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Abstract. In this paper a Chebyshev collocation method is used for solving numer-
ically an optimal boundary control problem in a thermoconvective fluid flow. The
aim of this study is to demonstrate the capabilities of these numerical techniques for
handling this kind of problems. As the problem is treated in the primitive variable for-
mulation additional boundary conditions for the pressure and the auxiliary pressure
fields are required to avoid spurious modes. A dependence of the convergence of the
method on the penalizing parameter that appears in the functional cost is observed.
As this parameter approaches zero some singular behaviour in the control function is
observed and the order of the method decreases. These singularities are irrelevant in
the problem as a regularized control function produces the same results.
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1 Introduction

Apart from its appearance in nature, thermoconvective flows occur frequently in indus-
trial applications. For instance, thermoconvective instabilities are responsible for unde-
sirable convective states in some industrial processes such as crystal growth, laser weld-
ing or alloy manufacturing [21,22]. In these processes it is important to avoid convective
patterns in order to achieve homogeneous and resistant materials. In other words, the
control of fluids for the purpose of achieving some desired objective is crucial in those
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applications. In the past, these control problems have been addressed either through ex-
pensive experimental processes or through the introduction of significant simplifications
into the analysis used in the development of control mechanisms. Recently mathemati-
cians and scientists have been able to address flow control problems in a systematic, rig-
orous manner and have established a mathematical and numerical foundation for these
problems; see [2, 8, 9, 15, 24]. The Chebyshev collocation method is a numerical method
broadly used in thermoconvective problems [13, 16, 17]. It has been theoretically studied
for fluid dynamics problems [5–7]. But it has not been used in control problems in fluid
dynamics because singularities appear in these problems, and spectral methods are less
efficient in that case. For this reason finite element approach is the usual method [10,12].

In this paper, the capabilities of Chebyshev collocation for handling control problems
in fluid dynamics will be demonstrated. A Chebyshev collocation method is used to
solve numerically a boundary optimal control in a Rayleigh Bénard problem [3, 23] in a
cylinder. This problem is extensively described in [18]. The control problem is formulated
as a constrained optimization problem, where the constraint is the system of equations
that represents steady viscous incompressible Navier-Stokes equations coupled with the
energy equation. The choice for the cost is a quadratic functional involving the vorticity
in the fluid so that a minimum of that functional corresponds to the minimum possible
vorticity subject to the constraints. A linear stability analysis on the controlled states is
also performed, so that the convergence tests are performed in terms of the critical values
of the bifurcation parameter.

The article is organized as follows. In the second section the convection problem un-
der localized heating is described. The third section explains the optimal control on this
problem. The fourth section comprises the numerical results and finally the concluding
remarks are summarized in the last section.

2 Formulation of the problem

The physical setup considered consists of a horizontal fluid layer in a cylindrical con-
tainer of radius l (r coordinate) and depth d (z coordinate). The upper surface is flat and
open to the atmosphere where the temperature is T0. The bottom plate and lateral walls
are rigid and the fluid is heated from below by imposing a Gaussian temperature profile
which takes the value Tmax at r=0 and the value Tmin at the outer part (r= l).

2.1 Equations

The system evolves according to the momentum and mass balance equations and to the
energy conservation principle. We concentrate on the study of stationary solutions and,
in this sense, the stationary problem is considered. In the equations that govern the sys-
tem, ux, uy and uz are the components of the velocity field u of the fluid, T the temper-
ature, p the pressure and x = (x,y,z) are the spatial coordinates. The governing dimen-
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sionless steady state equations are the continuity equation

∇·u=0, (2.1)

the energy balance equation

u·∇Θ=∇2Θ, (2.2)

and the Navier-Stokes equations

(u·∇)u=Pr
(

−∇p+∇2u+RΘez

)

, (2.3)

where ez is the unitary vector in the vertical direction, Pr is the Prandtl number and R the
Rayleigh number, which is representative of the buoyancy effect and is the bifurcation
parameter (see [18]). Here the Oberbeck-Boussinesq approximation has been used (see
[13]). The domain, after introducing the dimensionless form, transforms into the cylinder
Ω of radius γ and depth 1, where γ= l/d.

