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Abstract. A hybrid finite element-Laplace transform method is implemented to an-
alyze the time domain electromagnetic scattering induced by a 2-D overfilled cavity
embedded in the infinite ground plane. The algorithm divides the whole scattering
domain into two, interior and exterior, sub-domains. In the interior sub-domain which
covers the cavity, the problem is solved via the finite element method. The problem is
solved analytically in the exterior sub-domain which slightly overlaps the interior sub-
domain and extends to the rest of the upper half plane. The use of the Laplace trans-
form leads to an analytical link condition between the overlapping sub-domains. The
analytical link guides the selection of the overlapping zone and eliminates the need
to use the conventional Schwartz iteration. This dramatically improves the efficiency
for solving transient scattering problems. Numerical solutions are tested favorably
against analytical ones for a canonical geometry. The perfect link over the artificial
boundary between the finite element approximation in the interior and analytical so-
lution in the exterior further indicates the reliability of the method. An error analysis
is also performed.

AMS subject classifications: 35M10, 65M60
Key words: Overfilled cavity, time domain electromagnetic scattering, Laplace transform, finite
element method.

1 Introduction

In the last decades, the time-domain finite element method (TDFEM) has evolved into a
powerful numerical tool making it possible to solve a variety of complicated electromag-
netic problems (see, e.g., [1–9]). The TDFEM applied to scattering by cavities are reported
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in [10–15]. It is well known that TDFEM is relatively time consuming since it needs to
solve a linear system at each time step. Others have attacked the transient scattering prob-
lems with integral equations techniques [16], and series representation approach [17]. Re-
cently, the domain decomposition (DD) method has emerged as a promising technique
supplementing the TDFEM [18–20]. The DD method typically partitions the simulated
area into a number of sub-domains and Lagrange multipliers are used to enforce the
interface continuity condition. Traditionally, the DD method calls for the iterative match-
ing of the link condition (Schwartz link [21]), which incurs significant computational
expense.

In [22], we solve the scattering problem in the frequency domain using a hybrid
boundary integral - finite element method (BI-FEM) (see, also, [23, 24] and the references
therein for this hybrid method). In this technique, an artificial boundary, typically a semi-
circle, is placed over the cavity and the interior numerical solution is matched with the
exterior analytical solution via the introduction of a boundary operator. The boundary
operator gives rise to a non-standard boundary condition on the semi-circle which de-
mands the implementation of a boundary array. An additional hurdle associated with
the hybrid method in solving time domain problems stems from the convolution oper-
ation. The time-dependency of the artificial boundary requires the storage of historic
contributions of the field.

In this paper, the DD technique is integrated into the BI-FEM. In this hybrid approach,
the computational domain is partitioned into two sub-domains such that the interior
problem is solved numerically and exterior analytically. Specifically, we incorporate three
techniques to solve the time domain scattering problem: 1) The hybrid BI-FEM method,
in which an analytical solution defined in the exterior domain is used to match the bound-
ary condition of the interior numerical model; 2) DD method, where the whole domain is
divided into two sub-domains and the link condition over the overlapped zone between
the interior and exterior domains is matched; 3) The Laplace transform (LT) method,
here a time dependent kernel function is obtained enabling the explicit evaluation of the
boundary condition and thus avoiding the expensive Schwartz iteration. Our algorithm
is implemented using the pdetool under the GUI environment of Matlab. We developed
an analytical solution for a canonical model and compared it against our numerical re-
sults. We also plotted the linkage between the exterior analytical solution and the interior
numerical one. The overall good agreement between analytical and numerical solutions
gives confidence of the reliability of our fast algorithm. The accuracy of our method is
further demonstrated by a mesh size related error analysis.

