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Abstract. This paper designs a segmentation method for an image based on its Fourier
spectral data. An edge map is generated directly from the Fourier coefficients without
first reconstructing the image in pixelated form. Consequently the internal boundaries
of the edge map are not blurred by any (filtered) Fourier reconstruction. The edge map
is then processed with an edge linking segmentation algorithm. We include examples
from magnetic resonance imaging (MRI). Our results illustrate some potential benefits
of using high order methods in imaging.
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1 Introduction

Fourier spectral data is often the source of image information. For example, magnetic
resonance imaging (MRI) and synthetic aperture radar (SAR) sensors measure the values
of the Fourier coefficients of an image. Techniques such as the filtered Fourier reconstruc-
tion are then used to create the image. In many instances, clinicians and diagnosticians
are not interested in the detailed structure of the image, but rather the shapes that outline
a specific region of interest. Typically in such cases the Fourier coefficients are used to
reconstruct the image at specified pixel points so that a standard segmentation algorithm,
e.g. [7,19,22,23,25,26], can be applied. There are clear downsides to this approach, how-
ever. Most notably, since the image to be segmented is necessarily only piecewise smooth,
the reconstruction is polluted by the Gibbs ringing artifact at the jump discontinuities
(edges) of the image, [6, 8, 17, 21], making it difficult to determine where the boundaries
of internal regions lie. Smoothing filters are used to reduce the oscillations, but have the
undesirable consequence of “blurring” the edges over several pixel points. In [2], the
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Gegenbauer reconstruction algorithm, [18], was adapted to resolve a brain MRI free from
Gibbs ringing and without blurring the boundaries of each tissue region. Consequently,
standard segmentation algorithms used to extract features of interest returned dramat-
ically improved results, [1]. Unfortunately high order reconstruction methods, such as
the Gegenbauer reconstruction method, can be cost prohibitive for large data sets. This
investigation therefore adopts a different strategy based on the following observations:
(i) image reconstruction is not necessary for region extraction; (ii) without using costly
reconstruction algorithms, converting the Fourier coefficients into a pixelated image ei-
ther produces Gibbs oscillations that clutter the edges, or damping, which may blur the
edges beyond recognition; and (iii) vital information about the internal boundaries of an
image stored in the Fourier data can be easily extracted. Hence we seek to develop a seg-
mentation algorithm that directly uses Fourier information to extract the internal edges
of an image. We emphasize the distinction between our proposed method, which starts
with the Fourier coefficients of an image, and standard segmentation algorithms, which
start with pixelated data.

Once a high quality edge map of the image is generated, we design a segmentation
algorithm that links the points on the edge map to create closed contour regions. Specif-
ically, the algorithm produces sequences of ordered pairs which in turn can be used as
an initial guess in algorithms that parameterize contour regions for each feature of inter-
est, [27]. We note that the intensity values of our edge map approximate the magnitude of
the jump discontinuities of the image, and not the underlying image values at the internal
boundaries. Although we are unable to determine a-priori error estimates, our examples
demonstrate the techniques proposed here provide a good starting point for designing
fast segmentation algorithms from Fourier data, and therefore illustrate the benefits of
using high order methods in imaging.

This paper is organized as follows. In Section 2 we review the concentration method
developed in [13–15] which locates jump discontinuities (edges) in piecewise smooth
functions directly from Fourier spectral data. The method is extended to two dimensions
in Section 3 to produce the edge map of an image. In Section 4 we present our segmen-
tation algorithm that generates (closed) parameterized contours from the edge map. The
output can now be used to initiate contour minimization routines which can accurately
estimate and extract particular features of interest, [9, 27]. We summarize our results in
Section 5 and discuss possible future applications.

2 Edge detection from Fourier spectral data

Suppose we are given the Fourier spectral data of an image. In order to extract any par-
ticular feature of interest, we must first be able to visualize its internal boundaries. One
way to do this is to first reconstruct the image on a prescribed set of pixels, for instance
by using filtered Fourier algorithms, [21]. However, as stated in the introduction, this
type of projection often causes blurring at the internal boundaries, making segmentation
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very difficult. High order reconstruction methods that do not blur the edges, [2, 18], are
too expensive to implement on large data sets. As an alternative we will construct an
edge map of the image directly from its Fourier coefficients, and use this information to
segment the image in a cost efficient manner. The method is described below.

2.1 The concentration method

Consider a 2π periodic and piecewise smooth function f (x) on an interval [−π, π). For
ease of presentation we assume there is a simple jump discontinuity at x=ξ, although the
analysis holds for any finite number of jumps. Suppose that the one sided kth derivatives,
f (k)(x), exist at each jump discontinuity location for k=0,1,··· ,p and p>0. We define the
corresponding jump function of f (x) as

[ f ](x) := f (x+)− f (x−), (2.1)

where f (x+) and f (x−) are presumably well defined right and left side limits of f (x) at
x respectively. If f (x) is continuous at a point x=ξ, then the value of the jump function is
zero. On the other hand, if f (x) experiences a jump discontinuity at x= ξ, then the jump
function value is [ f ](ξ).

