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Abstract. We develop the theory for a robust and efficient adaptive multi-element
generalized polynomial chaos (ME-gPC) method for elliptic equations with random
coefficients for a moderate number (O(10)) of random dimensions. We employ low-
order (p ≤ 3) polynomial chaos and refine the solution using adaptivity in the para-
metric space. We first study the approximation error of ME-gPC and prove its hp-
convergence. We subsequently generate local and global a posteriori error estimators.
In order to resolve the error equations efficiently, we construct a reduced space using
much smaller number of terms in the enhanced polynomial chaos space to capture the
errors of ME-gPC approximation. Based on the a posteriori estimators, we propose and
implement an adaptive ME-gPC algorithm for elliptic problems with random coeffi-
cients. Numerical results for convergence and efficiency are also presented.
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1 Introduction

Error control in large-scale simulations is based primarily on a combination of heuristic
algorithms and physical considerations, often ignoring the mathematical properties of
the governing equations. Progress has been made, however, especially for finite element
discretizations, where techniques such as adaptive mesh refinement based on a posteriori
error estimation (see [1, 2] and references therein), and adaptive modeling refinement
[3, 4] have been developed and applied to physical applications to reduce the simulation
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errors. These techniques are used for deterministic numerical simulations mostly in two-
and less often in three-dimensions.

Our interest in this work is to develop error control methods to high-dimensional
stochastic problems, where the input data, e.g., transport coefficients, boundary con-
ditions or forcing and interaction terms, are modeled as random processes. A general
framework in modeling such stochastic problems has been developed in [5–9] where
Galerkin type expansions were employed in conjunction with a random trial basis to
obtain a deterministic set of equations that can subsequently be solved with standard
numerical methods. In particular, in [8] we developed an adaptive multi-element gener-
alized polynomial chaos (ME-gPC) method.

In this paper we consider elliptic partial differential equations with stochastic coeffi-
cients which have many physical applications, e.g., random vibrations, composite mate-
rials, etc.; see [5, 10–12] and the references therein. Our objective is to set the theoretical
foundations for ME-gPC and derive rigorous algorithms for error control in solving such
equations.

Let (Ω,F ,P) be a complete probability space, where Ω is the sample space, F is the
σ-algebra of subsets of Ω, and P is a probability measure. Let D be a bounded, connected,
open subset of R

d(d = 1,2,3) with a Lipchitz continuous boundary ∂D. We consider the
following stochastic linear boundary value problem: find a stochastic function, u:Ω×D→
R, such that almost surely (a.s.) the following equation holds:

−∇·(a(x;ω)∇u(x;ω))= f (x) in D,

u(x;ω)=0 on ∂D,
(1.1)

where a(x;ω) is a second-order random process satisfying the following assumption:

Assumption 1.1. Let a(x;ω)∈L∞(D;Ω) be strictly positive with lower and upper bounds
amin and amax, respectively,

0< amin < amax and Pr(a(x;ω)∈ [amin,amax],∀x∈D)=1. (1.2)

To obtain reliable simulation results for this problem in physical applications, we need
to quantify the uncertainty associated with the random inputs and control the approx-
imation errors. The traditional approach to deal with uncertainty is the Monte Carlo
method and its variants, which rely on a relative large amount of realizations of the ran-
dom solution field. These methods are not sensitive to the number of random dimensions
but suffer from a relative low convergence rate. To this end, some non-sampling methods,
such as perturbation methods [11] and second-moment analysis [13,14] have been devel-
oped. These methods are usually restricted to systems with relatively small number of
random inputs and outputs. Recently, another alternative of the non-sampling methods,
the polynomial chaos method, has received considerable attention. Polynomial chaos is
based on a set of basis functionals and a Galerkin projection, which is also called stochas-
tic Galerkin method in the literature. The polynomial chaos bases can be classified based
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on the global and local bases. The global bases include the Wiener-Hermite polynomial
chaos [5,15–17] and the Wiener-Askey or generalized polynomial chaos (gPC) [6]; the lo-
cal bases include piece-wise polynomial chaos [18], wavelet polynomial chaos [19,20] and
multi-element generalized polynomial chaos (ME-gPC) [8,9]. Given enough regularity in
the parametric space, the global polynomial chaos expansion converges (exponentially)
fast, i.e., p-convergence, in the L2 sense and provides a means to control the error by
increasing the polynomial order p. The local polynomial chaos expansion provides an-
other path for convergence, i.e., h-convergence, where h denotes the largest size length
of random elements. Also, the local polynomial chaos expansion can control the error by
h-adaptivity.

