical and numerical techniques have been reported in
literature. Godunov-type methods have gradually become a standard in solving the
shallow water equations as they provide solutions that admit different regimes for both
steady and unsteady flows [13, 32, 39]. In dealing with complex domain topography, a
numerical scheme should be well-balanced, i.e. preserving the solution of lake at rest.
Since the pioneer work of Bermúdez and Vázquez [5] and Greenberg and LeRoux [19],
a number of well-balanced numerical schemes for shallow water equations have been
presented [1,18,23,25,27,29,37,41,43,44] and the list is far from complete. Notable efforts
were made by Rogers et al. [37], Liang and Borthwick [27] and Liang and Marche [29]
where new formulation of shallow water equations were derived to accept well-balanced
solutions so that no special numerical technique is needed. The pre-balanced shallow
water equations presented by Liang and Borthwick [27] and Liang and Marche [29] also
facilitate applications to wetting and drying.

For wetting and drying, a common approach is to add small water depth in the dry
cells to avoid direct calculation of wet-dry interface. However, as Toro [39] pointed
out, this approach is physically incorrect and may ruin the numerical solution near the
wet-dry front. Numerical schemes directly computing wet-dry front have been devel-
oped [3, 6, 7, 27]. However, most of these models predict negative water depth near the
wet-dry front and thus affect the numerical stability. In order to maintain stability, a nor-
mal way is to modify the flow variables in those cells with extreme velocities and negative
water depth [7, 27]. However, this inevitably violates the mass and momentum conser-
vation and locally destroys the solutions. Therefore, it is desirable to have a shallow flow
model that automatically preserves non-negative water depth [1,29]. As solute transport
is considered in this work, the non-negativity should also apply to solute concentration.

Handling high roughness value is another challenging issue when solving the shal-
low water equations, especially when wet-dry interface is presented. Generally, implicit
discretisation of the friction source terms may give better numerical stability. However,
Burguete et al. [8] and Liang and Marche [29] found that implicit solution of the friction
terms might not be adequate for maintaining non-negative water depth in applications
involving wetting and drying over complex topography. Liang and Marche [29] pro-
posed a splitting implicit scheme for evaluating the friction source terms. In their work,
the magnitude of the friction force is also limited so that its maximum effect is to stop the
fluid but not reverse it. The technique has been proved to be effective in providing stable
and non-negative simulations.

In this work, the author aims to resolve the shallow flow driven solute transport prob-
lem by considering all the above challenging issues and present a model for dry-bed
simulations over complex domain. The pre-balanced shallow water equations derived
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by Liang and Borthwick [27] are extended to include the advection-diffusion equation
and form a 4×4 hyperbolic system. The equations automatically provide well-balanced
solutions to shallow flows occurring in a wet domain with complex topography and fa-
cilitate the applications to dry-bed cases. The pre-balanced governing equations are then
solved by a second-order non-negative Godunov-type scheme. The paper is organised
as follows. Following in Section 2, the governing equations are first introduced. Section
3 describes the numerical model. The numerical scheme is validated against several test
cases in Section 4. At last, brief conclusions are drawn in Section 5.

2 Governing equations

In a matrix conservation form, the integrated shallow water and non-diffusive solute
transport equations may be written as

∂u

∂t
+

∂f

∂x
+

∂g

∂y
= s, (2.1)

where t denotes time; x and y are the Cartesian coordinates; u is the flow variable vector;
f and g are the flux vectors in the x and y-direction, respectively; s is the vector containing
source terms. The vectors are defined as follows
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,

where η is the water surface elevation above the datum and zb is the bottom elevation
above the datum so that h(=η−zb) is the water depth; u and v are depth-averaged veloc-
ity components in the x and y-directions, respectively; g is the acceleration due to gravity;
qx(= uh) and qy(= vh) are the uni-width discharges and qc(= ch) is the conservative so-
lute concentration with c being the solute concentration; ρ is the water density; −∂zb/∂x
and −∂zb/∂y represent the bed slopes in the two Cartesian directions; sc is a source or
sink term for the solute concentration; and τbx and τby are the bed friction stresses that
may be estimated using the following empirical formulae

τbx =ρC f u
√

u2+v2 and τby =ρC f v
√

u2+v2. (2.2)

The bed roughness coefficient C f is either prescribed or evaluated empirically from C f =

gn2/h1/3 with n being the Manning coefficient. The shallow water equations in (2.1) are
derived to ensure well-balanced solutions for a wet-bed application [27, 29].
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The integrated shallow water and solute transport equations (2.1) form a 4×4 system
of hyperbolic conservation laws and the flux Jacobian is given by

A=
∂F

∂u
=









0 nx ny 0
(a2−u2)nx−uvny 2unx+vny uny 0
−uvnx+(a2−v2)ny vnx unx+2vny 0
−ucnx−vcny cnx cny unx+vny