Assume we are given the complex Fourier coefficients

f̂k =
1

2π

∫ π

−π
f (x)e−ikx dx, for k=−N,··· ,N. (2.2)

Information about the edges of f (x) can be obtained directly from the Fourier coeffi-
cients, e.g. [3–5,11,13,20]. The concentration method, [13–15], has some advantages over
other edge detection algorithms. In particular, it is less sensitive to errors in the Fourier
data and does not require a priori knowledge of the number of jump locations in the
underlying function. The concentration method takes the form

S̃σ
N [ f ](x)= i

N

∑
k=−N

sgn(k)σ(
|k|

N
) f̂keikx. (2.3)

Here

σ(η)=σ

(

|k|

N

)

, η∈ (0,1]

is called a “concentration factor” since it forces (2.3) to concentrate at the discontinuities
of f (x). In [13] it was shown that admissible concentration factors, satisfying the proper-
ties

i)
σ(η)

η
∈C2(0,1), and ii)

∫ 1

0

σ(η)

η
dη =π, (2.4)

yield the concentration property

S̃σ
N [ f ](x)−→ [ f ](x) as N→∞.
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Several types of admissible concentration factors were studied [13–15] †. We consider
three concentration factors described in [13, 14] given by

σGibbs(η)=
πsinπη

Si(π)
, (2.5)

σPoly(η)=πη, (2.6)

σExp(η)=γηexp
( 1

αη(η−1)

)

, (2.7)

where
γ=

π
∫ 1−ǫ

ǫ
exp

(

1
ατ(τ−1)

)

dτ

normalizes σExp(η). In our examples we chose α=6 and ǫ= 1
N .

The following example demonstrates the ability of the concentration method to detect
jump discontinuities. Observe the close proximity of some jump locations.

Example 2.1.

f (x)=











































0 −π ≤ x < −3π/4,

1+cos3x −3π/4 ≤ x < −π/2,

0 −π/2 ≤ x < −π/4,

1−2cos(5x+3π/2) −π/4 ≤ x < π/8,

0 0 ≤ x < 3π/8,

2cos(x−3π/4)−3 3π/8 ≤ x < 7π/8,

0 7π/8 ≤ x ≤ π.

Fig. 1(a)-(c) illustrates that the concentration method, (2.3), does indeed recover the
corresponding jump function, [ f ](x), of Example 2.1. The high order exponential con-
centration factor, depicted in Fig. 1(c), produces very fast convergence to zero away from
the jump discontinuities. Method induced oscillations near the edges are particularly
prominent in this case, however.

2.2 Enhancing the concentration method

As is evident from Fig. 1, each concentration factor yields a different convergence rate
to zero away from the jump discontinuities. They also produce oscillations that vary
in sign and magnitude near the jumps. While these method induced oscillations are in
themselves undesirable, the variation they produce can be exploited to reduce the overall
impact of the oscillations. In fact, in [15] it was shown that by comparing the results of
(2.3) using several different concentration factors, the artificial oscillations around the

†We direct readers to [13–15] for both a heuristic description of the concentration factors in (2.5) -(2.7) as well
as the convergence analysis of the concentration method.
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Figure 1: The concentration method applied to Example 2.1 for N = 64 using (a) σGibbs(|k|/N), (b)
σPoly(|k|/N), and (c) σExp(|k|/N). (d) The minmod algorithm, (2.9), using concentration factors

σGibbs(|k|/N), σPoly(|k|/N), and σExp(|k|/N). The underlying function is dashed and the jump function
approximation is solid.

jump discontinuities can be reduced. The method still converges rapidly to zero away
from them. This was accomplished by applying the minmod function, given by

minmod( f1,··· , f j) :=







min( f1,··· , f j), if f1,··· , f j >0,
max( f1,··· , f j), if f1,··· , f j <0,
0, otherwise.

(2.8)

It is pointed out that the minmod idea was also developed in this context in [5]. As a
result we have what we will herein call the concentration method,

Ẽσ
N[ f ](x) :=minmod(S̃σ1

N [ f ](x),··· ,S̃
σj

N [ f ](x)), (2.9)

where σ1, ··· , σj are j admissible concentration factors. Fig. 1(d) shows the results of (2.9)
on Example 2.1. Although the oscillations are significantly reduced, some outside thresh-
olding based on the original underlying function is still needed to completely remove the
remaining oscillations. The reliance on outside thresholding can be further reduced by
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Figure 2: The concentration method applied to Example 2.1 for N =64. In (a) and (b) the image contains no
noise. In (c) and (d) uniformly distributed random noise of range .15 has been added to the underlying function.
(a) and (c): The results when the minmod algorithm is applied using concentration factors σGibbs, σPoly, and

σExp. (b) and (d) The results when their corresponding matched waveform concentration factors σmatch1
and

σmatch2
are also used. The underlying function is dashed and the jump function approximation is solid.

applying the matched waveform concentration factors, [12], given as

σmatch1

( |k|

N

)

=
π

k

(

σ
( |k|

N

)