In [7] the convergence of stochastic Galerkin method for the elliptic problem (1.1)
was proved and some a priori error estimates were derived. The convergence rate was
further studied in [21] based on sparse global and local bases, where the basis modes
were carefully chosen based on the decay rate of eigenvalues of the covariance kernel of
a(x;ω) and some optimal convergence rates were proved.

In this paper, we focus on the error control of ME-gPC by using the strategy of a
posteriori error estimate and h-adaptivity. We briefly present the Karhunen-Loeve decom-
position of the random process a(x;ω) in the next section. We prove the hp-convergence
of ME-gPC in Section 3. The a posteriori error estimate is developed in Section 4, and it is
based on the solution of the error equation in an enhanced polynomial chaos space. The
main problem of such an a posteriori error estimate is that the cost of solving the error
equation is much larger than the cost of solving the original equation. To this end, we
propose a reduced space whose cardinality can be much smaller than that of the normal
space for the error equation. Subsequently, the underestimated error estimate from the
reduced space is corrected by a factor to obtain the final one. The computational savings
of such a procedure are about 90%. Based on the a posteriori error estimate we construct
an h-type adaptive ME-gPC method for the model problem in Section 5. We then present
some numerical results to show the efficiency of the proposed adaptive ME-gPC algo-
rithm. We conclude our work in Section 7 with a brief discussion.

2 Karhunen-Loève (K-L) decomposition

Karhunen-Loève decomposition is an optimal representation of a second-order random
process a(x;ω) [22]. We assume that the covariance kernel K(x1,x2) is known and defined
as

K(x1,x2)=
∫

Ω
(a(x1;ω)−E[a](x1))(a(x2;ω)−E[a](x2))P(dω), ∀(x1,x2)∈D×D. (2.1)

For such a covariance kernel K(x1,x2), there exists eigenpairs {(λi,hi)}∞
i=1, where λi ≥

λj >0 for i< j, satisfying
∫

D
K(x1,x2)hi(x1)dx1 =λihi(x2) and

∫

D
hi(x)hj(x)dx=δij. (2.2)
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Based on the eigenpairs {(λi,hi)}∞
i=1, the truncated K-L decomposition of a(x;ω) is

aM(x;ω)=E[a](x)+
M

∑
i=1

√

λihi(x)yi(ω), (2.3)

where {yi}∞
i=1 are mutually uncorrelated random variables with zero mean and unit vari-

ance, determined by a(x;ω) as

yi(ω)=
1√
λi

∫

D
(a(x;ω)−E[a](x))hi(x)dx. (2.4)

For a Gaussian process, {yi}∞
i=1 are independent identically-distributed (i.i.d.) Gaussian

random variables; otherwise, the probability density functions (PDFs) of {yi}∞
i=1 depend

on a(x;ω). aM(x;ω) converges to a(x;ω) in the L2 sense

sup
x∈D

E[(a−aM)2](x)=sup
x∈D

∞

∑
i=M+1

λih
2
i (x)→0, as M→∞. (2.5)

For a fixed correlation length, the decay rate of the eigenvalues is determined by the
regularity of the covariance kernel K(x1,x2) [23]. For example, the eigenvalues of the
exponential kernel exp(−|x1−x2|/A), which has finite Sobolev regularity, have an alge-
braic decay rate; however, the eigenvalues of the Gaussian kernel exp(−|x1−x2|2/A),
which is analytic, have an exponential decay rate. The decay rate of eigenvalues influ-
ences significantly the number M for a fixed truncation error, and is representative of the
computational complexity of the method.

3 Formulation

Let

ζ =(ζ1,··· ,ζn) : (Ω,F)→ (R
n,Bn) (3.1)

be an R
n-valued continuous random variable, where n ∈ N and Bn is the σ-algebra of

Borel subsets of R
n. For a multi-index α=(α1,··· ,αn)∈N

n
0 we define the operations

|α|=α1+α2+···+αn, α!=α1!α2!···αn!, xα = xα1
1 xα2

2 ···xαn
n ,

α= β, if and only if αi = βi, ∀α,β∈N
n
0 .

