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Abstract. The parareal algorithm, proposed firstly by Lions et al. [J. L. Lions, Y. Ma-
day, and G. Turinici, A ”parareal” in time discretization of PDE’s, C.R. Acad. Sci.
Paris Sér. I Math., 332 (2001), pp. 661-668], is an effective algorithm to solve the time-
dependent problems parallel in time. This algorithm has received much interest from
many researchers in the past years. We present in this paper a new variant of the
parareal algorithm, which is derived by combining the original parareal algorithm
and the Richardson extrapolation, for the numerical solution of the nonlinear ODEs
and PDEs. Several nonlinear problems are tested to show the advantage of the new
algorithm. The accuracy of the obtained numerical solution is compared with that of
its original version (i.e., the parareal algorithm based on the same numerical method).
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1 Introduction

In the seminal paper [24] the concept of a new domain decomposition for the numerical
solution of time-dependent problems, the parareal algorithm, was proposed by Lions,
Maday and Turinici. The name, parareal, was chosen to indicate that the algorithm is con-
structed to compute simultaneously in time the solution of evolution problems whose
solution cannot be obtained in real time using one processor only. The method has re-
ceived much interest from many researchers in the past years, especially in the area of
domain decompositions, see, e.g., [21]. Many excellent results about this algorithm have
been obtained and below we will make a brief retrospection.
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The idea targeted a large scale time parallelism of simulating the evolution problems
was proposed already in 1964 by Nievergelt [29]. The idea of Nievergelt eventually devel-
oped into the well known multiple shooting method for boundary value problems [20].
For much more investigation in this direction we refer the interested reader to [4, 5, 22].
Later in 1967, Miranker and Liniger [26] introduced a family of naturally Runge-Kutta
methods for small scale parallelism coupled with predictor-corrector strategies. The par-
allelization of these methods lays on that, the prediction and correction steps can be per-
formed simultaneously over several time steps.

The parareal algorithm was first introduced in [24] and an improved version was
given by Bal and Maday in [2]. Some further improvements and understanding, as well
as new applications of this algorithm, were investigated by Baffico et al. in [3] and Maday
and Turinici in [27,28]. Its stability was investigated in [1,30]. Recently, several variants of
this algorithm have been proposed in [6, 10, 14] and extensive experiments can be found
for fluid and structure problems in [6, 10], for the Navier-Stokes equations in [7, 8], for
reservoir simulation in [11], and for various nonlinear problems, such as Brusselator,
Arenstorf orbit and viscous Burgers’ equation etc. in [13].

We pay special attention to the recent results presented by Gander and Vandewalle
in [12]. In that paper, the relation of the parareal algorithm to the space-time multigrid
methods [16,18,19,25,31–33] and multiple shooting methods was first investigated. It has
been shown that the parareal algorithm can be regarded as the practical implementation
of the multiple shooting and time-multigrid methods. The new convergence results that
show superlinear convergence of the algorithm on bounded time intervals and linear
convergence on unbounded intervals were also presented in that paper. It also provides
a up-to-date historical review and references in this field.

Along the lines of [12], we investigate in this paper a new variant of the parareal al-
gorithm, namely Parareal-Richardson algorithm, for the time dependent problems. The
new algorithm is derived by combining the original parareal algorithm and the Richard-
son extrapolation, and hence the accuracy of the numerical solution obtained by the pro-
posed algorithm is higher than that of the original parareal algorithm. The aim of this
paper is to show the advantages of this new algorithm in terms of the accuracy when ap-
plied to nonlinear ODEs and PDEs. Moreover, the advantages with respect to the stability
and convergence rate for the proposed algorithm are presented.

The remainder of this paper is organized as follows. The Parareal-Richardson algo-
rithm is described in detail in Section 2. We also discuss the stability property and the
accuracy of the Parareal-Richardson scheme. It is demonstrated that for some one-step
numerical methods, the stability region of the Parareal-Richardson algorithm is larger
than that of the parareal algorithm. In Section 3, we apply the parareal and Parareal-
Richardson algorithms to several classical nonlinear ODEs and PDEs, and to demonstrate
that the Parareal-Richardson algorithm is more flexible and outperforms the parareal al-
gorithm. In Section 4, we discuss the effects of the parameters used in the proposed
algorithm to the convergence speed. In Section 5, we give some conclusions of this paper
and discuss future directions of the research for the Parareal-Richardson algorithm.
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2 Derivation of the Parareal-Richardson algorithm

In this section, we first review the parareal algorithm and the idea of the Richardson
extrapolation for systems of ordinary differential equations of the form

{
y′(t)= f (t,y(t)), t∈ [0,T],

y(0)=y0,
(2.1)

where f :R×Rm→Rm and y:R→Rm. The Parareal-Richardson algorithm is then derived
naturally.

