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Abstract. The motion of the atoms in a molecule may be described as a superposition
of translational motion of the molecular center-of-mass, rotational motion about the
principal molecular axes, and an intramolecular motion that may be associated with
vibrations and librations as well as molecular conformational changes. We have con-
structed projection operators that use the atomic coordinates and velocities at any two
times, t=0 and a later time t, to determine the molecular center-of-mass, rotational, and
intramolecular motions in a molecular dynamics simulation. This model-independent
technique facilitates characterization of the atomic motions within a system of complex
molecules and is important for the interpretation of experiments that rely on time cor-
relation functions of atomic and molecular positions and velocities. The application
of the projection operator technique is illustrated for the inelastic neutron scattering
functions and for the translational and rotational velocity autocorrelation functions.

AMS subject classifications: 81V55

PACS: 34.30.+h, 34.50.Dy, 68.03.Hj, 71.15.Pd
Key words: Molecular dynamics, projection operator, correlation functions, scattering functions,
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1 Introduction

The dynamics of molecular systems can be probed by different scattering techniques such
as inelastic and quasielastic neutron scattering, inelastic helium atom scattering, and in-
frared and Raman spectroscopy. In each of these cases, the system response can be related
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to a time correlation function of some molecular property, e.g., atom positions, atom ve-
locities, and molecular dipole moments. In particular, the scattered neutron intensity is
proportional to the scattering function which is the space- and time-Fourier transform of
the dynamical pair distribution function for the atoms in the system. A non-scattering
spectroscopic technique like NMR may also be used to probe the dynamics in solids,
since the second moment of the NMR absorption spectrum depends on the crystal struc-
ture and on any molecular motions that may occur (see, e.g., [1]).

The motion of atoms in a molecule can be a complicated superposition of translational
and rotational motions of the whole molecule as well as intramolecular motions. This
situation simplifies somewhat in molecular crystals where the translational order and
molecular orientations are known. In such cases and at temperatures well below the
melting point, a harmonic approximation for the interatomic potential may hold and a
normal mode analysis can be applied. For crystalline systems at higher temperatures, a
much-used method in the past has been to calculate the scattering functions [2] and/or
NMR second moments [1] for simple models of molecular motion, such as uniaxial or
spherical rotations or bounded translational motion, and then compare the results with
observed spectra to validate them. However, for analyzing complex motions in a given
system in any phase and at any temperature, it is desirable to have a general model-
independent method that makes no assumptions about the translational ordering and
molecular orientations.

In this paper, we describe such a method for analyzing complex molecular motions
occurring in a molecular dynamics (MD) simulation. It allows us to project out the center-
of-mass motion and rotational motion of the molecule from the atomic positions and ve-
locities at any two times, t = 0 and a later time t. From the remaining motion, we can
determine the intramolecular displacements of the atoms in the specified time interval
caused by molecular conformational changes as well as by vibrational and librational
excitation. We have applied this technique successfully to our quasielastic neutron scat-
tering studies of intermediate-length alkane molecules adsorbed on solid surfaces [3]-
[7]. It has allowed us to determine which type of motion (translational, rotational, or
intramolecular) contributes dominantly to the quasielastic spectra. In addition, the ve-
locity and rotational velocity correlation functions have proved useful for characterizing
the molecular motions by revealing whether the particular kind of motion is oscillatory,
diffusive, or both.

Frequently, the molecular motion of interest can span a broad range of time and length
scales. In quasielastic neutron scattering, the instrumental energy resolution and dy-
namic range determine the slowest and fastest of these motions, respectively, that are
accessible experimentally. Thus, being able to analyze MD simulations to determine the
time scale of the different types of motion is important in selecting an appropriate instru-
ment. For example, our simulations of adsorbed alkane molecules [3] indicated that in-
tramolecular diffusive motion associated with creation and annihilation of gauche defects
is rather slow compared to other modes. By using a high-energy-resolution backscatter-
ing spectrometer, we were able to find a temperature range where these conformational
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changes occurred on a nanosecond time scale so that they made the principal contribu-
tion to the scattering function within the instrument’s dynamic range.