, (2.3)

where F=fnx+gny, nx and ny are the Cartesian components of the unit vector in the x and

y-directions, respectively, and a(=
√

gh) is the wave celerity. The eigenvalues associated
with the Jacobian A are

λ1 =unx+vny−a, λ2 =unx+vny ,

λ3 =unx+vny , λ4 =unx+vny+a, (2.4)

which are all real. This confirms the hyperbolicity of the foregoing 4×4 system of the
shallow water and solute transport equations. The corresponding matrices for right and
left eigenvectors are

R=









1 0 0 1
u−anx ny ny u+anx

v−any −nx −nx v+any

c 1 −1 c









, (2.5)

and

L=
1

2a









unx+vny+a −nx −ny 0
vanx−uany−ca any −anx a
vanx−uany+ca any −anx −a
−unx−vny+a nx ny 0









. (2.6)

From the eigenstructure, it is evident that the behaviour of the species concentration is
entirely analogous to the tangential velocity component (v for the x-split and u for the
y-split shallow water equations), as suggested by Toro [39]. Therefore, the integrated
equation set may be solved using a numerical scheme that is built for the shallow water
equations.

3 Numerical model

The aforementioned integrated governing equations are solved herein by a finite vol-
ume Godunov-type scheme incorporated with the HLLC approximate Riemann solver.
The numerical scheme is designed to ensure well-balanced and non-negative (in terms of
both water depth and solute concentration) solutions for simulations involving wetting
and drying over complex domain topography. Second-order accuracy is achieved by ap-
plying the MUSCL slope limited linear reconstruction [40] together with a Runge-Kutta
time integration.
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3.1 Godunov-type scheme

In a finite volume Godunov-type scheme, the following time-marching formula may be
used to update the flow variables to a new time step:

un+1
i,j =un

i,j−
∆t

∆x

(

fi+1/2,j−fi−1/2,j

)

−
∆t

∆y

(

gi,j+1/2−gi,j−1/2

)

+∆tsi,j , (3.1)

where the superscript n represents time level; subscripts i and j are the cell indexes; ∆t
is the time step; and ∆x and ∆y are the cell size in the x and y-direction, respectively.
In order to update the flow variables, proper calculation of the interface fluxes (fi+1/2,j,
fi−1/2,j, gi,j+1/2 and gi,j−1/2 ) and source terms (si,j) is required in a well-balanced and
non-negative Godunov-type framework. The numerical scheme has been presented else-
where for solving the 1D shallow water equations [29]. In the following sub-sections, the
numerical algorithm is reviewed and adapted for solving the aforementioned integrated
shallow water and solute transport equations.

3.2 Flux calculation

A Godunov-type scheme solves local Riemann problems at each cell interface to eval-
uate interface fluxes. In this work, the HLLC approximate Riemann solver is chosen
to solve these local Riemann problems due to its advantages in offering automatic en-
tropy fix and easy treatment of wetting and drying. Compared with the original HLL
approach, the HLLC approximate Riemann solver also presents major benefits in mod-
elling two-dimensional flows, especially when the solute transport is included. Ignoring
the middle wave, the two-wave assumption of the HLL Riemann solver is only correct
for purely one-dimensional problems and may result in excessive smearing of contact
discontinuities for multidimensional simulations [39]. In this work, the coupled two-
dimensional shallow water and advection equations are considered and hence the HLLC
solver should be used. Taking fi+1/2,j as an example, the HLLC fluxes for the integrated
governing equations may be defined as

fi+1/2,j =















fL if 06SL,
f∗L if SL <06SM,
f∗R if SM <06SR,
fR if 0>SR,

(3.2)

where fL = f(qL) and fR = f(qR) are, respectively, the fluxes in the left and right regions
of the Riemann solution structure, which are directly computed from the left and right
Riemann states qL and qR defined at either side of the cell interface i+1/2; f∗L and f∗R
are the fluxes in the middle region separated by the middle (contact) wave:
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, (3.3)
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where f denotes the individual entry of the flux vector f, and f∗1 and f∗2 are calculated
from the HLL formula [21]

f∗=
SRfL−SLfR+SLSR(qR−qL)

SR−SL
, (3.4)

where SL, SM and SR are the left, middle and right wave speeds in the HLLC Riemann
solution structure. Fraccarollo and Toro [16] and Toro [39] recommend the following
formulae for estimating SL and SR to facilitate applications in wetting and drying:

SL =

{

uR−2
√

ghR if hL =0,

min
(

uL−
√

ghL , u∗−
√

gh∗
)

if hL >0,
(3.5)

and

SR =

{

uL+2
√

ghL if hR =0,

max
(

uR+
√

ghR, u∗+
√

gh∗
)

if hR >0,
(3.6)

where uL, hL, uR and hR are the velocity and depth components of the left and right
Riemann states, u∗ and h∗ can be evaluated from [39]

u∗=
1

2
(uL+uR)+

√

ghL−
√

ghR , (3.7)

and

h∗=
1

g

[

1

2

(

√

ghL +
√

ghR

)

+
1

4
(uL−uR)

]2

. (3.8)

For the middle wave speed SM, Toro [39] suggests the following choice:

SM =
SLhR(uR−SR)−SRhL(uL−SL)

hR(uR−SR)−hL(uL−SL)
. (3.9)

3.3 Non-negative reconstruction of Riemann states

In the current finite volume scheme, flow variables are stored and updated at cell cen-
tres. This requires proper reconstruction of the Riemann states at either side of a cell
interface in order to define the local Riemann problems and calculate the interface fluxes.
Reconstructing the Riemann states in turn needs an appropriate approach to evaluate
the face values of the flow variables at either side of the cell interface. In this work, the
MUSCL slope limited linear reconstruction is used to estimate the face values, which is
second-order accurate in space. At i+1/2, the left-hand-side face values are calculated
by:

uL
i+1/2,j =ui,j+

ψ

2
(ui,j−ui−1,j), h

L
i+1/2,j =hi,j +

ψh

2
(hi,j−hi−1,j),

zL
bi+1/2,j =ηL

i+1/2,j−h
L
i+1/2,j. (3.10)
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Herein ψ is the vector containing the slope limited functions for different flow vari-
ables [20], which is evaluated according to the flow data at cell (i, j) and its upwind and
downwind neighbours (i+1, j) and (i−1, j). ψh is the slope limiter defined for water
depth h. For better numerical stability, the minmod slope limiter is used in this work and
it may be written for one of the flow variables as [22]:

ψ(r)=max [0, min(r, 1)], (3.11)

where the ratio of successive gradient r is calculated against the flow variable under
consideration. For example, r can be evaluated on a uniform grid for η from:

r=
ηi+1,j−ηi,j

ηi,j−ηi−1,j
. (3.12)

r is defined in a similar way for h, qx, qy and qc. The corresponding face values of velocity
and solute concentration are then calculated accordingly by:

uL
i+1/2,j =qL

x i+1/2,j

/

h
L
i+1/2,j, vL

i+1/2,j =qL
y i+1/2,j

/

h
L
i+1/2,j,

cL
i+1/2,j =qL

c i+1/2,j

/

h
L
i+1/2,j. (3.13)

The face values at the right hand side of i+1/2 can be defined similarly. The above slope
limited linear reconstruction calculates face values for those wet cells away from the wet-
dry front. In a dry cell or a wet cell directly adjacent to a dry cell, the face values are
assumed to be the same as those at the cell centre. This essentially reduces the accuracy
of the second-order scheme to first-order near the wet-dry interface but this is as expected
after a slope limiting process.

Based on the above face values, the Riemann states of water depth are then defined
as:

hL
i+1/2,j =max(0, ηL

i+1/2,j−zbi+1/2,j), hR
i+1/2,j =max(0, ηR

i+1/2,j−zbi+1/2,j), (3.14)

where zbi+1/2,j is single face value of bed elevation given by [1]:

zbi+1/2,j =max(zL
bi+1/2,j, zR

bi+1/2,j). (3.15)

Obviously, (3.14) defines the effective water depth and ensures its non-negativity. The
left Riemann states of other flow variables are then obtained accordingly:

ηL
i+1/2,j =hL

i+1/2,j+zbi+1/2,j , qL
xi+1/2,j =uL

i+1/2,j h
L
i+1/2,j ,

qL
yi+1/2,j =vL

i+1/2,j h
L
i+1/2,j , qL

ci+1/2,j = cL
i+1/2,j h

L
i+1/2,j , (3.16)

and similarly for the right Riemann states. The above reconstruction of Riemann states
does not affect the well-balancing property of the pre-balanced governing equations and
well-balanced solutions can be directly obtained for wet-bed applications.
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However, for a dry-bed application, a proper numerical technique must be designed
to maintain the well-balancing property of the overall numerical scheme. After using the
pre-balanced governing equations (2.1), the only situation that needs special considera-
tion is the case generalized in Fig. 1, where a wet cell (i, j) shares a common interface
i+1/2 with a dry cell (i+1, j) at the discrete level and the bed elevation of the dry cell
is higher than the water surface level at (i, j). At the common cell interface, the left and
right face values of the flow variables and bed elevation are the same as those at the cell
centres as the cell under consideration is either next to a dry cell or dry. The single face
value of bed elevation is then given by

zbi+1/2,j =max(zL
bi+1/2,j,z

R
bi+1/2,j)= zR

bi+1/2,j.