2.1 The parareal algorithm

The parareal algorithm is defined using two propagation operators G and F. The opera-
tor G(tn,yn) provides a coarse approximation to y(tn+1) and operator F(tn,yn) provides
a more accurate approximation of y(tn+1). To start the algorithm, we need initial ap-
proximations Y0

n of y(t) at time tn (n =0,1,··· ,N) which are given, e.g., by the sequential
computation of Y0

n+1 = G(tn,Y0
n) with Y0

0 = y0. Then in each subinterval [tn,tn+1] we per-

form the parallel computation F(tn,Y0
n) to obtain a more accurate approximations of y(t)

at time tn. At last, we perform sequentially, for k=0,1,2,··· , the correction iteration

Yk+1
n+1 =G(tn,Yk+1

n )+F(tn,Yk
n)−G(tn,Yk

n). (2.2)

It is obvious that for k → +∞ the parareal algorithm (2.2) generates a series of values
Yn that satisfy Yn+1 = F(tn,Yn) provided the iterative process is convergent. This in-
dicates that the approximations at the time tn will have achieved the accuracy of the
F−propagator.

2.2 The Richardson extrapolation

For an one-step method which we write, in Henrici’s notation [15], as

yn+1 =yn +hΦ(tn ,yn,h), n=0,1,··· , (2.3)

we assume that the method is of order p. Then with (n+1)h being a constant number
(maybe h is varying, but (n+1)h is constant), suppose that starting from yn the error be-
tween yn+1 and the exact solution y(t) of (2.1) at time tn+1 = t0+(n+1)h takes an asymp-
totic expansion of the form

y(tn+1)−yn+1 = ep(tn+1)hp+eq(tn+1)hq +O(hq+1), (2.4)

where q> p.
Let

yn+1 =Ψ(tn,yn,h)=yn +hΦ(tn ,yn,h) (2.5)
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and y∗n+1 =ΨM(tn,yn,h/M) be the approximation of y(t) at tn+1 obtained by the method
Φ with step size h/M after M steps. We then have the following global asymptotic ex-
pansion at time tn+1 :

y(tn+1)=yn+1+ep(tn+1)hp+eq(tn+1)hq+O(hq+1), (2.6a)

and

y(tn+1)=y∗n+1+ep(tn+1)(h/M)p+eq(tn+1)(h/M)q+O
(
(h/M)q+1

)
. (2.6b)

Define

α=
1

1−Mp
, β=

Mp

Mp−1
. (2.7)

It then follows by multiplying (2.6a) and (2.6b) with α and β respectively that

y(tn+1)=αyn+1+βy∗n+1+eq(tn+1)hq
(
α+βM−q

)
+O(hq+1). (2.8)

Define
Yn+1 =αΨ(tn ,Yn,h)+βΨM (tn,Yn,h/M) , Y0 =y0. (2.9)

Then we have
y(tn+1)=Yn+1+eq(tn+1)hq

(
α+βM−q

)
+O(hq+1). (2.10)

From (2.10), we know that the numerical solution Yn may obtain higher order of ac-
curacy at cost of much more computation time. To overcome this disadvantage, we con-
sider parallel computation of ΨM(tn,yn,h/M) in each subinterval [tn,tn+1]. To this end,
we adopt the idea of the parareal algorithm and therefore introduce the following algo-
rithm.

Algorithm 2.1: Parareal-Richardson Algorithm

• Initialization: Perform sequential computation Y0
n+1=Ψ(tn,Y0

n ,h) with Y0
0 =y0, n=0,··· ,N−1;

• For k=0,1,··· ,

1. Perform simultaneously in each subinterval [tn,tn+1] the computation

Ŷn+ m+1
M

=Ψ
(
tn+m/M,Ŷn+m/M,h/M

)

with initial value Yk
n , where tn+m/M = tn+mh/M and m=0,1,··· ,M−1;

2. Perform sequential corrections

Yk+1
n+1 =(α+γ)Ψ(tn,Yk+1

n ,h)+βŶn+1−γΨ(tn,Yk
n ,h)

with Yk+1
0 =y0, n=0,1,··· ,N−1;