2.2 Boundary conditions

Let us define the boundaries Γ0 ={(x,y,z)∈R
3 : 0<z<1, x2+y2 =γ2},Γ1 ={(x,y,z)∈R

3 :
x2+y2≤γ2,z=1} and Γ2 ={(x,y,z)∈R

3 : x2+y2≤γ2,z=0}, and ∂Ω=Γ=Γ0∪Γ1∪Γ2. The
top surface is flat and free slip, which implies the following conditions on the velocity,

uz =0, onΓ1, ∂zux =∂zuy =0, onΓ1. (2.4)

The lateral and bottom walls are rigid, so

ux =uy =uz =0 on Γi, i=0,2. (2.5)

The lateral wall is considered to be insulating,

∂nΘ=0, on Γ0, (2.6)

where ∂n represents the normal derivative. A heat exchange on the upper surface is
considered,

∂zΘ=−BΘ, on Γ1, (2.7)

where B is the Biot number. At the bottom a Gaussian profile for temperature is imposed
(see Fig. 1),

Θ(x,y)=Θ1(r)=1−δ(e
( 1

β )2

−e
( 1

β −( r
γ )2 1

β )2

)/(e
( 1

β )2

−1) on Γ2, (2.8)

where r=
√

x2+y2, δ=∆Th/∆Tv, ∆Th =Tmax−Tmin, ∆Tv =Tmax−T0 and β is a parameter
that measures the sharpness of the Gaussian profile.
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Figure 1: 3D plot of the thermal boundary condition Θ1 at the bottom of the cylindrical domain. The parameters
are B=0.05, γ=10, Pr=0.4, R =14736, δ=0.01, and β=5.

2.3 Stationary solutions

The existence of time-independent solutions to the stationary problem obtained from
Eqs. (2.1)-(2.8) is proved in [1]. An example of this type of solution can be seen in Fig. 2
where contour plots for the fields are shown. This basic state bifurcates to a spiral pattern
by increasing the Rayleigh number (see [18]).

3 Optimal control problem

If we consider the vorticity of the flow ω =∇× u, which is a vector related to the local
rotation in the fluid flow, and a measure of it, E(u) =

∫

Ω
|∇ × u|2dΩ, which is called

enstrophy. The appearance of patterns is accompanied by an increase of the enstrophy
in the flow [19]. This suggests that by reducing the enstrophy we could obtain states
for which patterns will also be reduced. For this reason we state the following optimal
control problem by looking for the temperature control function h on the top boundary
which minimizes the enstrophy of the flow:

Minimize

J(u,h)=
1

2

∫

Ω
|∇× u|2dΩ+

η

2

∫

Γ1

h2dΓ,

subject to the state

∇·u=0, (3.1)

u·∇Θ−∆Θ=0, (3.2)

(u·∇)u+Pr(∇p−∆u−RΘez)=0, (3.3)
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Figure 2: Contour plots for the fields of the uncontrolled basic state; a) Θ; b) ur; c) uz; d) p. The parameters
are B=0.05, γ=10, Pr=0.4, R=14736, δ=0.01 and β=5.

with the boundary conditions as follows:

u=0, ∂nΘ=0 on Γ0, (3.4)

∂nux =0, ∂nuy =0,uz =0, ∂nΘ= Bh−BΘ on Γ1, (3.5)

u=0, Θ=Θ1 on Γ2. (3.6)

In the cost functional J, the term
∫

Γ1
h2dΓ is the measure of the magnitude of the control

and the penalizing parameter η adjusts the size of the terms in the cost (0< η < ∞). The
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existence of an optimal control for the weak formulation of this control problem is proved
in [1].