The aforementioned non-negative approach for constructing the Riemann states leads
to hL

i+1/2,j = max(0,ηL
i+1/2,j−zbi+1/2,j) = 0 and, similarly, hR

i+1/2,j = 0. Consequently the

Riemann states of water level are reconstructed as

ηL
i+1/2,j =hL

i+1/2,j +zbi+1/2,j = zbi+1/2,j and ηR
i+1/2,j = zbi+1/2,j.

Therefore, the Riemann states of water level take the value of bed elevation zbi+1/2,j, in-
stead of the actual water surface elevation. Considering a steady state problem of lake
at rest with u = v≡ 0 but h 6= 0 in the wet areas, the still water surface should be exactly
reproduced by a well-balanced numerical scheme. However, at the cell interface i−1/2,
the Riemann states of water level is reconstructed as

ηL
i−1/2,j =ηR

i−1/2,j =η≡ constant.

This essentially means that the fluxes through the cell interfaces i−1/2 and i+1/2 are
computed based on η and zbi+1/2,j, respectively. Therefore a net spurious momentum
flux will be generated and the flux and source term balancing will be violated at cell
(i, j). The still water is then driven into motion. In order to regain the well-balancing, ∆z,
the difference between the ground level (the numerical water level) and the actual water
level at i+1/2, must be sought and subtracted from the corresponding face value of bed
elevation and Riemann states of water surface:

zbi+1/2,j← zbi+1/2,j−∆z, ηL
i+1/2,j←ηL

i+1/2,j−∆z, ηR
i+1/2,j←ηR

i+1/2,j−∆z, (3.17)

and ∆z is calculated by:

∆z=max
(

0,zbi+1/2,j−ηL
i+1/2,j

)

, (3.18)

as illustrated in Fig. 1. After this local bed modification, ηL
i+1/2,j = ηR

i+1/2,j = zbi+1/2,j =

η, the well-balancing is regained. Equation (3.18) calculates a positive value only for
a case similar to the one illustrated in Fig. 1; otherwise, it returns zero. Therefore, in
implementing the numerical scheme, the local bed modification (3.17) and (3.18) applies
to each cell interface in the domain and completes the non-negative reconstruction of
Riemann states. They are then employed by the HLLC approximate Riemann solver to
compute the interface fluxes fi+1/2,j. The Riemann states at the other cell interfaces and
the corresponding fluxes (fi−1/2,j,gi,j+1/2,gi,j−1/2) are computed in an identical way.
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i + 1/2i – 1/2

R

ji ,21

R

jibz ,21

R

jibz ,21

L

jibz ,21

L

jibz ,21

L

ji ,21

R

ji ,21

L

ji ,21 z

i – 1 i i + 1

Figure 1: Constructing a well-balanced and non-negative scheme for dry-bed applications incorporating with
local bed modification.

3.4 Discretization of source terms

In this work, the bed slope and friction source terms are treated separately. The bed
slope source terms are approximated by a central difference approach compatible to the
aforementioned flux calculation. In the x-direction,

−gη
∂zb

∂x
=−gη̄

(

zbi+1/2,j−zbi−1/2,j

∆x

)

, (3.19)

where η̄ =(ηR
i−1/2,j+ηL

i+1/2,j)
/

2. Similar discretisation is applied to the y-direction. This

simple discretisation of bed slope terms together with the above approach for flux calcu-
lation maintain the well-balancing of the numerical scheme, which can be easily proved
by following the procedure detailed in Liang and Marche [29].

The friction source terms are evaluated using a splitting point-implicit scheme [9, 15]
for better stability. Detailed implementation of scheme in 1D, including the use of a
limited friction force, is introduced in Liang and Marche [29] and extension to 2D is
straightforward. Overall, in addition to preserving well-balanced solutions, the current
Godunov-type numerical scheme maintains non-negativity of both water depth and so-
lution concentration, as demonstrated later in the numerical experiments.

3.5 Second-order Runge-Kutta time integration

In order to obtain a second-order numerical scheme in time, a Runge-Kutta time integra-
tion method is employed and the time-marching formula (3.1) may be rewritten as

qn+1
i,j =qn

i,j+
1

2
∆t
(

Ki,j(qn)+Ki,j(q∗)
)

, (3.20)
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where Ki,j is the Runge-Kutta coefficient defined as

Ki,j =−
fi+1/2,j−fi−1/2,j

∆x
−

gi,j+1/2−gi,j−1/2

∆y
+si,j, (3.21)

and q∗ is the intermediate flow variables:

q∗i,j =qn
i,j+∆tKi,j(qn). (3.22)

In order to update the flow variables to a new time step using (3.20), Ki,j(qn) and Ki,j(q∗)
must be computed separately in the two Runge-Kutta steps based on the aforementioned
approaches for flux calculation and source term discretisation.