3. If for n =0,1,··· ,N−1, Yk+1
n satisfy some termination criteria, stop the iteration; else go

to step 1.
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The above algorithm can be written compactly as

Yk+1
n+1 =(α+γ)Ψ(tn ,Yk+1

n ,h)+βΨM

(
tn,Yk

n ,h/M
)
−γΨ(tn,Yk

n ,h), (2.11)

where k is the iteration index and the parameter γ is the relaxation factor which is chosen
to speedup the convergence. Note that for k→+∞ method (2.11) will upon convergence
generates a series of values Yn which satisfy

Yn+1 =αΨ(tn,Yn,h)+βΨM(tn,Yn,h/M).

This implies that the converged solution Yk
n(k→+∞) obtained by the Parareal-Richardson

algorithm at time tn will achieve the accuracy of the one defined by (2.9).

We note that both the parareal and Parareal-Richardson algorithms can be illustrated
in Fig. 1: the symbols ’F’ and ’G’ stand for the finer propagation operator F and the
coarse propagation operator G, respectively; the symbol ’C’ denotes some combination
of the computed values G(tn,yk+1

n−1),F(tn,yk
n−1) and G(tn,yk

n−1) at iteration k — for the
parareal algorithm the combination is (2.2) and for the Parareal-Richardson algorithm the
combination is (2.11). In Fig. 1, at iteration k the finer approximations zk

n are computed
simultaneously.
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Figure 1: Illustration of the parareal and Parareal-Richardson algorithms.

Remark 2.1. If we set α=0,β=1,γ=1 in (2.11), the Parareal-Richardson algorithm reduces
to the parareal algorithm

Yk+1
n+1 =Ψ(tn,Yk+1

n ,h)+ΨM

(
tn,Yk

n ,h/M
)
−Ψ(tn,Yk

n ,h), (2.12)
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which is a special case of the parareal algorithm (for the general parareal algorithm, the
propagators F and G can be based on different numerical method; see [12] for more de-
tails). Therefore, we can regard the Parareal-Richardson algorithm as the “weighted”
version of the parareal algorithm. Also, it can be regarded as the parallel implementation
of the Richardson extrapolation (2.9). Moreover, we note that the Parareal-Richardson
algorithm can be regarded as a special case of the original parareal algorithm if the prop-
agation operators F and G are replaced by

F̂(t,y)=αΨ(t,y,h)+βΨM (t,y,h/M) ,Ĝ(t,y)=(α+γ)Ψ(t,y,h) (2.13)

in (2.2), respectively. We have not found this kind of modification in the literature of this
field and our aim in this paper is to demonstrate some advantages of the new algorithm
compared with its original version (2.12).

Remark 2.2. It is clear that at every iteration the storage and the computation time costed
by the Parareal-Richardson algorithm equals to the parareal algorithm, while the Parareal-
Richardson algorithm takes the advantage of higher accuracy. Moreover, for M≫ 1 we
find α ≈ 0 and β ≈ 1, and thus if γ = 1 we may expect that the convergence speed of
the Parareal-Richardson algorithm approaches to that of the parareal algorithm. We will
validate this in Section 3 by several classical nonlinear ODEs and PDEs.

Remark 2.3. The convergence condition and the convergence speed of the parareal algo-
rithm were investigated in [12] by the model problem

{
y′(t)=λy, λ∈C,

y(0)=y0.
(2.14)

Following along the lines of [12], we have studied the convergence condition and the
convergence speed of the Parareal-Richardson algorithm in [34] by using the model prob-
lem (2.14), where we have proved that the algorithm converges superlinearly on any
bounded time interval and only linearly on unbounded time intervals. Moreover, under
some suitable condition there exists an optimal relaxation factor γ by which the Parareal-
Richardson algorithm converges to the converged solution with only one iteration.