The paper is organized in the following way. In Section 2, we briefly review a few
key points about the scattering functions in neutron scattering and describe the construc-
tion of projection operators that are used to decompose atomic motions into translational
motion of the molecular center-of-mass, rotational motion, and intramolecular atomic
displacements. The results are used to determine the signatures of these motions in the
inelastic neutron spectra and are illustrated by an example from our simulations of alkane
monolayers. In Section 3, we describe the construction of projection operators for the
calculation of the center-of-mass and rotational velocity correlation functions, again il-
lustrated by an example from our alkane monolayer simulations.

2 Time correlation functions in neutron scattering

We begin with a brief review of certain aspects of the neutron scattering functions of
relevance here [9].

In a neutron scattering experiment, we distinguish between coherent and incoherent
scattering. The intensity of the former is proportional to the coherent scattering function
Scoh(q,ω) and that of the latter to the incoherent scattering function Sinc(q,ω). q is the
wave vector transfer and h̄ω the energy transferred by the scattered neutrons. The co-
herent scattering function represents the collective motions of the atoms in the sample
whereas the incoherent scattering function represents single-atom motions. For a fluid
and a powder, the orientation of the atom position vectors with respect to the scattering
wave vector q will be random, and the scattered intensity is therefore averaged over all
orientations so that the scattering functions will only be a function of the magnitude |q|
of the wave vector transfer. For h̄ω = 0, the scattering is elastic; and, for h̄ω→ 0, we de-
scribe the scattering as quasielastic and the associated motions as diffusive. Examples are
translational and rotational diffusive motions.

Since the hydrogen atom has a very large incoherent scattering length compared to
the coherent scattering lengths for both hydrogen and carbon atoms, neutron scatter-
ing will be strongly dominated by the incoherent scattering when hydrogen atoms are
present as in alkane molecules. That dominance may be suppressed by replacing the
hydrogen atoms with deuterium atoms so that the coherent scattering function may be
probed.

The scattering function Scoh(q,ω) is the time-Fourier transform of the intermediate
scattering function F(q,t)

Scoh(q,ω)=
1

2π

∫ ∞

−∞
dtexp(−iωt)F(q,t) (2.1)
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which is given by the expression

F(q,t)=
1

N

N

∑
i=1

N

∑
j=1

bibj <exp(iq·(ri(t)−rj(0)))>, (2.2)

where bi and bj are the neutron scattering lengths. This function is readily calculable from
a time series of atomic positions rj(t) as generated in an MD simulation. The sum extends
over all N atoms in the system, and the brackets <···> indicate an ensemble average. The
double summation over atoms and the argument of the exponential function show that
this function is related to the collective motion of atoms in the sample, since it includes a
time correlation between the position coordinates of different atoms.

The incoherent, or self-scattering, function is the time-Fourier transform of the inter-
mediate self-scattering function Fs(q,t)

Sinc(q,ω)=
1

2π

∫ ∞

−∞
dtexp(−iωt)Fs(q,t) (2.3)

which is given by the expression

Fs(q,t)=
1

N

N

∑
j=1

bj <exp(iq·(rj(t)−rj(0)))> . (2.4)

This function is also readily calculable from a time series of atomic positions rj(t) as
generated in an MD simulation. The single summation over atoms and the argument of
the exponential function show that this function is related to single atom motions, since
it only includes a time correlation between the position coordinates of the same atom.

For a later discussion, let us rewrite the intermediate self-scattering function in the
following way

Fs(q,t)= Fs(q,∞)+F′
s(q,t) with

F′
s(q,t)→0 for t→∞. (2.5)

Then the incoherent scattering function will be

Sinc(q,ω)=2πFs(q,∞)δ(ω)+S′
inc(q,ω). (2.6)

This shows that the incoherent scattering function, and hence the incoherent scattering
may consist of two contributions. The first term on the right hand side gives an elastic
contribution when Fs(q,∞) is different from zero. This will be the case when the atoms
perform bounded motion about their original positions as in rotational or vibrational
motion. When this is not the case, there is no elastic contribution, since Fs(q,∞) will
be zero as in translational diffusive motion. The second term in the expression gives
the frequency-dependent part of the scattering function and reflects the type of motion
involved.
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2.1 Projection operator

Any motion of the atoms in a molecule may be described as a combination of a molecular
center-of-mass motion, a molecular rotational motion, and an intramolecular motion [10].