3.6 Stability criteria and boundary conditions

The current numerical scheme is overall explicit and a specific criterion must be in place
to control the time step to ensure numerical stability. Because diffusion is excluded, a
larger time step for solute transport based on the Courant-Friedrichs-Lewy (CFL) condi-
tion is allowed [2]. Therefore, in this work, the CFL criterion is used for predicting an
appropriate time step ∆t for a new iteration and the implementation is detailed in the
author’s previous work [27].

For all the test cases considered in this work, two types of boundary conditions,
i.e. transmissive and solid, are used. For the transmissive boundary conditions, flow
variables (η, qx and qy) at ghost points are provided so that zero gradients are calculated
at the boundary. In the case of inlet or outlet boundary, the flow variables are directly
prescribed according to the inflow and outflow requirements. In implementing the solid
boundary conditions, the discharge (or velocity) and the gradient of water surface ele-
vation (or water depth) must be zero at the boundary. The boundary condition for the
solute concentration is imposed in the same way as water level (or depth), i.e. zero gra-
dient must be enforced at the boundary point, no matter what type of boundary is being
considered.

4 Results and discussion

The present numerical scheme for shallow flow driven solute transport is validated against
several benchmark tests and results are compared with analytical solutions and alterna-
tive numerical predictions. g=9.81m/s2 and ρ=1000kg/m3 are used in all the tests and
the Courant number for the CFL condition is set to 0.75.

4.1 Preservation of steady state related to a lake at rest

As discussed in the last section, the current numerical model is constructed to maintain
well-balanced solutions even when wet-dry interface is present so that they can be ap-
plied in realistic simulations. Since diffusion is excluded, the preservation of steady state
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(a) (b)

Figure 2: Still water test: comparison of numerical and analytical flow profiles along the domain central line at
t=120s (a) water surface elevation; (b) solute concentration.

equilibria related to a lake at rest should also include the solute concentration. Therefore
the first test case is considered to demonstrate the new scheme’s ability to preserve the
still water level at a surface-piercing hump containing wet-dry interfaces. In a 1m × 1m
closed domain, a hump is located at the centre with the bed topography defined by [6]:

zb(x,y)=max⌊0,0.25−5
(

(x−0.5)2+(y−0.5)2
)

⌋. (4.1)

The still water level in the domain is 0.1m so that the island is partially submerged. The
water is contaminated with the well-mixed solute concentration assumed to be 1. If the
numerical scheme is well-balanced, these initial conditions should be exactly reproduced
without numerical perturbation.

Simulations are run for 120s on several grids with different resolutions. In each case,
the still water level as well as the solute concentration remains unchanged and the pol-
luted water keeps perfectly tranquil. Fig. 2 presents the predicted profiles of water sur-
face elevation and solute concentration along the central line of the domain for the sim-
ulation on a grid with 40 cells, where the initial conditions of the motionless flow are
perfectly reproduced. Therefore, the well-balancing property of the current numerical
scheme is confirmed.

4.2 Dam break on a frictionless dry bottom

The hydrodynamic problem of dam-break wave on a frictionless dry bottom was studied
by Ritter [36] and analytical solutions were derived. This case was also recommended
by the EU project of Concerted Action on Dam Break Modelling (CADAM) as one of the
analytical tests for validating a shallow flow code.

The dam break takes place in a 2000m long channel. The channel is 200m wide but the
channel width has no effect on the results as this is essentially a 1D test. A dam is located
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(a) (b)

(c)

Figure 3: Dry-bed dam break: comparing numerical
and analytical profiles along the channel central line
at t=50s (a) water surface elevation; (b) x-direction
velocity component; (c) solute concentration.

1000m away from the upstream end and divides the channel into an upstream reservoir
and a downstream dry valley. The 5m deep polluted water in the reservoir is originally
motionless and the well-mixed solute has a concentration of 1. Because no diffusion is
considered, the solute concentration is 1 wherever there is water and 0 over the dry bed
and thus the analytical solution for qc is the same as that of water depth in magnitude.

The simulation is carried out on a uniform grid with a resolution of 10m so that the
grid contains 200 cells along the channel. Fig. 3(a) presents the numerical water depth
plotting against the analytical solution at t=50s, where the rarefaction and wet-dry front
are correctly reproduced. The predicted depth-averaged velocity is shown in Fig. 3(b)
and agrees closely with the analytical solution in most of the domain but obvious dis-
crepancy is found near to the front. This is due to the fact that the velocity is calculated
as the ratio of the conserved flow variable qx and water depth h. As the water depth
vanishes near to the front, numerical errors may be exaggerated and cause the numerical
velocity to deviate from the analytical solution. Fig. 3(c) demonstrates the solute con-
centration, which matches perfectly the analytical solution. No over or under-shoot is
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Figure 4: Dry-bed dam break: L1-error predicted for different flow variables on grids with different resolution.

predicted. In order to assess the convergence of the numerical scheme, simulations are
also performed on another four uniform grids with different resolutions, i.e. ∆x = 2.5m,
5m, 20m and 40m, respectively. The L1-error is calculated for h, qx and qc at t =50s and
plotted against the cell size ∆x in Fig. 4. The simulations are observed to converge at a
rate of about 1. In this case, h and qc have identical solutions and so the same L1-error.
The results confirm the capability of the current numerical scheme on capturing wet-dry
interface and predicting non-negative water depth and solution concentration.