Remark 2.4. From [12], we know that the general parareal algorithm (2.2) is stable if it
holds that

K(z)=

∣∣R f (z)−R(z)
∣∣

1−|R(z)|
<1 and |R(z)|<1, z∈C, (2.15)

where R(z) and R f (z) are the stability functions of the G-propagator and F-propagator,
respectively. Therefore, from Remark 2.1 the stability region of the Parareal-Richardson
algorithm and its original version (2.12) can be written as

DPR =

{
z
∣∣∣
∣∣βRM

(
z
M

)
−γR(z)

∣∣
1−|(α+γ)R(z)|

<1 and |R(z)|<
1

|α+γ|
, z∈C

}
, (2.16)
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and

D=

{
z
∣∣∣
∣∣RM

(
z
M

)
−R(z)

∣∣
1−|R(z)|

<1 and |R(z)|<1, z∈C

}
, (2.17)

respectively. For some one step numerical methods, the stability region of the Parareal-
Richardson algorithm is larger than the one of the parareal algorithm. To illustrate this,
for γ=1 and M=2, we plot the stability region of these two algorithms coupled with the
forward Euler method, the 2 stage-order 2 method used in our paper and the trapezoidal
rule, in the left, middle and right panels of Fig. 2, respectively.
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Figure 2: Stability region of the two algorithms coupled with the forward Euler (left), the 2 stage-order 2 method
(right) and the trapezoidal rule (middle).

We close this section by analyzing the accuracy of the Parareal-Richardson algorithm.
From (2.10) it is easy to know that

y(tn+1)−Yn+1 =O

((
1

1−Mp
+

Mp

Mq(Mp−1)

)
hq

)
. (2.18)

Therefore, the Parareal-Richardson algorithm will upon convergence generate a series
of values Yn which achieve the accuracy of the right-hand side of (2.18), while the con-
verged solution obtained by the parareal algorithm will have only achieved accuracy
O((h/M)p). Consequently, by using the Parareal-Richardson algorithm, the improve-
ment of accuracy of the numerical solution is

O

((
Mp

1−Mp
+

M2p

Mq(Mp−1)

)
hq−p

)
=O

(
Mp

1−Mp

(
1−

1

Mq−p

)
hq−p

)
. (2.19)

Obviously, for M≫1 the improvement of accuracy approaches to O(hq−p).

3 Numerical results

To perform the parareal and Parareal-Richardson algorithms, we use the following Runge-
Kutta methods.
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• 2 stage-order 2 RK :

A=

[
0 0
1
2 0

]
, b=(0,1); (3.1)

• 3 stage-order 2 RK :

A=




0 0 0
1
2 0 0
0 1 0


, b=

(
1

4
,
1

2
,
1

4

)
; (3.2)

• 3 stage-order 3 RK :

A=




0 0 0
2
3 0 0
1
6

1
2 0


, b=

(
1

4
,
1

4
,
1

2

)
. (3.3)

For nonlinear ODEs (2.1), the step sizes for the coarse and the fine approximation
are ∆T and ∆T/M, respectively. Moreover, we use a very accurate numerical solution
obtained using MATLAB’s ode45 solver with minimal tolerances (AbsTol=1×10−14 and
RelTol=1×10−15), and we denote the solution at time tn by ȳn (n=0,1,··· ,T/∆T). We
denote the converged numerical solution obtained by the Parareal-Richardson algorithm
and its original version by Ỹn and Yn, respectively. The numerical solution at time tn

and iteration k obtained by the Parareal-Richardson algorithm and its original version
is denoted by Ỹk

n and Yk
n , respectively. We therefore introduce the algebraic error with

iteration index k as
Errk = max

n=0,1,···, T
∆T

‖Yn−Yk
n‖∞ (3.4)

and
Ẽrrk = max

n=0,1,···, T
∆T

‖Ỹn−Ỹk
n‖∞, (3.5)

for the parareal and Parareal-Richardson algorithms, respectively. The discretization er-
ror at time tn of the parareal and Parareal-Richardson algorithms is defined as

DErrn =‖ȳn−Yn‖∞ (3.6)

and
D̃Errn =‖ȳn−Ỹn‖∞, (3.7)

respectively. Both algorithms terminate when the algebraic error is less than 10−12.

Example 3.1. (Lotka-Volterra system) Consider the following system
{

x′(t)= x(1−y),

y′(t)=−y(1−x).
(3.8)
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Figure 3: 2 stage-order 2 RK method (3.1): Left: discretization errors DErrn and D̃Errn; Right: algebraic error

decay Errk and Ẽrrk.
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Figure 4: 3 stage-order 2 RK method (3.2):Left: discretization errors DErrn and D̃Errn; Right: algebraic error

decay Errk and Ẽrrk.
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892 S. L. Wu, B. C. Shi and C. M. Huang / Commun. Comput. Phys., 6 (2009), pp. 883-902

To perform the parareal and Parareal-Richardson algorithms, we choose T =20,∆T =
0.1,M =80,∆t = ∆T/M. The discretization error at time tn, the actual error decay for the
above three RK methods (3.1)-(3.3) are plotted in Figs. 3-5, respectively.