Let rim(t) be the position vector of atom i with mass mi in molecule m at time t. Then
the center-of-mass position vector of molecule m is given by the expression

Rm(t)=
∑

M
i=1mi rim(t)

∑
M
i=1mi

, (2.7)

where M is the number of atoms in the molecule. The translational motion of the molecule
is determined by following Rm(t) as function of time t. Now let us introduce the atomic
position vectors sim(t) relative to the center-of-mass position of the molecule by

sim(t)= rim(t)−Rm(t). (2.8)

The rotational motion of a molecule is described in the following way. At time t =0,
let the three orthonormal principal axes of inertia be e1(0), e2(0) and e3(0), such that

[e1(0),e2(0),e3(0)]= [i,j,k][E(0)]. (2.9)

Here i,j,k are the basis vectors for the laboratory-fixed Cartesian coordinate system. The
elements of the ith column of the (3×3) matrix E(0) are the Cartesian coordinates of the
ith principal axis ei(0); they are determined by a diagonalization of the inertia tensor I(0)
for the molecule at time t=0 and given by the three orthonormal eigenvectors [10]. Note
that I(0) may be written in Dyadic notation as

I(0)=
M

∑
i=1

[mi(|sim(0)|21−sim(0)sim(0))]. (2.10)

We may invert Eq. (2.9) and find

[e1(0),e2(0),e3(0)][E(0)]−1 =[i,j,k]. (2.11)

At some later time t, the three principal axes of inertia are e1(t), e2(t) and e3(t) as deter-
mined by diagonalizing I(t); that is,

[e1(t),e2(t),e3(t)]= [i,j,k][E(t)]. (2.12)

The relative position vector sim(0) may be written in terms of Cartesian components
arranged in the (3×1) column matrix [sim(0)] as

sim(0)= [i,j,k][sim(0)] (2.13)

and, from Eq. (2.11), in the basis of e1(0),e2(0),e3(0) as

sim(0)= [e1(0),e2(0),e3(0)][E(0)]−1[sim(0)]. (2.14)
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If the displacement of the ith atom in molecule m from time t = 0 to time t is given by a
rigid rotation of the molecule, as defined by the principal axes of inertia at t = 0 and t,
then the relative coordinates of atom i in the e1(t),e2(t),e3(t) coordinate system will be
the same as in the e1(0),e2(0),e3(0) coordinate system, that is

sr
im(t)= [e1(t),e2(t),e3(t)][E(0)]−1[sim(0)]

= [i,j,k][E(t)][E(0)]−1 [sim(0)]

≡ [i,j,k]Rotm(t,0)[sim(0)], (2.15)

where we have used Eq. (2.12). sr
im(t) is the position vector of atom i in molecule m

relative to the center-of-mass position at time t after the molecule has performed a rigid
rotation between time t=0 and time t.

Rotm(t,0) is a projection operator given by the (3×3) matrix operator

Rotm(t,0)= [E(t)][E(0)]−1 (2.16)

and may be used to determine the position vector, relative to the center-of-mass, of atom
i in a molecule that performs a rigid rotation, as defined by the rotation of the principal
axes of inertia, from time t=0 to time t about the center-of-mass of the molecule.

For a rigid molecule, the atomic motion is a superposition of the center-of-mass mo-
tion and the rigid rotational motion of the molecule, so starting at time t=0, we must have
sim(t)=sr

im(t) at time t, because the relative atomic position vector at t is only determined
by the rotational motion of the molecule in that time interval. This is usually not true for
a flexible molecule where there also may be intramolecular atomic displacements, sint

im (t),
in that time interval, so we may in general write

sim(t)= sr
im(t)+sint

im (t), (2.17)

which defines the intramolecular atomic displacement vector.
Thus, starting at time t = 0, we may write the atomic position vectors at any later

time t as a sum of the molecular-center-of-mass position vector at time t and the relative
position vector sim(t) [Eq. (2.8)] which again may be written as a sum of the relative
position vector associated with a rigid rotation of the molecule from time t = 0 to time t
and an intramolecular atomic displacement vector in that time interval [Eq. (2.17)], that
is

rim(t)=Rm(t)+sim(t)=Rm(t)+sr
im(t)+sint

im (t). (2.18)

For t = 0, we see from Eq. (2.16) that the Rotm(0,0) matrix is the unit matrix such that
sr

im(0)= sim(0) according to Eq. (2.15), and we may write Eq. (2.18) as

rim(0)=Rm(0)+sim(0)+sint
im (0)=Rm(0)+sim(0). (2.19)

When we compare this equation with Eq. (2.8) at time t = 0, we see that sint
im (0) = 0 to

make the two equations identical. That makes sense, since sint
im (t) is an intramolecular
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displacement vector caused by intramolecular motions from time t = 0 to time t but at
time t=0 there has not yet been a displacement of the atoms.