2 Problem setting

Mathematical treatment of time harmonic electromagnetic scattering from cavities are
reported in [25] for over-filled cavities, and [26–28] for non-protruding cavities. A de-
tailed mathematical description of the variational method for transient electromagnetic
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Figure 1: Cavity geometry.

scattering of 2-D overfilled cavities embedded in an infinite ground plane is provided
in [29]. Here we highlight the necessary formulations for completeness. The cavity ge-
ometry is depicted in Fig. 1, where Ω is the cross section of a z-invariant cavity in the
infinite ground plane such that its fillings of relative permittivity ǫr 6=1 protrudes above
the ground plane, S the cavity wall, BR the semi-disk with radius R large enough to
completely enclose the overfilled portion of the cavity, Γ the portion of the ground plane
inside BR, Γext the infinite ground plane outsideBR, ΩR the region consisting of the cavity
Ω and the homogeneous part between BR and Γ. In addition, Ri is a radius slightly less
than R, such that BRi

still completely encloses the cavity, and finally, URi
the exterior to

BRi
overlapping ΩR by a semi-circular band of width R−Ri: URi

={(r,θ) :r>Ri,0<θ<π}.

2.1 TMz polarization

As in [22], the scattered field us satisfies the following exterior problem:

−∆us+
∂2us

∂t2
=0 in URi

, (2.1)

us =us
Ri

on
√

x2+y2 = Ri, (2.2)

us =0 on y=0, |x|≥Ri, (2.3)

us =∂us/∂t=0 at t=0, (2.4)

and the radiation condition:

lim
r→∞

√
r

(

∂us

∂r
+

∂us

∂t

)

=0. (2.5)

We shall use LM, light meter, for the time unit. Taking the Laplace transform {t → p},
Eq. (2.1) subject to the initial conditions (2.4) becomes:

−∆ūs +p2ūs =0 in URi
, (2.6)
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where ūs is the transform of us.
In polar coordinates, the Helmholtz equation (2.6) becomes

∂2ūs

∂r2
+

1

r

∂ūs

∂r
+

1

r2

∂2ūs

∂θ2
−p2ūs =0. (2.7)

We then have the solution of Eq. (2.7) subject to boundary conditions (2.2)-(2.3) and radi-
ation condition (2.5)

ūs(r,θ,p)=
2

π

∞

∑
n=1

(

Kn(pr)

Kn(pRi)

∫ π

0
ūs

Ri
(ϕ,p)sin(nϕ)dϕ

)

sin(nθ), (2.8)

where Kn(·) is the nth-order modified Bessel function of the second kind. On BR, we have

ūs(R,θ,p)=
2

π

∞

∑
n=1

(

Kn(pR)

Kn(pRi)

∫ π

0
ūs

Ri
(ϕ,p)sin(nϕ)dϕ

)

sin(nθ). (2.9)

Letting

Kn(t)= L−1

[

Kn(pR)

Kn(pRi)

]

,

where L−1 indicates the inverse laplace transform, we obtain the time domain scattered
field on BR as

us(R,θ,t)=
2

π

∞

∑
n=1

(

∫ π

0
Kn(t)∗us

Ri
(ϕ,t)sin(nϕ)dϕ

)

sin(nθ). (2.10)

Eq. (2.10) provides a link condition between the exterior problem and the following inte-
rior problem for the total field:

−∆u+ǫr
∂2u

∂t2
=0 in ΩR, (2.11)

u=uR on BR, (2.12)

u=0 on Γ∪S, (2.13)

u=0; ∂u/∂t=ut0 at t=0, (2.14)

where

uR =us(x,y)+ui(x,y)+ur(x,y), x,y∈BR, (2.15)

ui and ur are the incident and reflected fields respectively.
Using the general second-order difference scheme, Eqs. (2.11)-(2.14) may be written

as:

−∆um+1+
ǫr

δt2
um+1 =

ǫr

δt2
(2um−um−1) in ΩR, (2.16)

um+1 =um+1
R on BR, (2.17)

um+1 =0 on Γ∪S, (2.18)

u−1 =0; u0 =δtut0, (2.19)
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where m is the time step index (m=0,1,2,···) and δt the time step size.
With pdetool under GUI environment of Matlab, Eq. (2.16), classified as an elliptic

equation subject to the Dirichlet boundary conditions (2.17) and (2.18) can then be solved
by calling the function

u= assempde(b,p,e,t,c,a, f ),

where b describes the boundary condition, p,e and t specify the mesh grid, and c,a, and
f are the coefficients in the governing equation. Specifically, c = 1, a = ǫr/δt2, and f =
a(2um−um−1).