We see clearly in these figures that the Parareal-Richardson algorithm performs much
better than the original parareal algorithm in the sense of the accuracy of the converged
solution. Moreover, from the right panels of these figures we see that the Parareal-
Richardson algorithm converges with almost equal convergence speed of the parareal
algorithm.

Example 3.2. (HIRES Problem) The HIRES model was proposed by Schafer et al. in 1975
[9]. The problem originates from plant physiology and describes how light is involved in
morphogenesis. The equations are given by





y′1(t)=−1.71y1 +0.43y2+8.32y3+0.0007,

y′2(t)=−1.71y1−8.75y2,

y′3(t)=−10.03y3 +0.43y4+0.035y5,

y′4(t)=8.32y2 +1.71y3−1.12y4,

y′5(t)=−1.745y5 +0.43y6+0.43y7,

y′6(t)=−280y6y8+0.69y4+1.71y5−0.43y6+0.69y7,

y′7(t)=280y6y8−1.81y7,

y′8(t)=−280y6y8+1.81y7,

(3.9)

with initial values y1,···,8(0)=(1,0,0,0,0,0,0,0.0057)T .
For the HIRES problem (3.9), we choose ∆T =0.05,M=50,∆t=∆T/M to perform the

parareal and Parareal-Richardson algorithms on time interval [0,40]. For this problem,
we note that both the parareal and Parareal-Richardson algorithms coupled with the 2
stage-order 2 RK method (3.1) and the 3 stage-order 3 RK method (3.3) are not conver-
gent, while both algorithms are convergent when coupled with the 3 stage-order 2 RK
method (3.2). The computational results are plotted in Fig. 6, where one can see that the
converged solution of the Parareal-Richardson algorithm is much more accurate than that
of the parareal algorithm, while the convergence speed of this algorithm strictly equals
to the parareal algorithm (see the right panel of Fig. 6).

Example 3.3. (Burgers’ Equation) We finally show numerical experiments for the well
known viscous Burger’s equation:

ut+ f (u)x =0, (x,t)∈ [0,1]×[0,4], (3.10)

where f (u)=u2/2. Problem (3.10) is completed with initial-boundary conditions

u(x,0)=

{
1, if x≤ 1

2 ,

0, if 1
2 < x≤1,
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Figure 6: 3 stage-order 2 RK method (3.2): Left: discretization errors DErrn and D̃Errn; Right: algebraic error

decay Errk and Ẽrrk.
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Figure 7: 2 stage-order 2 RK method (3.1): Left: discretization errors DErrn and D̃Errn; Right: algebraic error

decay Errk and Ẽrrk.

and u(0,t)=1− 1
2 sin(πt).

The term f (u)x is discretized as f (u)x ≈
f (ui)− f (ui−1)

∆x at xi = i∆x with ∆x = 0.02, i =
1,2,··· ,1/∆x, and then we do the same experiment as in the previous examples with
parameters ∆T = 0.008,M = 40,∆t = ∆T/M. The computational results are plotted in
Figs. 7-9.

It is interesting that, as in the previous examples, the 3 stage-order 2 RK method (3.2)
is still the best one, since in this case the advantage of the Parareal-Richardson algorithm
in the sense of accuracy is much more significant; moreover, both algorithms converge
with least iterations, as one can see in the right panels of the Figs. 7-9.

Remark 3.1. From the above numerical results, one can see clearly that the 3 stage-order 2
RK method (3.2) (see [15] on page 223) has significant advantage in the sense of achieving
much better accuracy of the numerical solution when applied to the Parareal-Richardson
algorithm. An exercise in this monograph asks to show that for this method “one step
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Figure 8: 3 stage-order 2 RK method (3.2): Left: discretization errors DErrn and D̃Errn; Right: algebraic error
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Figure 9: 3 stage-order 3 RK method (3.3): Left: discretization errors DErrn and D̃Errn; Right: algebraic error

decay Errk and Ẽrrk.

of Richardson extrapolation increases the order of the method by two”, and this explains
why for this integrator the Parareal-Richardson algorithm gains a factor (∆T)2 compared
to the original parareal algorithm.