)2
/

N

∑
l=1

(σ
(

l
N

)

l

)2
, (2.10)

σmatch2

( |k|

N

)

=πk

(

σ
( |k|

N

)

)2
/

N

∑
j=1

(

σ
( j

N

)

)2

, (2.11)

where σ(|k|/N) is any admissible concentration factor‡. Fig. 2 shows the application of
the concentration method on Example 2.1 using (2.10) and (2.11). White uniform noise
with zero mean is added to the underlying Fourier coefficients in Fig. 2(c) and (d). It was

‡Note that σmatch2
(η) is not admissible as it is associated with a family of edge detectors that converge to the

zero crossing approximation of the jump function rather than the jump function itself. However, its inclusion
is beneficial since the local support of the corresponding jump function is much reduced, making it easier to
distinguish closely spaced edges. See [12] for details.
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also shown in [12] that the variance is always reduced when the refined concentration
factors, (2.10) and (2.11), are included.

3 Edge map generation

Now assume we are given two dimensional Fourier spectral data. In this section we
generate an edge map which we will later use to extract contour regions of interest.

3.1 Edge detection in two dimensions

The two dimensional edge map of an image is determined by combining the results from
(2.9) in each perpendicular direction. We assume that the Fourier spectral data is known
(as is the case in MRI, [21]) and is given by

f̂k,l =
1

4π2

∫ π

−π

∫ π

−π
f (x,y)e−ikxe−ilydxdy, (3.1)

for k,l =−N,··· ,N. We then compute the Fourier coefficients for each fixed slice in the
opposite Cartesian direction as

f̃k(yj)=
N

∑
l=−N

f̂k,le
ilyj and f̃l(xν)=

N

∑
k=−N

f̂k,le
ikxν , (3.2)

for

yj =−π+
πj

N
, xν =−π+

πν

N
,

with j,ν=0,··· ,2N. We apply the concentration method (2.9) directly on (3.2) to generate
two edge maps

Ẽσ
N [ f ](x,yj) and Ẽσ

N [ f ](xν,y). (3.3)

Although these maps can be generated for any x and y, we use x=xν+1/2 and y=yj+1/2

for ν, j = 0,··· ,2N−1, to uniformly cover both dimensions. Fig. 3 shows how the edge
map is constructed for a simple binary circle test pattern with N =8. The physical image
is displayed just for reference, as we are given only Fourier spectral data. The small filled
squares in Fig. 3 are the grid points populated with Ẽσ

N [ f ](x,yj) (horizontal scan), and
the larger open squares in the diagram are the grid points populated with Ẽσ

N [ f ](xν,y)
(vertical scan). The grid points marked by + in Fig. 3 are populated later in Section 3.3 to
“strengthen” the edge map

Note that since the one dimensional approximations capture the sign of the jump
discontinuity, they contain both positive and negative values. However, no knowledge
of the jump direction can be made when converting this information to two dimensions.
A specific example of this is illustrated in the lower left portion of Fig. 3(b). Here the
horizontal scans (arbitrarily chosen to progress from left to right) find positive jumps,
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Figure 3: Simple circle test pattern illustrating the manner in which the edge map is constructed from (3.3).
(a) The entire image. (b) A close up of one area. Here N =8.

but the vertical scans (arbitrarily chosen to progress from top to bottom) find negative
jumps at the same boundary intersection. Therefore we only record the absolute values
from each one dimensional scan.

3.2 Edge map noise thresholding

Before proceeding further, we must reduce the clutter in the edge map created by noise.
For MRI processing, it is reasonable to assume that no edge information exists near the
boundary of the image. Hence any non-zero value (or jump value) in this region is strictly
due to noise. We thus define the noise threshold, noisethreshold, as the maximum (recon-
structed) value in this region. Any jump values less than noisethreshold are automatically
set to zero. This has the added benefit of reducing the effects of the oscillations close to
the jump discontinuities that are inherent to the concentration method (see Fig. 2).

3.3 Edge map strengthening

We now “strengthen” the edge map by determining where edges may be forming per-
pendicular to the one dimensional scan directions (marked by + in Fig. 3). An edge
perpendicular to the horizontal scan direction (in which Ẽσ

N [ f ](x,yj) is being generated)
is determined to exist along the line between (xν+1/2,yj) and (xν+1/2,yj+1) if the val-
ues of the edge map at those positions are both nonzero. Hence we populate the point
(xν+1/2,yj+1/2) with a nonzero value. Edges perpendicular to the vertical scan direc-
tion are similarly determined. In this way, the intermediate grid points (marked by +)
are populated with values that indicate whether or not two neighboring values consti-
tute a probable edge. Algorithm 3.1 is used to evaluate Ẽσ

N [ f ](xν+1/2,yj+1/2) for j,ν =
0,··· ,2N−1.