In summary, the MD simulation generates the atomic positions at time t starting out
with the atomic positions at time t = 0. From those we may determine the center-of-
mass position as function at t using Eq. (2.7), the relative atom position vectors sim(t)
using Eq. (2.8), the relative atom position vectors sr

im(t) resulting from the rigid rotation
of the molecule in the time interval using Eq. (2.15), and the intramolecular displacement
sint

im (t) during that time interval using Eq. (2.18). The latter will be zero at any time for
rigid molecules.

2.2 Scattering functions

We will in the following use this development to determine the scattering functions for
the different kinds of motion.

2.2.1 Overall atomic motion

In a scattering experiment, we monitor the overall atomic motion that is a combination of
the center-of-mass, rotational, and intramolecular motions. The intermediate scattering
function F(q,t) is defined [Eq. (2.2)] as

F(q,t)=
1

N
<

N

∑
i=1

N

∑
j=1

bibj exp[−iq·(ri(t)−rj(0))]>, (2.20)

where i, j run over all N atoms in the system. For a determination of the contributions
to the intermediate scattering function from the center-of-mass, the rotational, and the
intramolecular motions, it will be convenient to write the summation differently and
explicitly include a summation over molecules n,m, so that we have

F(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

bimbjn exp[−iq·(rim(t)−rjn(0))]> . (2.21)

Here the subscript im refers to atom i in molecule m. Index i runs over all atoms in
molecule m and j over all atoms in molecule n. Then, using Eqs. (2.18) and (2.19) we may
split up the exponential function and write

F(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

{bimbjn exp[−iq·(Rm(t)−Rn(0))]

×exp[−iq·(sim(t)−sjn(0))]}>

=
1

N
<∑

n
∑
m

∑
i

∑
j

{bimbjn exp[−iq·(Rm(t)−Rn(0))]

×exp[−iq·(sr
im(t)−sjn(0))]×exp[−iq·(sint

im (t))]}> . (2.22)
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It is easy to write down similar expressions for the intermediate self-scattering function
Fs(q,t). We just replace the double summations over molecules and atoms in Eqs. (2.20)-
(2.22) with a single summation over molecules and atoms and replace the indices refer-
ring to the second summation in the argument of the exponential function with those of
the first summation. Thus, the expression that corresponds to Eq. (2.22) for the interme-
diate self-scattering function is

Fs(q,t)=
1

N
<∑

m
∑

i

{bimbim exp[−iq·(Rm(t)−Rm(0))]

×exp[−iq·(sim(t)−sim(0))]}>

=
1

N
<∑

m
∑

i

{bimbim exp[−iq·(Rm(t)−Rm(0))]

×exp[−iq·(sr
im(t)−sim(0))]×exp[−iq·(sint

im (t))]}> . (2.23)

If the three contributions to F(q,t) represented by the exponential functions are indepen-
dent, we may take the ensemble average of each term separately and write the intermedi-
ate scattering function as a product of three independent contributions. These contribu-
tions correspond to the molecular center-of-mass, rotational, and intramolecular motions
including atomic vibrations and librations and molecular conformational changes. Then
the total scattering function is a convolution of these three contributions to the intermedi-
ate scattering function. However, in most cases, the different types of motion are coupled
so that we cannot write F(q,t) as a product of three ensemble averages. Even then, it is
still very useful to determine the contributions from the various types of motion to the
scattering function, since it is important for interpretation of the observed spectra.

In the following, we will discuss the calculation of the various contributions to the
scattering function and have chosen to normalize them all in the same way by introduc-
ing the factor 1/N.