4.3 Tidal flow over steps

Also proposed by the EU CADAM project, the case of tidal flow over steps is a useful test
for verifying the capability of a numerical scheme on dealing with discontinuous bed
topography. The bed profile of the 1500m long frictionless channel where the tidal flow
takes place is defined by

zb(x)=

{

8 if |x−750|6187.5,
0 otherwise.

(4.2)

This essentially provides two vertical steps at the middle of the domain. Asymptotic
analytical solutions are available and given by [5]:

h(x,t)=20−zb(x)−4sin

[

π

(

4t

86400
+

1

2

)]

,

u(x,t)=
(x−L)π

5400h(x,t)
cos

[

π

(

4t

86400
+

1

2

)]

. (4.3)

In the current numerical scheme, the vertical steps are automatically approximated by
very steep slopes that are equal to the ratio between the corresponding step height and
grid size and no special treatment is implemented. During the simulation, the channel
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(a) (b)

(c)

Figure 5: Tidal flow over steps: comparison of nu-
merical and analytical flow profiles along the channel
central line at t=32400s (a) water surface elevation;
(b) x-direction velocity component; (c) solute con-
centration.

is assumed to be 75m wide and discretised by a 200 × 10 uniform grid. The analytical
solutions at t = 0 are used to supply the initial conditions. The inflow driven by h(0,t)
is imposed at the western end while a solid wall is assumed at the eastern end of the
channel.

Fig. 5 presents the numerical results at t=32,400s in terms of free-surface, velocity and
concentration profiles along the central line of the channel. The numerical profiles are
compared with the analytical solutions and excellent agreement is achieved. This proves
that the current numerical scheme is able to provide accurate predictions for shallow flow
applications involving complex and even discontinuous bed topography.

4.4 Long wave resonance in a parabolic basin

The analytical test of long wave resonance in a frictionless parabolic basin is considered
herein to verify the current numerical model of solute transport in dealing with wetting
and drying over a non-horizontal topography, which was also employed by Murillo et
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al. [35] to validate their code. The bottom elevation of the parabolic basin is defined by

zb(x,y)=hs0
r2

L2
. (4.4)

Herein r is the distance from the domain centre. hs0 is the still water depth at the domain
centre and L represents the radius of the circular shoreline when the flow is in the mo-
tionless steady state. The analytical solution of the shallow water equations for this case
was derived by Thacker [38] and the time varying water level is provided by:

η(r,t)=hs0

[

(

1−A2
)1/2

1−Acosωt
−

r2

L2

(

1−A2

(1−Acosωt)2
−1

)]

, (4.5)

where

A=
L4−r4

0

L4+r4
0

and ω =
1

L

√

8ghs0 (4.6)

with r0 being the distance from the domain centre to the point where the water depth is
nil at t=0.

During the numerical simulation, the constants are chosen to be hs0=20m, r0=1200m
and L=1500m in order to compare the results with those produced by Murillo et al. [35].
The computational domain is assumed to be 4000m × 4000m and discretised by a 100 ×
100 uniform grid. At t=0, the water is still with the water surface distorted according to
η(r,0). Transmissive boundary conditions are imposed but the settings do not influence
the results as the flow never reaches the domain boundary.

In order to validate the solute transport model, an initial solute concentration is as-
sumed as:

c(r,0)= c0 exp

(

−
r

2r0

)

, (4.7)

where c0=1 is used. As suggested by Murillo et al. [35], the distribution of solute concen-
tration will return to its initial profile after integer number of oscillation period T because
no diffusion is allowed, i.e.

c(r,t=KT)= c0 exp

(

−
r

2r0

)

, K =1,··· ,∞. (4.8)

Based on these settings, simulations are run for 4 periods and the results are pre-
sented in Fig. 6 to Fig. 9. Fig. 6 demonstrates the results in terms of water level profile at
different output times. It is evident that the motion of the water surface is correctly sim-
ulated. The wet-dry interfaces are properly captured and no distortion is detected near
the front which demonstrates the effectiveness of the current numerical technique in han-
dling wetting and drying. It is also obvious from the results that the effect of numerical
diffusion is negligible after 4 periods of simulation. Compared with those presented by
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Wetting and drying over a parabolic topography: profile of water surface elevation at different output
times (a) t=0.25T; (b) t=0.5T; (c) t=0.75T; (d) t=1.0T; (e) t=3.25T; (f) t=3.5T; (g) t=3.75T; (h) t=4.0T.
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(a) (b)

(c) (d)

Figure 7: Wetting and drying over a parabolic topography: concentration profile at different output times (a)
t=1.0T; (b) t=2.0T; (c) t=3.0T; (d) t=4.0T.