3.1 Optimality conditions

The following optimality conditions are found in [1]:

∇·u=0, (3.7)

u·∇Θ=∆Θ, (3.8)

(u·∇)u=Pr(−∇p+∆u+RΘez), (3.9)

∇·ξ =0, (3.10)

−u·∇λ=∆λ+PrRξez, (3.11)

−(u·∇)ξ+(∇u)t
ξ =Pr(−∇π+∆ξ)−λ∇Θ−(∇× (∇× u)), (3.12)

together with the boundary conditions

u=0, ∂nΘ=0, ξ =0, ∂nλ=0 on Γ0, (3.13a)

∂nux =∂nuy =0, uz =0, ∂nΘ= Bh−BΘ on Γ1, (3.13b)

∂nξx =, ∂nξy =0, ξz =0, ∂nλ=−Bλ, Bλ−ηh=0 on Γ1, (3.13c)

u=0, Θ=Θ1, ξ =0, λ=0 on Γ2, (3.13d)

where ξ, λ and π are the auxiliary fields.

3.2 Numerical method

Due to the numerical treatment of the problem additional boundary conditions for pres-
sure p and adjoint pressure π are introduced according to [11], i.e. the continuity equa-
tion on z = 0, the normal component of momentum equation on r = γ, and the normal
component of momentum equation on z = 1. The domain is a cylinder, so a change to
cylindrical coordinates is required to simplify the numerical calculation and regularity
conditions on r=0 have to be introduced,

ur =uφ =uz = ξr = ξφ = ξz =0, ∂rΘ=∂rλ=∂r p=∂rπ =0. (3.14)

An iterative procedure as a Newton method is developed in order to handle the non-
linearities. Each linear system is solved with a Chebyshev collocation method, then a
change to [r̄, z̄]∈ [−1,1]×[−1,1] is required as well. In the following the bars have been
eliminated to simplify notation. The basic state is considered to be axisymmetric and
therefore depends only on r-z coordinates (i.e., all φ derivatives are zero). This kind of
assumption makes sense due to the fact that axisymmetric solutions are found in exper-
iments [14]. Equations and boundary conditions after these changes and assumptions
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become as follows:

Gur+A∂rur +2∂zuz =0, (3.15a)

Aur∂rΘ+2uz∂zΘ=∆bΘ, (3.15b)

Pr−1(Aur∂rur +2uz∂zur−Gu2
φ)=−A∂r p+∆bur−G2ur, (3.15c)

Pr−1(Aur∂ruφ+2uz∂zuφ+Guruφ)=∆buφ−G2uφ, (3.15d)

Pr−1(Aur∂ruz+2uz∂zuz)=−2∂z p+∆buz+RΘ, (3.15e)

Gξr +A∂rξr +2∂zξz =0, (3.15f)

−Aur∂rλ−2uz∂zλ−PrRξz =∆bλ, (3.15g)

Pr−1(−Aur∂rξr−2uz∂zξr +Guφξφ+Aξr∂rur +Aξφ∂ruφ+Aξz∂ruz)

=−A∂rπ+∆bξr−G2ξr +Pr−1(4∂2
zur−2A∂r∂zuz−Aλ∂rΘ), (3.15h)

Pr−1(−Gξruφ+Gurξφ−A2∂2
r uφ+G2uφ−AG∂ruφ)

=∆bξφ−G2ξφ+4Pr−1∂2
zuφ, (3.15i)

Pr−1(−Aur∂rξz−2uz∂zξz+2G∂zur−AG∂ruz+2ξr∂zur+2ξφ∂zuφ+2ξz∂zuz)

=−2∂zπ+∆bξz+Pr−1(A2∂2
r uz−2A∂r∂zur−2λ∂zΘ), (3.15j)

u=0, ∂rΘ=0, ξ =0, ∂rλ=0 on r=1, (3.16a)

ur =uφ =∂ruz =∂rΘ=0, ξr = ξφ =∂rξz =∂rλ=0 on r=−1, (3.16b)

u=0, Θ=Θ1, ξ =0, λ=0 on z=−1, (3.16c)