2.2 TEz Polarization

In this case, the scattered field us satisfies the following exterior problem:

−∆us+
∂2us

∂t2
=0 in URi

, (2.20)

us =us
Ri

on
√

x2+y2 = Ri, (2.21)

∂us/∂n=0 on y=0, |x|≥Ri, (2.22)

us =∂us/∂t=0 at t=0 (2.23)

and the radiation condition (2.5). As in the TM case, we first rewrite the differential
equation in polar form and solve the problem in the Laplace transform domain. We
then take the inverse transform on BR and obtain the solution to the exterior problem
evaluated at r= R to be:

us(R,θ,t)=
2

π

∞

∑
n=0

δn

(

∫ π

0
Kn(t)∗us

Ri
(ϕ,t)cos(nϕ)dϕ

)

cos(nθ), (2.24)

where

δn =

{

1/2 n=0,
1 n>0.

(2.25)

Similarly, Eq. (2.24) provides a link condition for the interior problem for the total field:

−∇·(ǫ−1
r ∇u)+

∂2u

∂t2
=0 in ΩR, (2.26)

u=uR on BR, (2.27)

∂u/∂n=0 on Γ∪S, (2.28)

u=0; ∂u/∂t=ut0 at t=0, (2.29)

where uR is as in Eq. (2.15).
Similar to the TM case, we can solve the problem by directly calling the function

u = assempde(b,p,e,t,c,a, f ). Here, b describes the mixed boundary condition with Neu-
mann condition on the cavity wall and Dirichlet condition on the half-cylinder which is
calculated using the exterior problem. In this case, the values of c,a, and f are the same
as those given in the TM case except here we have ǫr =1.
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3 Numerical evaluation

3.1 Overlapping zone

In order to solve the discrete system (2.26)-(2.29), uR must be known. The field uR can
be evaluated via Eq. (2.15) where us is calculated by the formula (2.10) for TM and (2.24)
for TE respectively. In turn, (2.10) and (2.24) depend on the values of us on Ri which
are defined on the interior nodes of problem (2.26)-(2.29). Hence this appears to be a re-
cursive procedure. The coupling relationship between the overlapped domains is usually
solved via the so-called Schwartz iteration [21]. The basis of the scheme is to alternatively
solve the inner and outer problems by updating the link condition until the convergence
criterion is satisfied. However, as can be seen below, the time-consuming Schwartz it-
eration may be avoided by appropriately choosing the overlapped region and time step
size. This is possible due to the special characteristics of wave propagation in the time
domain.

Based on the convolution principle, the time dependent terms contained in Eqs. (2.10)
and (2.24) can be rewritten as:

Kn(t)∗us
Ri

(ϕ,t)=
∫ t

0
Kn(t−τ)us

Ri
(ϕ,τ)dτ. (3.1)

Here, Kn(t) can be numerically inverted from the Laplace domain using techniques de-
veloped in [30] and [31] assuming it is smooth enough in the interested domain. Unfor-
tunately, Kn(t) has a singularity at t = 0 as can be seen using the asymptotic expansion
of the Bessel function as p → ∞. The singularity can not be treated appropriately with
the numerical inversion scheme. In fact, direct numerical inversion of Kn(t) only gives a
satisfactory result for t> tmin (numerical test indicates that tmin≃10−4). To overcome this
hurdle, we rewrite Eq. (3.1) via integration by parts as

Kn(t)∗us
Ri

(ϕ,t)=
∫ t

0
K∗(t−τ)u̇s

Ri
(ϕ,τ)dτ, (3.2)

where

K∗
n(t)= L−1

[

1

p

Kn(pR)

Kn(pRi)

]

, u̇s
Ri

=
∂

∂t
us

Ri
(ϕ,t).