A general second-order random process R(ω)∈L2(Ω,F ,P) can be expressed by general-
ized polynomial chaos (gPC) [6] as

R(ω)=
∞

∑
|α|=0

aαφα(ζ(ω)), (3.2)
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where φα(ζ(ω)) denotes the gPC basis of degree |α|= p in terms of the random variable
ζ. φα is, in general, a tensor product of one-dimensional basis {φαi

(ζi)}. The family {φα}
is an orthogonal basis in L2(Ω,F ,P) with the orthogonality relation

E[φαφβ]=E[φ2
α]δαβ, (3.3)

where δαβ is the Kronecker delta and E denotes the expectation with respect to the prob-
ability measure

P(dω)=w(ζ(ω))dω.

The index in Eq. (3.2) and n∈N are, in general, infinite. In practice, the expansion (3.2) is
usually truncated at a certain level according to the convergence behavior.

3.1 Multi-element generalized polynomial chaos (ME-gPC)

3.1.1 Background

Based on gPC and the decomposition of parametric space, a multi-element polynomial
chaos method was proposed in [8, 9]. We assume that ζi are i.i.d. random variables
and the support of ζ is B = ∏

n
i=1(ai,bi), where ai and bi are finite or infinite in R. A

decomposition D of B is defined as

D=







Bk =(ak,1,bk,1)×(ak,2,bk,2)×···×(ak,n,bk,n),

B̄=
⋃N

k=1 B̄k,
Bk1

⋂

Bk2
=∅, if k1 6= k2,

(3.4)

where k,k1,k2 =1,2,··· ,N. Let IBk
be the indicator random variable related to element Bk.

It is seen that Ω=∪N
k=1 I−1

Bk
(1) is a decomposition of the sample space Ω with

I−1
Bi

(1)∩ I−1
Bj

(1)=∅, for i 6= j.

Subsequently, a local random variable ζk :I−1
Bk

(1) 7→Bk on the probability space (I−1
Bk

(1),F∩
I−1
Bk

(1),P(·|IBk
=1)) is defined subject to a conditional PDF. We assume that Pr(IBk

=1)>0.

Proposition 3.1 ([9]). Let Ppu(ζ) denote the Galerkin projection of u(ζ) onto the polyno-
mial chaos basis {φα(ζ)} with αi ≤ p. If Ppu(ζ) converges to u(ζ) in the L2 sense with
respect to the PDF w(ζ), then Ppu(ζk) converges to u(ζk) in the L2 sense with respect to
the conditional PDF wk(ζk|IBk

=1), k=1,2,··· ,N.

However, the gPC basis, which is orthogonal on the entire parametric space, will
lose orthogonality locally in element k. For efficiency, we employ local orthogonal ba-
sis {φk,α(ζk)}, which are orthogonal polynomials constructed numerically since the con-
ditional PDF wk(ζk|IBk

= 1), in general, does not correspond to any weight function of
classical orthogonal polynomials. We note that the multi-dimensional basis {φk,α(ζk)}
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are tensor products of the one-dimensional basis {φk,αi
(ζk,i)}, which can be generated

efficiently [24] using the three-term recurrence relation,

πi+1(τ)=(τ−ci,0)πi(τ)−ci,1πi−1(τ), i=0,1,··· ,
π0(τ)=1, π−1(τ)=0,

(3.5)

where {πi(τ)} is a set of (monic) orthogonal polynomials,

πi(τ)=τi+lower-degree terms, i=0,1,··· (3.6)

and the coefficients ci,0 and ci,1 are uniquely determined by a positive measure corre-
sponding to the conditional PDF wk(ζk|IBk

=1).
We note that ‖φk,αi

(ζk,i)‖L2
decreases fast as αi →∞ if the support (ak,i,bk,i) is small,

which may introduce the underflow problem [9] in numerical computation. In practice,
we consider the following linear mapping

ζk,i =
bk,i−ak,i

2
yk,i+

bk,i+ak,i

2
, (3.7)

where ζk is mapped to a new n-dimensional random variable yk. The support of yk is a
n-dimensional hypercube supp(yk) :=(−1,1)n if ak,i and bk,i are finite. The PDF of yk is

wk(yk|IBk
=1)=

w(ζ(yk))

Pr(ζ∈Bk)

n

∏
i=1

bk,i−ak,i

2
. (3.8)

Then, we construct orthogonal polynomials {φk,α(yk)} satisfying

Ek[φk,αφk,β]=Ek[φ
2
k,α]δαβ,

where Ek[·] indicate the expectation with respect to the PDF wk(yk|IBk
=1). It was shown

in [9] that {φk,αi
(yk,i)} can be obtained on-the-fly, which are usually accurate and well

scaled for αi ≤20.
Let u

p
k (yk) be the local polynomial chaos expansion corresponding to element Bk.