Our edge map is now defined by

Ẽσ
N [ f ](X), (3.4)
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Algorithm 3.1: Edge Map Strengthening

• If

min(Ẽσ
N[ f ](xν,yj+ 1

2
),Ẽσ

N[ f ](xν+1,yj+ 1
2
))>0,

min(Ẽσ
N[ f ](xν+ 1

2
,yj)),Ẽσ

N[ f ](xν+ 1
2
,yj+1)=0,

then Ẽσ
N [ f ](xν+ 1

2
,yj+ 1

2
)= 1

2 (Ẽσ
N[ f ](xν,yj+ 1

2
)+ Ẽσ

N[ f ](xν+1,yj+ 1
2
)).

• If

min(Ẽσ
N[ f ](xν,yj+ 1

2
),Ẽσ

N[ f ](xν+1,yj+ 1
2
))=0,

min(Ẽσ
N[ f ](xν+ 1

2
,yj),Ẽσ

N[ f ](xν+ 1
2
,yj+1))>0,

then Ẽσ
N [ f ](xν+ 1

2
,yj+ 1

2
)= 1

2 (Ẽσ
N[ f ](xν+ 1

2
,yj)+ Ẽσ

N[ f ](xν+ 1
2
,yj+1)).

• If

min(Ẽσ
N[ f ](xν,yj+ 1

2
),Ẽσ

N[ f ](xν+1,yj+ 1
2
))>0,

min(Ẽσ
N[ f ](xν+ 1

2
,yj),Ẽσ

N[ f ](xν+ 1
2
,yj+1))>0,

then

Ẽσ
N [ f ](xν+ 1

2
,yj+ 1

2
)=max

{1

2

(

Ẽσ
N [ f ](xν,yj+ 1

2
)+ Ẽσ

N [ f ](xν+1,yj+ 1
2
)
)

,

1

2

(

Ẽσ
N [ f ](xν+ 1

2
,yj)+ Ẽσ

N[ f ](xν+ 1
2
,yj+1)

)

}

.

• If

min(Ẽσ
N[ f ](xν,yj+ 1

2
),Ẽσ

N[ f ](xν+1,yj+ 1
2
))=0,

min(Ẽσ
N[ f ](xν+ 1

2
,yj),Ẽσ

N[ f ](xν+ 1
2
,yj+1))=0,

then Ẽσ
N [ f ](xν+ 1

2
,yj+ 1

2
)=0.

where X =(x,y). Note that (3.4) has dimension (4N+1)×(4N+1).

Observe that only the points (xν+1/2,yj+1/2) (marked by +) are examined in this man-
ner. Populating other intermediate points, such as (xν+1,yj+1), would produce possible
smearing, so that the segmentation algorithm might lose the ability to distinguish be-
tween closely spaced edges. Another benefit seen here is the somewhat “rounding out”
of the edges. That is, if a sharp corner is developing at a grid point location, a zero is
assigned to the relevant intermediate location because only one value of the edge map on
either side of the corner would be non zero. This effect subsequently enhances the abil-
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Figure 4: (a) Test Pattern A. (b) Edge map generated from 128×128 Fourier coefficients.

ity of the segmentation algorithm, described in Section 4, to accurately generate closed
contours around features.

Fig. 4 displays the corresponding edge map of a binary piecewise constant image (Test
Pattern A). Recall that only the Fourier coefficients (3.1) are used to produce the edge
map. Here we have used the two dimensional FFT to artificially generate the Fourier
coefficients of the image.

4 Segmentation algorithm

There are existing numerical algorithms that extract contour regions of images from an
edge cloud and a good initial guess of each feature’s shape, [9, 27]. With an edge map
in hand, our goal is to create sequences of parameterized ordered pairs, (x(t),y(t)), and
then generate each feature’s shape in the image by attempting to close each sequence.
Techniques such as contour following and edge linking, [19], have been used to segment
images when the internal boundary function values are known. We follow these ideas, but
modify them to be applicable when the internal boundary jump values are given instead.
Generating closed contours from an edge map is difficult, and we must divide our work
into features that we can close immediately and those that require additional processing.

4.1 Generation of sequences

The concentration method yields varying jump values associated with the strength of
each edge. This distinguishes it from other edge detection methods, such as [7,16,19,26],
that typically produce a binary output as their edge map. We take advantage of the vari-
ation in our edge map construction, (3.4), by making the reasonable assumption that the
internal boundary edges of an image will maintain similar strength locally and possibly
around an entire feature. Our segmentation algorithm therefore adds the constraint of
grouping edges of similar strength together.
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We first divide the edge map into different jump levels where each level, JLTi, is de-
fined as

JLTi = M−

(

M−noisethreshold

#levels

)

(#levels−i+1), (4.1)

for i=1,··· ,#levels. Here M=maxX Ẽσ
N [ f ](X) in (3.4), and the lowest jump level threshold

is noisethreshold, so that all edge map values falling below it are automatically discarded
as noise. Every grid point on the edge map is now assigned the appropriate integer value
jump level as

Ẽσ
N[ f ](X)=max

{

i : Ẽσ
N [ f ](X)> JLTi

}

,

for i=1,··· ,#levels. If
Ẽσ

N [ f ](X)< JLT1,

we set
Ẽσ

N [ f ](X)=0.