Murillo et al. [35], the current prediction provides a much better fit to the analytical solu-
tion throughout the simulation. Fig. 7 presents the profile of solute concentration along
the x-direction central line of the domain at the end of each period. The numerical con-
centration profile matches nicely the analytical solution and again numerical diffusion
does not have much influence on the results up to 4 periods. Fig. 9 presents the time
histories of the oscillating water depth and the constant solute concentration at the do-
main centre, which confirms the above conclusions on the robustness and accuracy of the
current model. The time history of the maximum and minimum solute concentration is
illustrated in Fig. 9. Obviously the maximum solute concentration remains to be 1 while
the minimum value is predicted to be 0 throughout the simulation. This means that the
present numerical scheme predicts no over and under-shoot of the solute concentration
and non-negativity and conservation of solute concentration is achieved.

In order to further demonstrate the accuracy of the current numerical model, simu-
lations are run on three other uniform meshes with different resolution. The additional
grids have resolution of ∆x=10m, 20m and 80m, respectively. The L1-error is calculated
for η and qc at the end of each simulation and plotted in Fig. 10 against the cell size ∆x.
The convergence rate for both η and qc is about 1.4.
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(a) (b)

Figure 8: Wetting and drying over a parabolic topography: time history of the key flow variables at the domain
centre (a) water depth; (b) solute concentration.

Figure 9: Wetting and drying over a parabolic topog-
raphy: time history of the maximum and minimum
values of concentration.

Figure 10: Wetting and drying over a parabolic to-
pography: relative error calculated for different flow
variables on grids with different resolution.

4.5 Dam break over three humps

Proposed by Kawahara and Umetsu [24], this case of dam break over three humps is a
severe test for a shallow flow solver as it involves simultaneously discontinuous flow
variables, repeating process of wetting and drying and relatively complex domain to-
pography. Therefore it may be deemed as an idealised situation of a realistic dam-break
problem. In a 75m × 30m rectangular domain, the bottom topography is provided by

zb(x,y)=max

(

0,1−
1

8

√

(x−30)2+(y−6)2,

1−
1

8

√

(x−30)2+(y−24)2,3−
3

10

√

(x−47.5)2+(y−15)2

)

. (4.9)
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(a) (b)

(c) (d)

Figure 11: Dam break over three humps: numerical results at t = 2s (a) 3D plot of water surface; (b) water
depth contours; (c) 3D surface plot of solute concentration; (d) contours of solute concentration.

Initially, an infinitely thin dam is located at 16m away from the western end of the domain
and the still water depth upstream the dam is 1.75m. The water is polluted with a well-
mixed solute concentration of 1.

During the simulation, the domain is discretised by a 200 × 80 uniform grid and the
Manning coefficient n = 0.018 is used throughout the domain. Solid boundary condi-
tions are imposed at the four lateral walls. The dam is removed immediately at t = 0
and the simulation is run for 300s after the dam fails. Fig. 11 present the results at t =2s
in terms of 3D surface plot and contours for both water depth and solute concentration.
After the dam is removed, the polluted water rushes into the floodplain and at t=2s the
front has reached and started to climb the two smaller humps at the front. Theoretically,
the concentration of the solute is 1 wherever it is wet as diffusion is ignored. This is
actually the case in the current simulation, as indicated in Figs. 11(c and d). Therefore,
the sharp-fronted concentration is correctly simulated and no numerical diffusion is ob-
served. Due to the huge momentum carried by the dam-break wave, the flow continues
to travel rapidly downstream. After t = 6s, as illustrated in Fig. 12, the dam-break flow
has passed and submerged the two smaller humps. After hitting the big hump, the wave
front has started to climb the big mound. Because of the blockage effect, only part of
the flow is able to pass the big mound through the sides near the northern and southern
boundary walls and continues to move downstream. The interaction among the violent
dam-break wave, topography and boundary walls has caused a complex wave pattern.
The sharp front of solute concentration coincides with the wet-dry interface and both
are effectively modelled. At t = 12s, as shown in Fig. 13, the dam-break wave makes
its journey further downstream and those parts of front passing through the big mound
are about to reach the downstream end of the domain. Due to the interaction between
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(a) (b)

(c) (d)

Figure 12: Dam break over three humps: numerical results at t = 6s (a) 3D plot of water surface; (b) water
depth contours; (c) 3D surface plot of solute concentration; (d) contours of solute concentration.