2.2.2 Center-of-mass motion

This contribution may be written

FCM(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

bimbjn exp[−iq·(Rm(t)−Rn(0))]>

=
1

N
<∑

n
∑
m

BnBmexp[−iq·(Rm(t)−Rn(0))]>, (2.24)

where we have defined the molecular scattering lengths as

Bn =∑
j

bjn; Bm =∑
j

bjm. (2.25)



F. Y. Hansen and H. Taub / Commun. Comput. Phys., 6 (2009), pp. 231-246 239

For the intermediate self-scattering function, we have

Fs,CM(q,t)=
1

N
<∑

m
∑

i

bimbim exp[−iq·(Rm(t)−Rm(0))]>

=
1

N
<∑

m

B2
mexp[−iq·(Rm(t)−Rm(0))]> . (2.26)

2.2.3 Rotational and intramolecular motion

According to Eq. (2.22), this contribution may be written as

Froint(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

bimbjn exp[−iq·(sim(t)−sjn(0))]>; (2.27)

and for the intermediate self-scattering function we have [Eq. (2.23)]

Fs,roint(q,t)=
1

N
<∑

m
∑

i

bimbim exp[−iq·(sim(t)−sim(0))]> . (2.28)

2.2.4 Rotational motion

This contribution is given by [Eq. (2.22)]

Frot(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

bimbjn exp[−iq·(sr
im(t)−sjn(0))]>; (2.29)

and the intermediate self-scattering function is given by Eq. (2.23)

Fs,rot(q,t)=
1

N
<∑

m
∑

i

bimbim exp[−iq·(sr
im(t)−sim(0))]> . (2.30)

2.2.5 Intramolecular motion

This contribution is given by Eq. (2.22)

Fint(q,t)=
1

N
<∑

n
∑
m

∑
i

∑
j

bimbjn exp[−iq·(sint
im (t))]> . (2.31)

The intermediate self-scattering function is given by

Fs,int(q,t)=
1

N
<∑

m
∑

i

bimbimexp[−iq·(sint
im (t))]> . (2.32)

We note that the result only depends on im and that we do not need to sum over jn.
This may seem surprising but is a consequence of sint

im (t) not being a position vector, like
the other vectors, but a displacement vector determined relative to a given time origin
t=0.
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2.2.6 Example

As an example of the rotational and intramolecular scattering function, let us consider
our simulations of the squalane monolayer [6,7,11]. Squalane [C30H62 or (2,6,10,15,19,23-
hexamethyltetracosane] is a branched alkane with twenty-four carbon atoms in its back-
bone and six methyl side groups located symmetrically along its length. When bound to
a solid surface by van der Waals forces at low temperature, it forms a crystalline structure
with a two-molecule rectangular-centered unit cell [6]. At 225 K, the monolayer under-
goes a transition from a crystalline phase to a smectic phase, where the molecules are
arranged in lamellae with some translational disorder within the lamellae in the direc-
tion parallel to the long axis of the molecule. A top-down snapshot of the simulation
cell containing the squalane molecules is shown in Fig. 1 at a temperature of 300 K [6].
The molecules are depicted by the bonds between carbon atoms, and we see how the
molecules are arranged in lamellae.

Figure 1: A top-down view of the simulation cell with squalane molecules at 300 K [11].

In Fig. 2, we show the intermediate self-scattering functions for the rotational mo-
tion of the molecules, the intramolecular motions, and the combined rotational and in-
tramolecular (internal) motions. All correlation functions are seen to be unity at t = 0
consistent with the normalization factor that we introduced for each of the correlation
functions. After an initial decrease with time, each of the correlation functions levels out
at some non-zero value. These are examples of Fs(|q|,∞) in Eq. (2.5) being different from
zero, since, in rotational and intramolecular motions, the atomic motions are bounded
about their original positions. Therefore, we have an elastic, in addition to the quasielas-
tic, contribution to the scattered intensity. We also note that the product of the rotational
and intramolecular scattering functions are not quite equal to the internal contribution,
indicating that there is a slight coupling between the two kinds of motions as discussed
in relation to Eq. (2.23).
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Figure 2: The powder-averaged intermediate self-scattering function Fs(q,t) for the squalane molecules in a
monolayer film at 280 K in the smectic phase for the rotational, intramolecular and combined rotational and
intramolecular (labeled internal in the figure) motion (from [11]). No quantitative uncertainty analysis was
performed, but the calculated data points are based on MD simulation results with a standard deviation of the
total energy on the 1% level.

3 Velocity correlation functions

The velocity correlation functions are very useful for the characterization of the molecular
motions and their time-Fourier transform gives the power spectrum of the motions that
may be related to inelastic helium atom scattering spectra. In addition, a determination of
the velocity correlation function for the center-of-mass and rotational motions is essential
for identifying the types of motions in a system. For example, in systems of the strongly
anisotropic alkane molecules, we have found [6, 11] that motions parallel to the long
axis of the molecules differ qualitatively from those perpendicular to it (see Fig. 1), the
parallel motions being more diffusive in character whereas the perpendicular motions
are bounded and oscillatory.