It can be verified that K∗
n(t) has no singularity and can be written as

K∗
n(t)= L−1

[

1

p

Kn(pR)

Kn(pRi)

]

= L−1

[

1

p

K∗
n(pR)e−pR

K∗
n(pRi)e−pRi

]

,

or

K∗
n(t)= L−1

[

1

p

K∗
n(pR)

K∗
n(pRi)

e−p(R−Ri)

]

,
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Figure 2: Characteristics of Fn(t).

where K∗
n(z) is the scaled part of Bessel function Kn(z) by the factor ez (see [32, 33]).

Letting

Fn(t)= L−1

[

1

p

K∗
n(pR)

K∗
n(pRi)

]

and employing the delay property of the Laplace transform, Kn(t)∗ can be written as

K∗
n(t)=Fn [t−(R−Ri)].

This reveals that there is a propagation delay ∆=R−Ri on the boundary r=R in response
to the disturbance that originated at r = Ri. Separating the factor of delay enables us to
rewrite Eq. (3.2) as

Kn(t)∗us
Ri

(ϕ,t)=
∫ t−∆

0
Fn(t−∆−τ)u̇s

Ri
(ϕ,τ)dτ. (3.3)

Obviously, if ∆≥δt, the integral in Eq. (3.3) will not involve the value of us
Ri

at the current
time step, rendering iteration unnecessary. In other words, if the overlapped domain,
(Ri≤r≤R), has a larger span than the distance traveled by the wave cell from r=Ri over
a single time step, the Schwartz iteration can be avoided. The boundary condition on r=R
calls for just the data of those wave cells sent before t−∆. Consequently, the evaluations
of (2.10) and (2.24) are explicit. As an example, say ∆= δt, and kc is the current time step
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index. The values of us
Ri

at t = 0,δt,2δt,3δt,··· ,(kc−1)δt are already available and can be
used to evaluate the integral in Eq. (3.3). Clearly, judicious choices of the overlapping
domain and time step size are critical in time efficiency.

3.2 Boundary integral

The smoothness of the function Fn(t) is demonstrated in Fig. 2 for selected n, the order of
the Bessel function. It is observed that the oscillation of Fn(t) increases with n. Note, the
function Fn(t) can be preliminarily obtained by numerically inverting its image function
and saving the data for further use since it only depends on Ri and R.

Denote ∆=mδt,m≥1. The current value of us
Ri

(ϕ,t) in Eq. (3.3) can be evaluated using
the interpolation scheme based on the first (kC−m) values already calculated. Specifi-
cally, we have

us
Ri

(ϕ,t)=
kc−m

∑
k=1

us
Ri

(ϕ,tk)Nk(t), (3.4)

where Nk(t) is the basis function equaling 1 at t= tk and zero otherwise.

With the values of Fn(t) and us
Ri

(ϕ,t) available, Eq. (3.1) can be numerically inte-
grated by simply calling the Matlab built-in function. The linear system (2.26)-(2.29) can
then be easily solved by calling the built-in functions of pdetool. Once the total field at
the current time step is calculated, we update the right hand side vector Fi and Gi to step
forward.