This generates a map of integer values ranging from zero to #levels. We used #levels=10
in our experiments.

Assuming that many edges maintain a near constant jump magnitude around its con-
tour, the segmentation algorithm attempts to link high jump magnitude edges first, and
then works down to lower magnitude values. If an edge does in fact change its magni-
tude as its position is changed, causing it to fall to a different jump level, the algorithm
will still be able to parameterize the contour at a later step.

The sequencing begins by first selecting the grid points with the highest jump level
values. Since no history is associated with this first point, the direction in which to search
for a second point within the same jump level is arbitrary, and is based solely on proxim-
ity. Once the second point has been located, a direction history is established. A contour
following algorithm requires that we (i) minimize the kinks in the resulting edge and (ii)
minimize the distance between adjacent points on an edge path. As is typical in path
following algorithms, we construct a (weighted) average of the direction history to help
determine subsequent grid point locations that minimize the angular direction change
as the segmented edge is being generated. Specifically, we define the historical angular
direction change as

θi+2 =αθi+1+βθi, (4.2)

i = 1,··· ,. The sequence ends when the edge is segmented. We use θ1 = θ2 to initialize
(4.2). The parameters α and β are user defined such that α+β=1, for example α= β= 1

2 .
Clearly, θi+1 would be weighed more heavily if α > β, however, no attempt was made
here to optimize these parameters. The angular direction reference is arbitrary, but must
be maintained within the range −π≤ θ <π.

In addition to the above conditions, we impose the following restrictions to ensure
a viable segmentation: (iii) single usage of an edge point within a jump level; (iv) not
choosing edge points from lower jump levels; and (v) not considering edges that are
“close” to a previously found closed contour.
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These three additional requirements are used so that the edges stay on their intended
paths and so that the path does not inadvertently or prematurely double back on itself.
In particular, (v) helps to “thin” the edges, [19]. Of course it also means that less intense
features might not be recovered if they are very near to stronger features. We note that
the procedure does not limit itself to adjacent grid points, but may skip over a grid point
or two if needed to meet these requirements.

We pause here to note the number of parameters already introduced in our segmenta-
tion algorithm. This is typical for contour following and edge linking techniques. While
we can easily validate our results for simple contours, validation in (brain) MRI is usually
done in the form of probability maps that determine the various tissue types throughout
the image (see [1] for details). This paper aims to provide an algorithm to show that
segmentation from a Fourier based edge map is indeed possible.

To advance the contour, all nearby grid points are assigned a priority value based on
their proximity to the current ending contour grid point and the historical direction, θi+2,
in (4.2). Fig. 5 displays the reference grid generated around the current contour ending
grid point, labeled as Pstart.

P23 P24 P9 P10 P11

P22 P8 P1 P2 P12

P21 P7 Pstart P3 P13

P20 P6 P5 P4 P14

P19 P18 P17 P16 P15

Figure 5: Orientation of nearby grid points about the current contour end grid point, labeled Pstart.

The historical direction of the developing contour can be translated into the nearby
reference grid point from which the contour is developing. As an example, if the segment
is developing from below the current end point of the contour, Pstart, then the historical
direction is “upwards” with θi+2 ≈

π
2 (see Fig. 5). In this case, the contour is developing

from the grid point location P5. Note that this does not mean that the previous grid point
value in the parameterized list of the developing contour is necessarily P5.

The nearby reference grid points are all ranked based on the developing direction of
the contour. As an example, if the contour is developing from grid point P5, then the
priority list is

P1,P2,P8,P9,P10,P24,P11,P23,P3,P7,P12,P22. (4.3)

All remaining nearby reference grid points are excluded from consideration in this case.
Similar priority lists are determined for each different development direction at the be-
ginning of the algorithm, which minimize proximity while maintaining smoothness. Fur-
thermore, we reduce the possibility of a growing contour doubling back on itself prema-
turely.

We then examine the values of each point on the priority list in order. If the grid point
under consideration satisfies (iii), (iv), and (v), it is attached to the end of the segment,
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and the sequencing process continues by shifting the new end point to the center of the
grid. In our example, P1 would be tested first. If its value satisfies the criteria (the correct
jump level, not already used, etc.), then it would be attached to the end of the segment,
the search would end, and the process would begin again with P1 as Pstart. On the other
hand, if its value does not satisfy the criteria, then P2 would be checked, then P8 and so
on. As the edge contour develops, a parameterized list,

(

x(t),y(t)
)

, is being generated.

4.2 Closed contour segmentation

The sequencing routine continues until it cannot find another point on the priority list
((4.3) in our example) that satisfies the edge path criteria. We then terminate the contour
and attempt to close it. However, requirement (iii) does not allow a grid point to be used
twice in the same edge path. This, of course, creates a problem as there is then no way
for the segment to close itself. It is handled as follows:

Let {X1,··· ,Xp} denote the set of points that determines a completed edge path and
define δ1 to be the minimum closed contour length. From the starting path point X1, we
move along the path to the point Xr, which is the first point on the path such that

|Xr−X1|≥δ1.