The normalized center-of-mass velocity auto correlation function is given by the ex-
pression

Cvelα(t)=
<Vα(t)Vα(0)>

<Vα(0)Vα(0)>
, (3.1)

where α = x,y,z are the Cartesian components of the center-of-mass velocity of the
molecules and the bracket < ···> indicates an ensemble average. Instead of determining
the velocity correlation function for motions in the three Cartesian directions, we may
also determine the correlation function of the total center-of-mass velocity given by

Cvel(t)=
<V(t)·V(0)>

<V(0)·V(0)>
. (3.2)
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For molecular rotational motion, we define the rotational velocity correlation function as

Croti(t)=
<Ωi(t)Ωi(0)>

<Ωi(0)Ωi(0)>
, (3.3)

where Ωi is the angular velocity vector for a rigid rotation about an axis defined by the
angular velocity vector. Usually, we choose the three principal axis of inertia for rota-
tional motion of the molecule, so Ωi is the rotational velocity for rotation about the ith
principal axis of inertia. We may also determine the overall rotational velocity correlation
function as

Crot(t)=
<Ω(t)·Ω(0)>

<Ω(0)·Ω(0)>
. (3.4)

The center-of-mass velocity correlation functions may readily be calculated from the
center-of-mass velocity for molecule m that may be found directly from Eq. (2.7) by dif-
ferentiation with respect to time. We have

Vm(t)=
∑

M
i=1 mivim(t)

∑
M
i=1mi

, (3.5)

where vim(t) is the velocity of atom i in molecule m at time t. These velocities can be
determined in an MD simulation and used in a calculation of the velocity correlation
functions given by Eqs. (3.1) or (3.2).

3.1 Projection operator

It is straightforward to determine the rotational velocities about the three principal axes
of inertia. First, we determine the center-of-mass coordinates for the molecule at time t
using Eq. (2.7); then the atomic position vectors sim(t) relative to the center-of-mass posi-
tion are determined from Eq. (2.8). These are used to construct a projection operator that
when applied to the atomic velocities will project out the angular velocities for rotation
of the molecule about the three principal axes of inertia which are the eigenvectors of the
inertia tensor in Eq. (2.10). The relative atom position vectors sim(t) are then represented
in the coordinate system spanned by the principal axes of inertia.

Let us first focus on one of the atoms in the molecule. Suppose that the molecule
performs a rigid rotation as given by the vector Ω, then the velocity of the atom is given
by

vim =Ω×sim

=e1[Ω2sim,3−Ω3sim,2]+e2[Ω3sim,1−Ω1sim,3]+e3[Ω1sim,2−Ω2sim,1]. (3.6)

The eigenvectors ei are functions of time as indicated in Eq. (2.15), but for simplicity of
notation this is not shown explicitly here. sim,l is the component of the position vector
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relative to the center-of-mass along principal axis of inertia el . In matrix form, we have

vim =[e1e2e3]





vim,1

vim,2

vim,3



=[e1e2e3]





0 sim,3 −sim,2

−sim,3 0 sim,1

sim,2 −sim,1 0









Ω1

Ω2

Ω3



. (3.7)

Thus the relation between the components of the atomic velocity and the rotational ve-
locity in the basis of the principal axes of inertia is given by





vim,1

vim,2

vim,3



=





0 sim,3 −sim,2

−sim,3 0 sim,1

sim,2 −sim,1 0









Ω1

Ω2

Ω3



. (3.8)

A (3×3) matrix, as in Eq. (3.7), is generated for each atom in the molecule and they are
put together to form a (3M×3) matrix [rotvel] where the first (3×3) block is for atom 1,
the next (3×3) block for atom 2, etc. In the same way, we form a (3M×1) column matrix
[vel] of the components of the atomic velocities, the first (3×1) block is for atom 1, the
next (3×1) block for atom 2, etc. Likewise, the (3×1) matrix with the three components
of the rotational velocity is written like [Ω]. Then we have

[vel]= [rotvel][Ω]. (3.9)

In order to solve this equation, we first need to generate a square matrix in front of the
(3×1) Ω column matrix, so we can take the inverse. This is done by multiplication from
the left by the transpose of the (3M×3) [rotvel] matrix. We find