3.3 Incident and reflected fields

We assume that the scatterer is illuminated by a Neumann pulse. The incident wave is
defined as [34]:

ui(x,y,t)=−2η

σ2
e−η2/σ2

, (3.5)

where η = t−t0+(x−x0)cos(ϑ)+(y−y0)sin(ϑ), x0 and y0 are the reference coordinates,
t0 the reference time, σ the form factor of the pulse, and ϑ the incident angle. Then the
reflected field can be written as:

ur(x,y,t)=
2µ

σ2
e−µ2/σ2

(3.6)

for the TM-polarization, and

ur(x,y,t)=−2µ

σ2
e−µ2/σ2

(3.7)

for the TE-polarization, where µ = t−t0+(x−x0)cos(ϑ)+(−y−y0)sin(ϑ) is obtained by
setting y=−y (image location) in η.
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Figure 3: Cross-sectional view of scattering induced by half-cylinder.

4 Validation of the numerical scheme

To test the reliability of the algorithm developed in the paper, we design a special scatterer
such that an analytical solution to the scattering problem is possible. In particular, we
consider a void cavity consisting entirely of the over-filled portion which takes the form
of a half cylinder with cross-sectional dimensions shown in Fig. 3. Based on image theory,
this simply indicates scattering from a material cylinder. For this scenario, we set the
artificial boundary to coincide with the boundary of the scatterer, the semi-circle. Inside
the scatterer, the total field can be found in the Laplace-Fourier domain to be

ˆ̄u(r,n,p)= AIn(
√

εr pr); (4.1)

while the scattered field outside the scatterer to be

ˆ̄us(r,n,p)= BKn(
√

εr pr), (4.2)

where A and B are constants to be determined by the link conditions over the interface
(r = R). Here, In and Kn are nth-order modified Bessel functions of the first and second
kind, respectively. With Neumann incidence, the link criterion is dictated by the follow-
ing boundary conditions:

( ˆ̄u)r=R =

(

ˆ̄us+
ˆ̄

ui+ ˆ̄ur

)

r=R

, (4.3)

and

β
∂

∂r
( ˆ̄u)r=R =

∂

∂r

(

ˆ̄us+
ˆ̄
ui+ ˆ̄ur

)

r=R

, (4.4)

where β=1 for TE-polarization and β=1/εr for TM-polarization. Incorporating the above
link conditions, we have, in the Laplace-Fourier domain, the interior total field

ˆ̄u(R,n,p)=

1
p

∂
∂r (

ˆ̄
ui+ ˆ̄ur)R−(

ˆ̄
ui+ ˆ̄ur)R

K′
n(pR)

Kn(pR)

β
√

εr
I′n(

√
εr pR)

In(
√

εr pR)
− K′

n(pR)
Kn(pR)

In(
√

εr pr)

In(
√

εr pR)
, (4.5)
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Figure 4: TM solutions: r=0.2m,θ =45o.
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Figure 5: TE solutions: r=0.2m,θ =45o.
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Figure 6: Mesh of interior domain.

and the exterior scattered field

ˆ̄us(R,n,p)=

1
p

∂
∂r (

ˆ̄
ui+ ˆ̄ur)R−β

√
εr(

ˆ̄
ui+ ˆ̄ur)R

I′n(
√

εr pR)
In(

√
εr pR)

β
√

εr
I′n(

√
εr pR)

In(
√

εr pR)
− K′

n(pR)
Kn(pR)

Kn(pr)

Kn(pR)
. (4.6)

Taking the inverse Fourier transform gives the corresponding fields in the Laplace do-
main as

ū(r,θ,p)=
2

π

∞

∑
n=1

ˆ̄u(r,n,p)sin(nθ) (4.7)

and

ūs(r,θ,p)=
2

π

∞

∑
n=1

ˆ̄us(r,n,p)sin(nθ) (4.8)

for TM polarization, and

ū(r,θ,p)=
2

π

∞

∑
n=0

δn ˆ̄u(r,n,p)cos(nθ) (4.9)

and

ūs(r,θ,p)=
2

π

∞

∑
n=0

δn
ˆ̄us(r,n,p)cos(nθ) (4.10)

for TE polarization, where δn is as defined in (2.25). Eqs. (4.7)-(4.10) can then be evaluated
by the numerical inverse algorithm [35].