We then measure the distances from each subsequent grid point on the edge path to the
starting point |Xj−X1|, j= r+1,··· ,p, and define

Xm :={X∈{Xr ,··· ,Xp} : |X−X1|= min
r<j≤p

|Xj−X1|}. (4.4)

If |Xm−X1|≤ δ2, where δ2 is the user prescribed maximum connection distance for a
single segment, then the path is considered closed. We now proceed to close the contour:
(1) The edge is terminated at Xm. (2) X1 is added after Xm in the parameterized list to
close the segment. (3) Any remaining points that are not part of the closed portion of
the segment, {Xm+1,··· ,Xp}, are returned to the edge map to be reused by other possible
contours. (4) The routine parades along the closed contour, {X1,··· ,Xm}, and removes
all nearby points within a distance δ3 (minimum distance between two contours) that are
not part of the contour. These points are not considered again. These actions do a few
things: First, they close segments. Second, they eliminate the possibility of double edges,
that is they “thin” the edges. However, weaker edges within a distance δ3 from a closed
contour are lost. Finally, if a contour has inadvertently crossed over itself, this process
may re-establish closed curves by pinching off the remainder of the contour for later use.
Table 1 summarizes the segmentation parameters.

Once the routine is completed for a particular segment, we look for a new starting
point within the same jump level, (that is not already a part of an existing contour), and
begin the sequencing process again. The whole algorithm is repeated until no starting
points remain within that jump level. All edge map values within a jump level that were
not included in a closed path are then reset so that they can be reused by linking to grid
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Table 1: Sequencing algorithm user defined parameter summary. The typical values are given as the number of
pixels, where each pixel distance is π/N.

Name Purpose Typical Value

δ1 Minimum closed contour length 4

Maximum connection length
δ2 for a single segment 2

Minimum distance between
δ3 two contours 1

Minimum length of an
δ4 admissible open segment 3

Maximum connection length
δ5 between two open segments 3

Maximum length to close
δ6 connected segments 4
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Figure 6: (a) Test Pattern A on 128X128 grid points. (b) Segmentation results.

points at a lower jump level, JLTi−1 in (4.1). The procedure is then started again at the
next lower jump level, and is repeated through all possible jump levels of the edge map.

Fig. 6 shows the segmented image of Test Pattern A. The edge map clearly defines
the boundaries of every feature in the image, and the segmentation algorithm generates
five separate parameterized lists of points in the order in which each contour progresses.
Throughout this article we used a simple “connect-the-dots” plot routine, which linearly
connects successive grid points, to illustrate the segmentation output.

Fig. 7 demonstrates the results of our segmentation algorithm on a more challenging
binary image that includes snakelike patterns and closely spaced features with thinly de-
fined edges. In this case the discrete Fourier coefficients are used to generate the edge
map. Among other obstacles, notice how two neighboring features have similar edge
directions. It is important that our segmentation algorithm not jump from one feature to
the next. Several features turn sharply so that minimizing the kinks without following
the other requirements would surely lead to incorrect segmentations. We include geo-
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Figure 7: (a) Test Pattern B on 256×256 points. (b) Edge map generated when 20% uniformly distributed
random noise added to the underlying data.
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Figure 8: (a) Segmentation results showing the remaining open segments of Test Pattern B when 20% uniformly
distributed noise is added to the physical image. (b) Close up of one region illustrating the fragmented open
contours.

metric features even though they are unlikely to be present in a real image, since these
shapes present additional challenges for the segmentation algorithm. The scaling of the
smallest geometries can be seen in the Roman numeral III feature at the top of the image
in which all feature dimensions are three pixels. When no noise is present, the segmen-
tation algorithm generates all 51 features in this case (not shown here). In Fig. 7(b), the
underlying physical data has been corrupted by uniformly distributed white noise on
[0,.2]. Although the edge map from the concentration method is fairly well organized,
we cannot successfully close all of the contours in the image. Fig. 8 shows the remaining
open segments. A clean up strategy is devised in Section 4.3 to piece together remaining
open segments that may be connected to form a closed feature.

4.3 Open segment extraction

After finding all of the initial closed contours in the image, we begin the sequencing and
segmentation procedures once again. We develop priority lists, (4.3), for the (remaining)
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points on the edge map at each jump level threshold, JLTi, i=1,··· ,#levels, to find all of the
remaining open segments. Since we are unable to close these remaining segments using
our prior algorithm, we apply the same requirements with more “relaxed” parameters to
try to connect as many segments as possible. Then we can try once again to close these
new open segments, following the same closed contour algorithm but again with more
relaxed parameters.

We call an open segment admissible if it is at least of length δ4, and also define the
maximum open segment connection length as δ5 > δ2 (see Table 1). Let us consider the
current segment,

segmentc ={Xc
1,··· ,Xc

p}, (4.5)

and suppose there are n remaining admissible open segments, with each segmenti defined
by {X̄i

1,··· ,X̄i
qi
}, for i = 1,··· ,n. We test both ends of all n admissible open segments

as possible appendages to segmentc . For ease of presentation, we define segmentj , j =
n+1,··· ,2n, to be the same n admissible open segments in reverse order, given by

segmentj ={X̄i
qi

,··· ,X̄i
1}, for j=n+i and i=1,··· ,n.