∂zur =∂zuφ =0, uz =0, 2∂zΘ= Bh−BΘ on z=1, (3.16d)

∂zξr =∂zξφ =0, ξz =0, 2∂zλ=−Bλ, Bλ−ηh=0 on z=1, (3.16e)

where

G(r)=
2

γ(1+r)
, A=

2

γ
, ∆b = A2∂2

rr+GA∂r +4∂2
zz.

3.2.1 Nonlinearities

We have solved numerically the problem (3.15)-(3.16) by treating the nonlinearities ap-
pearing in the equations with a Newton-like iterative method. After the changes of
variables and with the axisymmetry assumption the domain is transformed into Ω̃ =

(−1,1)×(−1,1). Let us consider the operator G : D(G)→ L2
(

Ω̃
)10

× L2(−1,1) defined
by Eqs. (3.15)-(3.16) where D(G) is the domain of G and L2(−1,1) refers to the image of
the h equation in (3.16e). The problem can be rewritten in the following form: To find
Ub∈D(G) such that

G
(

Ub
)

=0, (3.17)

where Ub = (ub
r ,ub

φ,ub
z,Θb,pb,ξb

r ,ξb
φ,ξb

z ,λb,πb,hb). The operator G can be broken down in
two parts as follows

GUb :=LUb+NUb,
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where L corresponds to the linear part and N to the nonlinear part. Starting with an
initial approximation U0 and solving the linearized problem around the previous step Ui

a classical Newton procedure is defined by

LŪi+1+N ′
(

Ui
)

Ūi+1 =−GUi, (3.18)

where Ūi+1 =Ui+1−Ui and N ′ is the Fréchet derivative of N . The convergence criterion
considered to stop the iterative procedure is that the l2 norm of the computed perturba-
tion U =Ui+1−Ui should be less than certain tolerance υ

∥

∥

∥
Ūi+1

∥

∥

∥

2
=

∥

∥

∥
Ui+1−Ui

∥

∥

∥

2
≤υ,

where υ is taken of order 10−9.

3.2.2 Chebyshev collocation method

This is a numerical method often used in thermoconvective problems [13, 17] which has
been demonstrated to be an efficient and useful tool for solving numerically the partial
differential equations that model those problems. Regarding to the theoretical aspects,
the convergence of the collocation method can be proved in simpler problems, such as
Stokes with Dirichlet boundary conditions or mixed Dirichlet-Neumann problems [4].
But the theoretical treatment with weighted Sobolev spaces (as for Chebyshev colloca-
tion) increases the difficulties [4–6] and it can not be proved for Neumann conditions.
Then for the problem considered in here, Navier-Stokes equations coupled with heat
equation and mixed boundary conditions, only a numerical study of the convergence of
the method will be performed. Moreover, this method has already been validated with
test problems [11].

3.2.3 Practical implementation

Let us define the boundaries of the domain Ω̃ as follows

Γ̃0 ={(r,z)∈R
2 :−1≤ z≤1, r=1}, Γ̃1 ={(r,z)∈R

2 :−1< r<1, z=1},

Γ̃2 ={(r,z)∈R
2 :−1< r<1, z=−1}, Γ̃3 ={(r,z)∈R

2 :−1≤ z≤1, r=−1}

and ∂Ω̃ = Γ̃ = Γ̃0∪Γ̃1∪Γ̃2∪Γ̃3. We define the space Xnm = (P
nm(Ω̃))10×P

n(Ω̃), where
P

nm(Ω̃) is the space of polynomials of degree n in the r component and m in the z com-
ponent and P

n(Ω̃) is the space of polynomials of degree n in the r component. Xnm is
the space in which the approximation to the solution of the problem will be sought. The
set of Chebyshev polynomials B=