Then, the global approximation for ζ∈B can be expressed as

up(ζ)=
N

∑
k=1

u
p
k (yk(ζ))IBk

=
N

∑
k=1

∑
αi≤p

uk,αφk,α(yk(ζ))IBk
, (3.9)

which converges to u(ζ) in the L2 sense, in other words,
∫

B
(up(ζ)−u(ζ))2 f (ζ)dζ→0, as p→∞. (3.10)

Remark 3.1. The following C0 continuity

u
p
i (yi(ζ))=u

p
j (yj(ζ)), ζ∈ B̄i∩ B̄j, (3.11)

where B̄i and B̄j indicate the closure of two adjacent random elements, respectively, is not
required since the Lebesgue measure of the interface is zero.
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By Bayes’ rule and the law of total probability, any statistics can be obtained as

∫

B
g(u(ζ))w(ζ)dζ≈

N

∑
k=1

Pr(IBk
=1)

∫

Bk

g
(

u
p
k (yk)

)

wk(yk|IBk
=1)dyk, (3.12)

where g(·)∈L1(Ω,F ,P) is a function of the random field u(ζ).

3.1.2 hp-convergence of ME-gPC

In this section we study the hp-convergence of ME-gPC, where h denotes the side length
of random element and p the polynomial order. We consider the Legendre-chaos expan-
sion, which corresponds to a uniform distribution. Let In =(−1,1)n be the n-dimensional
hypercube. Let Pp(In) denote the collection of tensor products of one-dimensional Leg-
ender polynomials of (separate) degree ≤ p defined on In.

We have the following theorem:

Theorem 3.1. If u(y)∈Hm(In), m≥0, and y is a uniform random variable on In, then we have

‖u−Ppu‖L2(In) =2n
E[(u−Ppu)2]1/2 ≤Cp−m‖u‖Hm(In), (3.13)

where C is a constant independent of p.

Proof. The theorem can be proved by considering the Legendre expansion of u and also
from the approximation results of p-th order polynomials; see [25] for more details.

We now quote the following approximation results.

Lemma 3.1. Let A be an open subset of R
n. There exist a constant C(A) such that

∀v∈Hm+1, inf
v̂∈Pm(A)

‖v− v̂‖Hm+1 ≤C(A)|v|Hm+1 ,

where the semi-norm |v|Hm+1 is defined as

|v|Hm+1 =

(

∑
|α|=m+1

∫

A
|∂yv|2dy

)1/2

.

Proof. See Theorem 3.1.1 in [26].

We also need the scaling argument.

Lemma 3.2. Let A and Â be two open subsets of R
n such that there exists an affine mapping

F(x)= B(x)+b of Â onto A and F(Â)= A. Let diam(A)=1, ρA = K, diam(Â)= h, ρÂ = K̄h.
If a function v̂ belongs to the Sobolev space Wm,q(A) for some integer m≥ 0 and some number
q∈ [1,∞], the function v= v̂◦F∈Wm,q(Â) then

|v̂|Hm(A)≤Chm− n
2 |v|Hm(Â), (3.14a)

|v̂|Hm(Â)≤Ch
n
2 −m|v|Hm(A). (3.14b)
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Proof. See Theorem 3.1.2 in [26].

We are now ready to prove the hp-convergence of ME-gPC for Legendre-chaos.

Theorem 3.2. Let u(y)∈Hm(In) and D be a uniform decomposition of In with N1 element along
each yi. Then the ME-gPC approximation up(y)∈Pp(y) converges to u(y) with an error

‖up−u‖L2(In)≤Cp−mN−m
1 |u|Hm(In), (3.15)

where we assume that m≤ p+1.

Proof. We consider element Bk, where we define yk(y) : Bk 7→ In by an affine mapping. Let
v(yk)∈Pp(In). Using Theorem 3.1 and Lemma 3.2, we obtain

‖u(yk)−Pp(yk)‖L2(In) =‖u−v−Pp(u−v)‖L2(In)

≤Cp−m inf
v∈Pp(In)

‖u−v‖Hm(In)≤Cp−mN
−m+ n

2
1 |u|Hm(Bk).