Remark 3.2. For M = 50 and γ = 1, the stability region of the parareal and Parareal-
Richardson algorithms (defined by (2.16), (2.17)), coupled with the three RK methods
(3.1)-(3.3) is shown in Figs. 10 and 11, respectively.

One can see clearly that the stability region of the two algorithms coupled with the
3 stage-order 2 RK method is larger than the case when coupled with the other two
RK methods. This may interpret why in Example 3.2 both algorithms are not conver-
gent when coupled with the 2 stage-order 2 RK method (3.1) and the 3 stage-order 3 RK
method (3.3). Moreover, for M=50, the quantities α and β defined by (2.7) are very close
to 0 and 1, respectively; hence, the stability region of these two algorithms coupled with
the same numerical method is very close. This can be also seen in Figs. 10 and 11.
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Figure 10: Stability region of the parareal algorithms coupled with the 2 stage-order 2 RK method (left), 3
stage-order 2 (middle) and 3 stage-order 3 (right).
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Figure 11: Stability region of the Parareal-Richardson algorithms coupled with the 2 stage-order 2 RK method
(left), 3 stage-order 2 (middle) and 3 stage-order 3 (right).

4 Discussion of the parameters γ and M

In this section, we give some discussion of the effect of the parameters γ and M to the con-
vergence speed of the Parareal-Richardson algorithm with the 3 stage-order 2 RK method
(3.2) and the Lotka-Volterra system (3.8). We choose T =20,∆T =0.05 and M=10,50 and
for each M, we perform the Parareal-Richardson algorithm with γ=0.95,1,(2−α)/2,1−α

and (1−α)+0.005, where α is defined by (2.7). For each M, the relation of the line types to
the parareal and Parareal-Richardson algorithms with different γ are specified in Figs. 12
and 13.

We first test M = 10. In such case, the parareal and Parareal-Richardson algorithms
with the above five parameters γ are convergent, and the discretization error DErrn and

D̃Errn at every time point tn is plotted in the left panel of Fig. 12. In the middle panel,
we show the measured convergence speed of the parareal and Parareal-Richardson al-
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Figure 13: Same as Fig. 12, except with M =50.

gorithms with different γ (the line types shown in this panel are specified in the right
panel).

We see from Fig. 12 that the convergence speed of the Parareal-Richardson algorithm
coupled with γ = 1−α outperforms the other cases, and in such case the convergence
speed of the Parareal-Richardson algorithm strictly equals to the parareal algorithm.

We next test M=50. The discretization error DErrn, D̃Errn at every time point tn and
the measured convergence speed of the parareal and Parareal-Richardson algorithms
with different γ are plotted in the left and middle panels of Fig. 13, respectively. In
the middle panel of Fig. 13, one can see that the convergence speed of the Parareal-
Richardson algorithm with γ=1,(2−α)/2 and 1−α closes to the parareal algorithm. This
can be interpreted as: for M=50, the quantities α, β and γ approach to 0,1 and 1, respec-
tively, and therefore from Remark 2.2 we know that the Parareal-Richardson algorithm
almost equals to the parareal algorithm. However, the accuracy of the converged solu-
tion computed by the Parareal-Richardson algorithm is still significantly better than that
of the parareal algorithm as one can see in the left panel of Fig. 13.

By the above experiments, one can see that the convergence speed of the Parareal-
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Figure 14: Computational results with M =2,γ =1−α for the Lotka-Volterra system (3.8): Top left: algebraic

error decay Errk and Ẽrrk with different RK methods; Top right: the relation of the line types to the parareal
and Parareal-Richardson algorithms coupled with three RK methods (3.1)-(3.3); Bottom, from left to right:

discretization errors DErrn and D̃Errn with RK methods (3.1), (3.2) and (3.3).
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Figure 15: Same as Fig. 14, except for Burgers’ equation (3.10).
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Richardson algorithm is very sensitive to the parameter γ. Moreover, at the moment γ=
1−α may be the best choice for the Parareal-Richardson algorithm, by which the Parareal-
Richardson algorithm converges with almost equal speed of the original parareal algo-
rithm, even if the quantity M is small. To further validate our conjecture, we will do more
experiments with much smaller M in the remainder of this section.

Obviously, the meaningful minimal M is 2, and in such case our computation results
show that in most cases the Parareal-Richardson algorithm with γ = 1 converges very
slow (at the moment, we just report this result but not intend to show it numerically).
Fortunately, we have the choice γ = 1−α! In the following of this section, for M = 2,
we perform the parareal and Parareal-Richardson algorithms with γ = 1−α and the RK
methods (3.1)-(3.3) for the Lotka-Volterra system (3.8) and the Burger’s equation (3.10).