{

Ti(r)Tj (z)
}

0≤i≤n,0≤j≤m
form an orthogonal basis of

P
nm(Ω̃) on [−1,1]×[−1,1] with the scalar product defined continuously as

(u,v)ω =
∫

Ω̃
uvωdΩ̃,
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where ω is the Chebyshev weight ω =(1−r2)−1/2(1−z2)−1/2. We approximate the solu-
tion U by an element of Xnm, U(r,z)∼Unm(r,z). Each field of Unm can be expanded in B
as follows

wnm =
n

∑
i=0

m

∑
j=0

aw
ij Ti(r)Tj(z), (3.19)

where w refers to the unknown fields ur, uφ, uz, p, Θ, ξr , ξφ, ξz, π and λ. For h only in one
dimension is considered.

h=
n

∑
i=0

ah
i Ti(r). (3.20)

We then follow the following scheme:

• Define the Chebyshev-Gauss-Lobatto collocation points given by

ri =−cos
πi

n
, zj =−cos

πj

m
, 0≤ i≤n and 0≤ j≤m

and the corresponding two dimensional grid

Ξ=
{(

ri,zj

)

, i=0,··· ,n, j=0,··· ,m
}

.

• Substitute expansions (3.19) for Unm into equations (3.15) and evaluate them at the
inner points of the grid:

LUnm(r)+N ′
(

Uinm
(r)

)

Unm(r)=−GUinm
(r), r∈Ξ∩Ω̃,

where Uinm
is the approximation to Ub obtained at the previous step i. Consequently,

10(n−1)(m−1) linear independent equations are obtained.

• Evaluate the boundary conditions at r=−1 for the nodes zj, j=0,··· ,m,

unm(r)=−uinm
(r), ∂rΘnm(r)=−∂rΘinm

(r), ∂r pnm(r)=−∂r pinm
(r), r∈Ξ∩Γ̃3,

ξnm(r)=−ξinm

(r), ∂rλnm(r)=−∂rλinm
(r), ∂rπnm(r)=−∂rπinm

(r), r∈Ξ∩Γ̃3.

These are 10(m+1) equations.

• Evaluate the boundary conditions at r=1 for the nodes zj, j=0,··· ,m,

unm(r)=−uinm
(r), ∂rΘnm(r)=−∂rΘinm

(r), r∈Ξ∩Γ̃0,

ξnm(r)=−ξ inm

(r), ∂rλnm(r)=−∂rλinm
(r), r∈Ξ∩Γ̃0.

Consequently, 8(m+1) equations are obtained.

• Evaluate the boundary conditions at z=−1 for the nodes ri, i=1,··· ,n−1,

unm(r)=−uinm
(r), Θnm(r)= Θ̃1(r)−Θinm

(r), r∈Ξ∩Γ̃2,

ξnm(r)=−ξ inm

(r), λnm(r)=−λinm
(r), r∈Ξ∩Γ̃2.
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These are 8(n−1) equations.

• Evaluate the boundary conditions for at z=1 for the nodes ri, i=1,··· ,n−1,

unm
z (r)=−uinm

z (r), ∂zunm
r (r)=−∂zuinm

r (r), ∂zunm
φ (r)=−∂zuinm

φ (r),

2∂zΘnm(r)+BΘnm(r)−Bhn(r)=−2∂zΘinm
(r)−BΘinm

(r)−Bhin
(r),

ξnm
z (r)=−ξ inm

z (r), ∂zξnm
r (r)=−∂zξ inm

r (r), ∂zξnm
φ (r)=−∂zξ inm

φ (r),

2∂zλnm(r)+Bλnm(r)=−2∂zλinm
(r)−Bλinm

(r),

Bλnm(r)−ηhn(r)=−Bλinm
(r)−ηhin

(r), r∈Ξ∩Γ̃1.