We begin by calculating the historical direction for segmentc , θc ∈ [−π,π), using (4.2)
with corresponding values Xc

p−2, Xc
p−1 and Xc

p. We then similarly determine the historical

directions for each segmenti , θi ∈ [−π,π) using X̄i
1, X̄i

2, and X̄i
3, i=1,··· ,2n.

We now use the average end position of segmentc ,

Xc
end =

1

3
(Xc

p−2+Xc
p−1+Xc

p),

and the average start position of segmenti ,

X̄i
start =

1

3
(X̄i

1+X̄i
2+X̄i

3),

to determine the offset angle between the end of segmentc and the start of segmenti .
Specifically, if X̄i

start =(xi,yi) and X̄c
end =(xc,yc) then the offset angle, ρi∈ [−π

2 , π
2 ], is given

by

ρi =arctan
( yi−yc

xi−xc

)

. (4.6)

The end points are averaged to minimize the effect of a nonuniform segment end and to
reduce the effect of any outliers.

The properties of segmentc and segmenti are now evaluated using the previous condi-
tions (i)-(v) to determine if they can be connected. The proximity is easily quantified by
calculating the distance between the end of segmentc and the start of segmenti from the
average end positions of the two segments as

di = |Xc
end−X̄i

start|, for i=1,··· ,2n.
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The alignment of segmentc and segmenti is evaluated by combining the contributions
from θc, θi, and ρi as

αi =
∣

∣θc−(θi+π)
∣

∣+
∣

∣ρi−
1

2
(θc+θi+π)

∣

∣, for i=1,··· ,2n.

If αi is small, then the two segment ends are in good alignment. This requires

θc ≈ (θi+π) and ρi ≈ θc.

The idea here is to encourage contour growth in the historical direction of the current
contour by causing admissible open segments that exist in that direction to appear closer.
This is accomplished by integrating the proximity and alignment quantifiers into a single
weighted value as

wi =di

(

c1αi+c2

)

, (4.7)

where c1 and c2 are user defined constants chosen so that when αi is small, wi < di, and
when αi is large, wi >di. We used c1 = .30 and c2 = .25 in our tests but did not attempt to
optimize the parameters. Hence we see that the segment corresponding to

min{wi}<δ5, i=1,··· ,2n,

should be attached to segmentc to connect two open segments (see Table 1), bearing in
mind that the order of elements of the adjoining segment might be reversed.

Since preference is given to open segment pieces that are in the same general path
of an existing contour, our procedure minimizes kinks. The weights are chosen so that
a developing connected open segment will stretch further in a direction in which it has
been progressing than in any other to locate a likely continuation segment. However, a
contour may still advance in a direction that is not in alignment with its historical di-
rection when a smoother appendage is not available. Similar ideas are used for contour
following and edge linking methods, see [19] and references within.

A growing contour is continued in this way, appending as many of the remaining
open segments as possible, until no further matches are possible. The process is then
repeated by beginning at the opposite end of the initial segment, segmentc , so that we
are assured the current contour has grown as large as possible in both directions. Once
this process has been exhausted, another initial open segment is chosen, and the process
repeats until an attempt has been made to connect all open segments. When we have
connected as many open segments as possible, we can once again begin the segmentation
procedure described in Section 4.2 to close the segments. Here, however, we choose
δ6 >δ2, as the maximum distance used to close the contour (see Table 1). Fig. 9 illustrates
the process of connecting open segments on Test Pattern B with noise. Recall from Fig. 8
that several features were not initially closed by the segmentation algorithm. We are now
able to successfully parameterize closed contours around all of the features in the image.
Our complete segmentation algorithm is provided in the appendix.
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Figure 9: (a) Segmentation results showing the newly closed segments of Test Pattern B when 20% uniformly
distributed random signal is added to the physical image. (b) Close up region illustrating the newly closed
segments. Here N =128.

4.4 Signal variation

Since standard edge detection and segmentation techniques are typically based on thresh-
olding algorithms, they may have difficulty when the underlying image contains some
variation. On the contrary, the concentration method is a high order method, and is there-
fore well suited for such problems. We demonstrate this by overlaying Test Pattern B
with a continuously varying signal given as

Example 4.1.

f (x,y)=
1

4

(

ex cosy+sin3x+cos5y−x2−y2
)

.

Fig. 10 shows the segmentation output for Example 4.1. As expected, the addition of
a continuously varying signal underlying the image has little effect on the ability of the
method to extract all of the features in the image. Similar results are obtained when the
image contains noise.