Using the formula (3.12), we obtain

‖u(y)−up(y)‖2
L2(In) =2n

E[(u(y)−up(y))2]

=2n
N

∑
k=1

Pr(IBk
=1)Ek[(u(yk)−Ppu(yk))

2]

=
N

∑
k=1

volume(Bk)‖u(yk)−Ppu(yk)‖2
L2(In)≤

N

∑
k=1

C|u(y)|2Hm(Bk)
p−2mN−2m

1

≤Cp−2mN−2m
1

N

∑
k=1

|u(y)|2Hm(Bk)
=Cp−2mN−2m

1 |u(y)|2Hm(In). (3.16)

This completes the proof of this theorem.

Remark 3.2. If we take m= p+1 and consider the error of the second-order moment we
recover the h-convergence rate

|E[u2]−E[P2
pu]|≤C(p)N

−2(p+1)
1

shown in [8, 18].

Remark 3.3. The convergence rate given in Theorem 3.2 is similar with that of the deter-
ministic hp polynomial approximation, which usually takes the form [27]

‖u−up‖L2
≤Cp−mhµ‖u‖Hm ,

where µ=min(p+1,m). Since we focus on the h-type adaptivity in this paper, we do not
pay much attention on the regularity parameter m, so we have assumed that m≤ p+1.
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Remark 3.4. In Theorem 3.2, we use a full tensor-product basis. Such an approxima-
tion will suffer from the “curse of dimensionality”. In practice, the importance of each
random dimension is usually different, sparse bases can be employed adaptively to re-
duce the cost while maintaining good accuracy. Convergence rates of certain sparse ap-
proximations based on analyticity were given in [21]. We will discuss the adaptivity of
ME-gPC based on an a posteriori error estimators later.

In applications of gPC we usually consider a relative small perturbation, i.e., we asso-
ciate a random variable with a small number (standard deviation). Using the same idea
as in the proof of Theorem 3.2, we obtain the following corollary.

Corollary 3.1. Let Ppu(y) be the Legendre-chaos expansion of u(δcy), where y is a uni-
form random variable on In, and 0<δc <1 is a constant. If u(y)∈Hm with m≤ p+1, then
the approximation errors can be expressed as

‖u(δcy)−Ppu(δcy)‖L2(In)≤Cp−mδm
c , (3.17a)

|E[u2]−E[P2
pu]|≤Cp−2mδ2m

c . (3.17b)

It is seen that if the degree of perturbation decreases the error will decrease alge-
braically for a fixed polynomial order p.

3.2 Galerkin projection

For each random element Bk, an independent problem of the same type is defined as

−∇·(a(x;yk)∇u(x;yk))= f (x) in D,

u(x;yk)=0 on ∂D.
(3.18)

All previous assumptions on a(x;·) are satisfied with respect to the conditional PDF
wk(yk|IBk

=1). We note that such a system is complete.
We define a bilinear form Bk(·,·) as

Bk(u,v)=Ek[
∫

D
a∇u·∇vdx] (3.19)

and a linear form Lk(·) as

Lk(v)=Ek[
∫

D
f vdx]. (3.20)

We consider the following Hilbert space

Wk =

{

v(x;yk(ω))

∣

∣

∣

∣

‖v‖2
Wk

=Ek[
∫

D
∇v·∇vdx]<∞, ∀v∈H1

0(D)⊗L2(I−1
Bk

(1))

}

(3.21)

with an inner product (u,v)Wk
= Ek[

∫

D∇u·∇vdx]. For the entire parametric space, a
similar Hilbert space W can be defined with an inner product (u,v)W =E[

∫

D∇u·∇vdx].
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Due to Assumption 1.1, the following conditions are naturally satisfied

Bk(u,v)≤ amax‖u‖Wk
‖v‖Wk

, ∀u,v∈Wk (Continuity); (3.22a)

amin‖v‖Wk
≤Bk(v,v), ∀v∈Wk (Coercivity). (3.22b)

Thus, we can claim by the Lax-Milgram theorem that an unique solution exists for the
following weak form

Bk(u,v)=Lk(v), ∀v∈Wk . (3.23)

4 A posteriori error estimation of gPC

In the deterministic finite element method (FEM), the local error estimator can be ob-
tained either explicitly from the errors of a proper interpolation [2], or implicitly from a
local problem [1]. In ME-gPC we use similar ideas to obtain a local error estimator. We
focus on how to estimate the error of gPC efficiently with a relative low cost.

For simplicity we drop the subscript k, since the following discussion is valid for ev-
ery ME-gPC element. In practice, the space W needs to be truncated for an approximation
of u(x;y). To focus on the error of polynomial chaos, we use the following assumption:

Assumption 4.1. The error given by spatial discretization can be neglected in comparison
to the error introduced by the truncated polynomial chaos.