Consequently, 8(n−1)+(n+1) new equations are obtained.

• Regarding to the boundary conditions and as the problem has been solved in prim-
itive variables formulation by expanding the fields with Chebyshev polynomials, the
problem of spurious modes for pressure arises [4, 7]. We have solved it by using the
method proposed in [11], which requires additional boundary conditions. These con-
ditions include the evaluation of the normal projections of the Navier-Stokes equations
on Γ̃1 and Γ̃0 and the continuity equation on Γ̃2. The same problem of the existence of
spurious modes arises for the adjoint pressure field π. An equivalent methodology has
been applied for the adjoint pressure field, i.e., the evaluation of the normal projections
of the adjoint Navier-Stokes equations on Γ̃1 and Γ̃0 and the corresponding adjoint conti-
nuity equation on Γ̃2. Then the following boundary conditions are added. The continuity
equation is evaluated at z=−1 for the nodes ri, i=1,··· ,n−1,

Gunm
r (r)+A∂runm

r (r)+2∂zunm
z (r)

=−Guinm

r (r)−A∂ruinm

r (r)−2∂zuinm

z (r), r∈Ξ∩Γ̃2.

The continuity equation for the auxiliary field ξ can be treated similarly. The normal
component of the momentum equation is evaluated at z=1 for the nodes ri, i=1,··· ,n,

Pr−1(Auinm

r ∂runm
z +Aunm

r ∂ruinm

z +2uinm

z ∂zunm
z +2unm

z ∂zuinm

z )(r)

+2∂z pnm(r)−∆bunm
z (r)−RΘnm(r)=−Pr−1(Auinm

r ∂ruinm

z +2uinm

z ∂zuinm

z )(r)

−2∂z pinm
(r)+∆buinm

z (r)+RΘinm
(r), r∈ (Ξ∩Γ̃1)∪{(rn,1)}.

The momentum equation for the auxiliary field ξ can be handled in a similar way. The
normal component of the momentum equation is evaluated at r = 1 for the nodes zj,
j=0,··· ,m−1,

Pr−1(Auinm

r ∂unm
r +Aunm

r ∂uinm

r +2uinm

z ∂zunm
r +2unm

z ∂zuinm

r −2Guinm

φ unm
φ )(r)

+A∂r pnm(r)−∆bunm
r (r)+G2unm

r (r)=−Pr−1(Auinm

r ∂uinm

r +2uinm

z ∂zuinm

r

−G(uinm

φ )2)(r)−A∂r pinm
(r)+∆buinm

r (r)−G2uinm

r (r), r∈ (Ξ∩Γ̃0)/{1,zm}.
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Figure 3: Contour plots for the fields of a controlled basic state and adjoint state; a) Θ; b) ur; c) uz; d) p; e)
λ; f) ξr; g) ξz; h) π. The parameters are B=0.05, γ=10, Pr=0.4, R=14736, δ=0.01, β=5 and η =1.

The continuity equation for the auxiliary field ξ can be handled in a similar way. Then,
additional 2((n−1)+n+m) equations are obtained.

• With these rules we get a matrix of order P×P, where

P=10(n−1)(m−1)+18(m+1)+18(n−1)+n+1+2n+2m

=10(n+1)(m+1)+(n+1).

However this matrix associated with the linear algebraic system is singular, due to the
fact that pressure with the imposed conditions is defined up to a constant. To fix this
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Figure 4: Control functions h at different values of η. The rest of the parameters are B=0.05, γ=10, Pr=0.4,
R=11500, δ=0.01, β=5.

constant a boundary condition at node (1,z4) is replaced by a Dirichlet condition for
pressure p and the adjoint π (i.e., p = 0 and π = 0). In this way, a linear system of the
form AX = B is obtained, where X is a vector containing P unknowns and A is a full
rank matrix of order P×P. This can be easily solved with standard routines. In particular
we have used a direct Gauss method in MATLAB. So, starting with U0nm

, the iterative
procedure is applied until the stop criterion is satisfied:

‖Unm‖2 =
∥

∥

∥
Ui+1nm

−Uinm
∥

∥

∥

2
≤10−9.