4.5 Simulated MRI brain image

As a final test of the edge detection and segmentation routines, we consider a simu-
lated MRI brain image, obtained from a database of the McConnell Brain Imaging Cen-
ter, [24]. These simulated images are often used to qualitatively compare segmentation
algorithms, [10]. The physical data associated with this phantom has nearly piecewise
constant values of either one or zero. There is some small variation from these values,
however. Recall that the concentration method does not use the physical data of an im-
age. The data from MRI are typically given as Fourier coefficients, and hence the con-
centration method can be applied directly. In this test case, however, the data is given
as physical spatial data. We therefore first perform a two dimensional FFT to artificially
generate the Fourier spectral data.
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Figure 10: (a) Segmentation results for Test Pattern B with a continuously varying function given in Example
4.1 underlying the entire physical image. (b) Edge map generated from the concentration method. (c) Final
segmentation routine result showing all closed contours. Here N =128.
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Figure 11: (a) Simulated MRI brain on 128×128 grid points. (b) Edge map produced from concentration
method. (c) Segmentation including open and closed contours.
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Figure 12: Close up of brain MRI Location 1: (a) Underlying physical image. (b) Edge map of the area. (c)
Final segmentation result.

Fig. 11 shows the simulated MRI brain, the edge map produced by the concentra-
tion method, and the segmentation result that includes both open and closed contours.
Although the edge map accurately depicts the internal boundaries, the segmentation al-
gorithm has trouble extracting some of the smaller features and those with difficult ge-
ometries. Many feature sizes of one pixel occur within the image, and in some cases,
they are contained within another feature. We examine some of the “severe” features
in the MRI labeled in Fig. 11(c) to gain some insight into why our segmentation algo-
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Figure 13: Same as Fig. 12, except for Location 2.
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Figure 14: Same as Fig. 12, except for Location 3.
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Figure 15: Same as Fig. 12, except for Location 4.
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Figure 16: Same as Fig. 12, except for Location 5.
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Figure 17: Same as Fig. 12, except for Location 6.
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Figure 18: Same as Fig. 12, except for Location 7.

rithm sometimes fails. Close up views of the edge maps and resulting segmentation are
displayed in Fig. 12 through 18. In most instances, the edge map accurately identifies
even the very small features. The segmentation algorithm sometimes fails when it can-
not determine the contour path of some of these severe features. The majority of the
segmentation problems appear to be caused by small (one pixel) abruptly changing fea-
tures, and in some instances the feature is a hole. Similar problems occur in edge linking
and contour following algorithms. There are some difficulties that do not appear to be
associated with the size of the feature, for instance see Fig. 15. This will be investigated
in future work.

5 Conclusion

This paper presents a segmentation algorithm that extracts features from an edge map
created by its Fourier spectral data. Several important imaging modalities collect Fourier
spectral data directly, including MRI and SAR. There are several advantages in segment-
ing an image without first reconstructing it from its Fourier data. First, using the (filtered)
Fourier reconstruction yields either Gibbs ringing or blurring at the internal boundaries.
This in turn can cause difficulties for (standard) segmentation algorithms, [1, 2, 21]. On
the other hand, high order reconstruction schemes that maintain the integrity of the inter-
nal boundaries can be costly, [18]. As illustrated by our examples, for applications where
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only the shape that outline particular regions are of interest, image reconstruction is un-
necessary; that is, only a high fidelity edge map is needed. The concentration method
generates such an edge map directly from Fourier spectral data (i.e. without reconstruc-
tion). Our segmentation algorithm then produces sequences of ordered pairs and con-
nects them to form contours. We note that the sequenced data also provides an initial
guess for algorithms designed to parameterize contour regions for each feature of inter-
est, [27]. Our approach is much different from typical techniques, [7, 22, 23, 25, 26], which
rely on physical rather than Fourier data. These segmentation procedures use either a
reconstructed image or an edge map of image intensity values. For this reason, valid
comparisons of our methods with other edge detection and segmentation procedures are
difficult. As presented, the sequencing and contour closing algorithms are somewhat ad
hoc with several user defined parameters. Tuning of these parameters will clearly require
some knowledge about the particular application. Nevertheless, our examples strongly
suggest that the edge map produced by the concentration method provides a very ac-
curate road map for closing many feature contours in an image. We may improve our
technique by including high order reconstruction information only at the internal bound-
aries. We know from [1, 2] that segmentation algorithms benefit when the entire image
is reconstructed. We anticipate that performing a less costly reconstruction (only at the
boundaries) will allow us to effectively segment an image using other well established
segmentation techniques, such as clustering. Finally, since our method is high order and
works well when there is variation in the underlying function, we believe that it can be
used effectively to determine solution domains for time dependent problems.
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Appendix

Algorithm A.1: Edge Detection and Segmentation

1. Given (3.2), determine two edge maps, (3.3)using the concentration method, (2.3), enhanced by
the minmod algorithm, (2.9).

2. Discard any edges that fall below noisethreshold (Section 3.2).
3. Apply Algorithm (3.1) to strengthen the edge map, which is now given by (3.4).
4. Divide the edge map (3.4) into 10 different jump levels.
5. Starting with the highest jump level, determine parameterized lists of edge points based on

conditions (i)-(v) and close as many sequences as possible.
6. If open sequences still remain, repeat the previous step with more “relaxed” parameters to close

as many remaining open sequences as possible.
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