The computational results for these two nonlinear equations are plotted in Figs. 14
and 15, respectively. In the top left panel of these two figures, we show the measured
convergence speed of the parareal and Parareal-Richardson algorithms, where one can
see clearly that both algorithms converge with almost equal speed. On the bottom pan-
els, one can see that the advantage of the Parareal-Richardson algorithm in the sense of
accuracy is very significant. The relation of the line types to the parareal and Parareal-
Richardson algorithms coupled with the three RK methods is specified in Figs. 14 and
15.

5 Conclusions and further research

We propose a new algorithm, namely Parareal-Richardson, to solve the time-dependent
problems simultaneously in time. The new algorithm can be regarded as a weighted ver-
sion of the parareal algorithm and also can be regarded as the parallel implementation
of the Richardson extrapolation. By testing several classical nonlinear ODEs and PDEs,
one can see that the Parareal-Richardson algorithm takes the advantage of much better
accuracy of the converged numerical solution. We have shown that, for γ =1 and larger
M, the Parareal-Richardson algorithm converges with almost equal speed of the parareal
algorithm, while for small M the choice γ=1 is not advisable. We have also presented an
experiential optimal choice γ = 1−α, by which the Parareal-Richardson algorithm con-
verges with almost equal speed of the original parareal algorithm in most cases, even if
the quantity M is 2, the meaningful minimal value of M.

However, several basic problems are still open. One is that how the underlaying
numerical method affects the convergence and the convergence speed of the Parareal-
Richardson algorithm when applied to nonlinear problems. The other problem is that
how the parameter γ affects the convergence speed. Even though the choice γ = 1−α

can guarantee the almost equal convergence speed of the Parareal-Richardson algorithm
with the original parareal algorithm as shown in Section 4, can we choose some better γ

which significantly speedups the convergence of the Parareal-Richardson algorithm?
To validate that there really exists some optimal parameter γ by which the Parareal-

Richardson algorithm converges faster than the parareal algorithm, we consider the fol-
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lowing reaction-diffusion equation





ut =uxx+cos(t+x)+sin(t+x), (t,x)∈ [0,10]×[0,1],

u(0,x)=sin(x), x∈ [0,1],

u(t,0)=sin(t),u(t,1)=sin(1+t), t∈ [0,10].

(5.1)

By applying the central difference formula to discretize the diffusion term uxx with ∆x=
0.025, we obtain

U′(t)= AU(t)+g(t), t∈ [0,10], (5.2)

with

A=
1

∆x2




2 −1

−1 2
. . .

. . .
. . . −1
−1 2




39×39

(5.3)

and some function g(t). We will show in our forthcoming paper that, for the linear system
(5.2) (even without the special structure of the matrix A as (5.3)), there exists a special
parameter γ such that the convergence speed of the Parareal-Richardson algorithm is
sharper than that of the parareal algorithm. To illustrate this, we test these two algorithms
coupled with the backward Euler method with ∆T =0.1 and M =20. The parameter γ is
chosen as γ=γopt =0.89347368421053, γ=1−α and γ=1. The computational results are
plotted in Fig. 16. In Fig. 16, it is clearly shown that the Parareal-Richardson algorithm
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with γ = γopt converges faster than the parareal algorithm. Moreover, for these three
parameters γ, the choice of γ=γopt is the best one. Particularly, the iteration number for
the parareal and Parareal-Richardson algorithms with γ = γopt, γ =1−α and γ =1 is 20,
15, 20 and 17, respectively.
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[9] E. Schäfer. A new approach to explain the ’high irraiance responses’ of photomorphogenesis
on the basis of phytochrome. J. Math. Biology, 2 (1975), 41–56.

[10] I. Garrido, B. Lee, G. E. Fladmark and M. E. Espedal. Convergent iterative schemes for time
parallelization. Math. Comp., 26 (2006), 1403–1428.

[11] I. Garrido, M. S. Espedal and G. E. Fladmark. A convergence algorithm for time paralleliza-
tion applied to reservoir simulation. In Proceedings of the 15th International Domain De-
composition Conference, Lect. Notes Comput. Sci. Eng. 40, R. Kornhuber, R. H. W. Hoppe,
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