Numerical solutions for the different fields can be seen in Figs. 3 and 4. Fig. 3 shows con-
tour plots for the fields of a controlled basic state (Figs. 3(a)-(d)) and the corresponding
contour plots for the adjoint fields (Figs. 3(e)-(h)). Fig. 4 shows the profile of the control
function h at different values of η. Note that there is a direct relationship between the
regular Gaussian heating profile at the bottom Θ1 and the profile of the control function
h: they have opposite gradients.

3.2.4 Linear stability analysis

The linear stability analysis of the controlled basic states can reveal interesting results on
controlling the instabilities developed for the uncontrolled states [19]. In this section, the
numerical method used to perform this study is detailed. The stability of the basic state
is studied by perturbating it with a vector field depending on the r, φ and z coordinates,
in a fully 3D analysis:

w(r,φ,z)=wb (r,z)+w̄r (r,z)eikφ+λt, (3.21)

where w refers to the unknown fields ur, uφ, uz, p and Θ. Here the superscript b indi-
cates the corresponding quantity in the basic state and the bar refers to the perturbation.
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Fourier modes along the angular coordinate φ, satisfy the periodic boundary conditions
as long as k is an integer. Expression (3.21) are substituted into the basic equations (3.15a)-
(3.15e) and boundary and regularity conditions (3.16) and (3.14). Regularity conditions
(3.14) depend now on the wavenumber k [11]:

ur =uφ =
∂uz

∂r
=

∂Θ

∂r
=

∂p

∂r
=0, for k=0, (3.22)

ur +iuφ =uz =Θ= p=0, for k=1, (3.23)

ur =uφ =uz =Θ= p=0, for k 6=0,1. (3.24)

Linearizing the resulting system we get a generalized eigenvalue problem in λ. The
eigenvalue problem is discretized following the Chebyshev collocation method explained
in the previous section by expanding perturbations ūr, ūφ, ūz, Θ and p in a truncated se-
ries of orthonormal Chebyshev polynomials, i.e.,

ūr =
n

∑
l=0

m

∑
s=0

alsTl(r)Ts(z), (3.25)

and similarly for ūφ, ūz, Θ̄ and p̄. There are P=5×(n+1)×(m+1) unknowns which are
determined by the collocation method explained in [18]. The eigenvalue problem is then
transformed into its discrete form

Aw=λBw, (3.26)

where w = (als,bls,cls,dls,els)
T is a vector which contains P unknowns and A and B are

P×P matrices. If we define
λmax = max

i=1,···,r̄
{Re(λi)},

the stationary solution passes from stable to unstable state when R takes a certain critical
value Rk

c (the one for which λmax

(

k,Rk
c

)

=0). Define next the pair (kc,Rc) by the relation

Rc =min
k∈I

{

Rk
c

}

,

where I ⊂ N is a certain interval of natural numbers which will be usually contained
in I = [0,30]. The bifurcation occurs exactly for (kc,Rc). If the eigenvalue associated to
λmax(kc,Rc) is complex the bifurcation is oscillatory, if it is real the instability is stationary.
The algorithm to compute efficiently λmax is widely explained in [20].