In Figs. 4 and 5, the numerical solutions are plotted against the corresponding ana-
lytical ones for TM and TE polarizations respectively. The late time discrepancy reflects
the accumulated effect of the time-marching scheme, mesh size, and especially the con-
volution calculation, Eq. (3.3). We observe that the error decreases as the average element
area (AEA) decreases; the opposite is true as the time step is reduced.



J. Huang, A. W. Wood and M. J. Havrilla / Commun. Comput. Phys., 5 (2009), pp. 126-141 137

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

r (m)

us

•  Interior solution
o exterior solution

Figure 7: Linkage of TM solutions at θ=45o,t=2.0LM.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

r (m)

us

•  Interior solution
o Ecterior solution

Figure 8: Linkage of TE solutions at θ=45o,t=2.0LM.

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

4

Time (LM)

us

Figure 9: TM scattered field at r=0.25m,θ =60o.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (LM)

us

Figure 10: TE scattered field at r=0.25m,θ =60o.

5 Numerical experiment

Next, we consider a dual-shaped cavity with a 0.4 meter aperture upon the ground plane.
The portion below the ground plane is a regular trough of depth 0.1 meter and bottom
width 0.2 meter. The boundary of the exterior sub-domain is set at radius Ri=0.25 meter,
and that of the interior at R=0.3 meter. The rest of the values of the problem parameters
are given in Table 1. Figs. 7 and 8 show perfect links of the scattered fields between the
interior and exterior domains for TM and TE polarizations respectively at an incident
angle of θ = 45o and time t = 2.0(LM). The scattered fields for both polarizations are
plotted against time at a fixed location, r=0.25 meter, θ =60o, in Figs. 9 and 10.

Table 1: Parameter values used in the simulation.

εr ϑ t0 x0 y0 σ δt

4.0 π/4 0.5 0.5 0.5 0.2 0.01
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Figure 11: TM total field at t=2.0LM. Figure 12: TE total field at t=2.0LM.
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Figure 13: Time series root mean square error versus the average element area.

Figs. 11 and 12 are contour plots of the total field at a selected time, t=2.0LM, for TM
and TE polarizations respectively. Note the strong traveling wave contribution that exists
along the ground plane in the trough region for the TEz case, as physically expected.

6 Error analysis

We examine the mesh-related error for the canonical geometry described in Section IV
with a fixed time step, δt = 0.01(LM). Analytical solutions for this case are given in
Eqs. (4.7)-(4.10). At a fixed spatial point, the time series root mean square error (RMSE)
is calculated as:

RMSE(∆A)=

√

√

√

√

1

N

N

∑
i=1

[unum(i)−uana(i)]2, (6.1)
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where ∆A is the average element area in the interior domain of the model, N the total
number of time steps, unum(i) the numerically calculated total field at time step i, and
uana(i) the analytically calculated total field at time step i.

Fig. 13 depicts the relationship between RMSE and ∆A for both polarizations. It is
noted that the TMz error is somewhat more pronounced compared to that of the TEz

which is perfectly reasonable, resulting from different formulations.

7 Conclusion

We have implemented a hybrid method integrating the FEM algorithm and Laplace
transform for solving the scattering of plane waves by overfilled cavities embedded in
the 2D ground plane in the time domain. This formulation is developed to couple the
interior and exterior fields on the overlapped domain. The analytical formulation has the
desirable characteristic that it enables the optimal choice of the overlapped region such
that a potentially time-consuming Schwartz iteration associated with conventional sub-
domain methods is avoided, hence drastically improving the efficiency of the algorithm.

In addition, the accuracy and reliability of our method are demonstrated both by the
perfect linkage between the numerical solutions of the interior problem and those of the
analytical over the exterior and the favorable comparison against the analytical solution
for a canonical geometry.

Finally a time series error analysis is performed to investigate the relationship be-
tween the average mesh element area and root mean square error of the total field. This
is helpful in determining the mesh refinement for a specified error tolerance.
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