(a) (b)

(c) (d)

Figure 13: Dam break over three humps: numerical results at t = 12s (a) 3D plot of water surface; (b) water
depth contours; (c) 3D surface plot of solute concentration; (d) contours of solute concentration.

the dam-break wave and the humps, a shock-wave has been generated and propagates
backwards to the upstream boundary. Fig. 14 shows the results at t = 30s, in which the
wet-dry front has reached the eastern boundary and another interacting shock has been
created and moves upstream. This wave-topography-boundary interaction will continue
until the momentum of the dam break is dissipated by the bed friction. Eventually the
flow will settle down and become motionless again, as illustrated in Fig. 15 for t =300s,
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(a) (b)

(c) (d)

Figure 14: Dam break over three humps: numerical results at t = 30s (a) 3D plot of water surface; (b) water
depth contours; (c) 3D surface plot of solute concentration; (d) contours of solute concentration.

(a) (b)

(c) (d)

Figure 15: Dam break over three humps: numerical results at t=300s (a) 3D plot of water surface; (b) water
depth contours; (c) 3D surface plot of solute concentration; (d) contours of solute concentration.

where the top of the two smaller humps has become dry again. In all of the output times,
the hydrodynamic behaviour of the dam-break wave and the complicated wetting and
drying process are predicted to be similar to those obtained by Brufau et al. [6]. The
solute concentration evolves according to the development of the flow and the discontin-
uous front is always properly captured. Fig. 16 presents the time history of the maximum
and minimum solute concentration. Again, the two extreme values remain to be 1 and
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Figure 16: Dam break over three humps: time history of the maximum and minimum values of concentration.

0 throughout the simulations in this severe test. Including most of the features for a
realistic dam-break problem, successfully handling of this case essentially indicates the
potential of the current model in real-world applications.

5 Conclusions

Solute transport is an important topic in shallow flow modelling. This paper presents a
robust model for simulating shallow flow induced solute transport process. The model
is based on the finite volume Godunov-type solution to the integrated 4 × 4 hyperbolic
conservation laws consisting of the shallow water and solute transport equations. The
second-order accurate Godunov-type model is constructed using a well-balanced and
non-negative scheme. Well-balanced solution to the problem of lake at rest is automati-
cally achieved for wet-bed simulations after employing a set of pre-balanced governing
equations. For applications involving wetting and drying over complex topography, the
numerical scheme is carefully designed to ensure non-negativity in terms of both wa-
ter depth and solute concentration. A local bed modification method is implemented
together with the non-negative reconstruction to maintain well-balancing for dry-bed
applications. Compatible to the non-negative reconstruction, a central difference scheme
is directly used for discretising the bed-slope source terms. The friction source terms are
solved by a splitting limited implicit scheme to ensure numerical stability near the wet-
dry interface. As a whole, the current numerical scheme is effective in providing well-
balanced and non-negative solutions to complex shallow flow driven solute transport
problems involving wetting and drying over irregular domain topography. Meanwhile,
it is straightforward to understand and easy to implement. There is no need of any clip-
ping treatment to amend the flow variables in order to maintain positivity of water depth
and solute concentration. So the numerical scheme provides better conservative property
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than most of the alternative approaches reported in literature [35]. It should be noted that
the diffusion term in the solution transport equation is ignored in the current numerical
scheme. In lots of applications involving wetting and drying, the flow evolves rapidly
and the diffusion effect is relatively small compared to advection. However, if it is neces-
sary, the diffusion terms can be easily included in the governing equations and solved by
central differences [28] or an implicit scheme for better numerical stability as suggested
by Murillo et al. [34]. For applications involving irregular domain boundaries, the cur-
rent model can be directly combined with the Cartesian cut-cell technique [11, 30] or the
simple boundary treatment method proposed by Liang and Borthwick [26] to provide
curved boundary treatment.

The present solute transport model is validated against four analytical benchmarks
and then applied to simulate a more realistic test of dam break over three humps. In all
of the cases being investigated, the numerical predictions compare well with the analyt-
ical solutions or alternative numerical results reported in literature. Evolution of mass
for both water and solute concentration is monitored throughout the simulations and ab-
solute conservation is observed for all the tests, which is as expected for the current nu-
merical scheme. Furthermore, non-negative and maximum concentration principles are
guaranteed for pollutant transport, i.e. no under or over-shoot is predicted throughout
all the simulations. The last case of dam break over three humps is a severe test involving
flow discontinuity, wetting and drying and complex domain topography, which are the
most important elements in a realistic shallow flow problem. Successful handling of this
case indicates that the current model is directly applicable to real-world applications of
solute transport driven by shallow flows, e.g. the propagation of sewage waste during a
flood event.
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