4 Numerical results

A test on the convergence of the numerical method is carried out by comparing the dif-
ferences in the value of the critical Rayleigh number for different orders of expansions in
Chebyshev polynomials. These values are shown in Table 1 for B=0.05, γ=10, δ=0.01,
β=5 and η=0.01 for several consecutive expansions varying the number of polynomials
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Figure 5: a) Relative differences in Rc between order expansions (ε) as a function of the order expansion for
η = 100; b) logarithmic representation of figure a); c) ε as a function of the order expansion for η = 1; d)
logarithmic representation of figure c). The rest of the parameters are B = 0.05,γ = 10,Pr = 0.4,δ = 0.01 and
β=5.

taken in the r (n) and z (m) coordinates. As it can be deduced from Table 1 there is no
significant difference in the value of the Rc when m is increased. To get reliable results
in every case we have considered expansion 39×13 in our computations. Regarding to
convergence we have observed that there is a dependence of the rate of convergence on
the value of parameter η. In Figs. 5 and 6 it is shown the relative differences in Rc number
between consecutive expansions:

ε(n×m)=
∣

∣Rcn×m−Rc(n−2)×(m−2)

∣

∣/Rcn×m,

for B =0.05, γ =10, δ =0.01 and β =5. This is represented for four different values of η,
η=100, 1, 0.01, 0.0002 (Figs. 5a, 5c, 6a and 6c). As the order increases the differences tend
to zero but the rate of convergence decreases with η. A logarithmic representation of the
previous figures is shown in figures (Figs. 5b, 5d, 6b and 6d). The gradient of the line
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Figure 6: a) Relative differences in Rc between order expansions (ε) as a function of the order expansion for
η = 0.01; b) logarithmic representation of figure a); c) ε as a function of the order expansion for η = 0.0002;
d) logarithmic representation of figure c). The rest of the parameters are B=0.05,γ =10,Pr=0.4,δ=0.01 and
β=5.

corresponds to the order which the method acts with in each case. This gradient is nearly
8.2 for η =100 and decreases till 2.5 for η =0.0002.

Table 1: Critical Rayleigh number for the controlled solutions at B =0.05, γ =10,Pr=0.4, δ=0.01 and β=5,
at η =0.01 for different order expansions in n and m.

m=9 m=11 m=13 m=15 m=17

n=23 11902.32 11902.39 11902.40 11902.40 11902.41

n=27 11905.86 11905.78 11905.77 11905.77 11905.77

n=31 11907.47 11907.44 11907.42 11907.42 11907.42

n=37 11907.73 11907.79 11907.79 11907.79 11907.79

n=39 11907.65 11907.68 11907.68 11907.68 11907.68

n=41 11907.59 11907.60 11907.60 11907.60 11907.60
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Figure 7: Control functions h at two small different values of η. The rest of the parameters are B=0.05, γ=10,
Pr=0.4, R=11500, δ=0.01, β=5.

This dependence on η can arise from the fact that some singularities in the controlled
state solutions are found as η is increasingly reduced. Fig. 7 shows the profile of the
control function h for two different small values of η. Observe the irregular shape near
r = 1. This can be due to the smallness of η, because as η decreases the optimal control
problem tends to be ill posed as in the limit η =0 the problem makes no sense. However,
once the control problem is solved, regularized h profiles can be considered directly in
the problem (2.1)-(2.8). The regularization is solved by avoiding the boundary layer on
r =1 similarly to r =−1. The basic states obtained have the same reduction in enstrophy
and identical linear stability properties than the controlled states without regularization.
The convergence properties of the method remain. So the singularities are irrelevant in
the problem as a regularized control function produces the same results.

5 Concluding remarks

In this work a Chebyshev collocation method has been used for solving numerically an
optimal boundary control problem in a thermoconvective fluid flow. In the computer
implementation several procedures have been developed to deal with some troubles.
A Newton method is used for the nonlinear terms. As the problem is treated in the
primitive variable formulation additional boundary conditions for the pressure and the
auxiliary pressure fields are required to avoid spurious modes. Also regularity conditions
are needed for the treatment of the problem in cylindrical coordinates. A dependence of
the convergence of the method on the penalizing parameter that appears in the functional
cost is observed. As this parameter approaches zero some singular behaviour in the
control function is observed and the order of the method decreases. These singularities
are irrelevant in the problem as a regularized control function produces the same results.
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