[rotvel]T [vel]= [rotvel]T [rotvel][Ω]. (3.10)

The [rotvel]T [rotvel] matrix is a quadratic (3×3) matrix that may be inverted; and, by
multiplying from the left by the inverse of that quadratic matrix, we solve the equation
for Ω. We get

[Ω]= [[rotvel]T [rotvel]]−1 [rotvel]T [vel]. (3.11)

This shows that, by applying the matrix operator [[rotvel]T [rotvel]]−1 [rotvel]T to the
atomic velocities, we may project out the rotational velocity of the molecule at a given
time for rotation about any of the three principal axes of inertia.

3.2 Example

Let us use the center-of-mass and rotational velocity correlation functions for the
squalane molecules in Fig. 1 as an example [6, 11]. In Fig. 3, we show the Cartesian
components Vx,Vy,Vz of the center-of-mass velocity correlation function. We note that
the correlation functions are very different for the three Cartesian directions. The motion
in the z-direction, perpendicular to the surface, clearly has the character of an oscillatory
bouncing mode as expected. The motion in the y-direction, perpendicular to the long axis
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Figure 3: The Cartesian components, Vx, Vy and Vz of the center-of-mass velocity correlation functions of
the squalane molecules in Fig. 1 (from [11]). No quantitative uncertainty analysis was performed, but the
calculations are based on MD simulation results with a standard deviation of the total energy on the 1% level.
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Figure 4: The power spectrum of the velocity correlation functions in Fig. 3 (from [11]). No quantitative
uncertainty analysis was performed, but the calculations are based on MD simulation results with a standard
deviation of the total energy on the 1% level.

of the molecules, is different and has both an oscillatory and diffusive character. The mo-
tion in the x-direction, parallel to the long axis of the molecules, is very different from the
other directions in that the motion appears to be mostly diffusive. These features were
used to conclude that the molecules form a smectic phase rather than a crystalline phase,
since oscillatory behavior would have dominated in a crystalline phase. The power spec-
trum of the velocity correlation functions in Fig. 4 supports this picture. It will have a
non-zero value at zero frequency for a diffusive mode while it will be zero for an oscilla-
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Figure 5: The rotational velocity correlation functions, Rot1, Rot2 and Rot3, for rotations about the principal
axes of inertia with descending moments of inertia (from [11]). Note that the Rot1 and Rot2 correlation functions
are degenerate and can therefore not be distinguished in the plot. No quantitative uncertainty analysis was
performed, but the calculations are based on MD simulation results with a standard deviation of the total energy
on the 1% level.
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Figure 6: The power spectrum of the rotational velocity correlation functions in Fig. 4 (from [11]). No
quantitative uncertainty analysis was performed, but the calculations are based on MD simulation results with
a standard deviation of the total energy on the 1% level.

tory mode. In fact, we see a zero value at the origin for the z-motion but not for the x- and
y-motions. The peaks in the power spectra for the y- and z-motions give the average os-
cillatory frequency, and there does not appear to be a peak for motion in the x-direction.
However, since it is a smectic phase rather than a fluid, there should also be a peak in the
power spectrum for the x-motion. We expect it to be at a very low frequency and below
the energy resolution in the simulations.
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In Fig. 5, we show the three rotational velocity correlation functions, Crot1, Crot2,
Crot3 (Rot1, Rot2, Rot3 respectively in the figure), for rotation about the three principal
axes of rotation corresponding to descending moments of inertia. That is, Rot1 and Rot2
correspond to rotations about the two principal axes of inertia that are perpendicular to
the long axis of the molecule, while Rot3 corresponds to rotation about the long axis. The
results for Rot1 and Rot2 cannot be distinguished. This is because the two moments of in-
ertia are, on the average, the same so that the two motions will be degenerate. The rolling
motion about the long axis, Rot3, is clearly distinct from the other rotational motions. It
has an oscillatory character as well as a diffusive character like Rot2 and Rot 3. The latter
may be seen more easily from the power spectrum of the rotational velocity correlation
functions in Fig. 6, where each has a non-zero value at zero frequency. Again, the oscilla-
tory character of the rolling motion about the long axis of the molecule is also clear from
the distinct peak in the power spectrum. That character is much less pronounced for the
rotational motions about the other axes.
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