Let ‖v‖E = E[
∫

D a|∇v|2]1/2 denote the energy norm. We define the approximation
error as

e=‖u−up‖E. (4.1)

4.1 Local error e

Since the dimension of W is infinite, we need to truncate it to a certain level for an ap-
proximate solution of Eq. (3.23). Let

Qp =span{φα(y), |α|≤ p}

denote the truncated polynomial chaos space up to polynomial order p. We define a
truncated version of W as W p={v(x;y)|v∈H1

0 (D)⊗Qp}. Due to Assumption 4.1, we here
keep H1

0(D) unchanged although in numerical computation it will also be truncated. Let
up satisfy the following equation

B(up,v)=L (v), ∀v∈W p. (4.2)

Since Qp is an hierarchical orthogonal space we introduce the following saturation as-
sumption:
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Assumption 4.2. There exists a constant β∈ [0,1) such that

‖u−up+q‖E ≤β‖u−up‖E, ∀q∈N.

Let e∗=up+q−up, which satisfies that

B(e∗,v)=L (v)−B(up,v), ∀v∈W p+q. (4.3)

Under Assumption 4.2, the true error e in the energy norm can be bounded from both
ends by e∗ as [1]

‖e∗‖E ≤‖e‖E ≤
1

√

1−β2
‖e∗‖E. (4.4)

However, it will be more expensive to solve Eq. (4.3) than the original problem. Thus, we
decompose e∗ as

e∗= e1+e2, (4.5)

where e1∈W p and e2∈Yp,q :=W p+q−W p satisfy

B(e1,v)+B(e2,v)= L(v)−B(up,v)=0, ∀v∈W p, (4.6a)

B(e1,w)+B(e2,w)= L(w)−B(up,w), ∀w∈Yp,q. (4.6b)

We note that e1 and e2 are coupled together. To obtain a reasonable approximation ē to e∗,
the coupling terms can be ignored [1] such that

B(ē1,v)=0, ∀v∈W p, (4.7a)

B(ē2,w)= L(w)−B(up,w), ∀w∈Yp,q, (4.7b)

where ē= ē1+ ē2 = ē2. By assuming that a strengthened Cauchy-Schwarz inequality [1] holds,
the error estimator e∗ in energy norm can be bounded from both ends as

‖ē‖E ≤‖e∗‖E ≤
1

√

1−γ2
‖ē‖E, (4.8)

where γ∈ [0,1) is a constant.
Based on the above discussion, we know that ‖ē‖E can be used as a local error esti-

mator. Due to the equivalence between the norm ‖·‖W and ‖·‖E we use

η =‖e‖W ≈‖ē‖W =‖ē‖L2(B,H1
0(D))

as a local error estimator.
The cost of obtaining the error estimator η≈‖ē‖L2(B,H1

0(D)) is determined by the num-

ber dim(Yp,q). We set q=1. In Table 1 we show some typical values of dim(Yp,q) for p=2,
where we also give the dimensions of the solution space W p in parenthesis for compar-
ison. It is seen that dim(Yp,q) can be much larger than the dimension of W p, which im-
plies that the cost to obtain η will be much more expensive than that to solve the original
problem. Clearly, to make the numerical method practical we need to reduce the cost of
obtaining the local error estimators.
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Table 1: Typical values of dim(Yp,q) with respect to the number n of random dimensions. p=2 and q=1. The

numbers in parenthesis denote the dimensions of the space W p.

n 2 4 6 8 10

dim(Yp,q) 4(6) 20(15) 56(28) 120(45) 220(66)

4.2 Stochastic regularity

4.2.1 Taylor expansion

We first consider the Taylor expansion of u(·,y) to examine the behavior of error contri-
bution of each term yα. Let

ρi = ri

√

λi‖hi‖L∞(D), (4.9)

where ri are constants from the linear mapping (3.7) in the ME-gPC decomposition.

In [21], the following proposition about the regularity of u(·,y) is given.

Proposition 4.1. If u(·,y) is a solution of the model problem, then

‖∂α
yu(·,y)‖L∞(B,H1

0(D))≤ ca,|α||α|!ρα‖u(·,y)‖H1
0 (D),∀α∈N

n, (4.10)

where ρα =∏
n
i=1ραi

i and ca,|α| is a constant depending on the random process a(x;ω) and
|α|.

We now examine the Taylor expansion of u(·,y) around y=0, which takes the form

u(·,y)= ∑
|α|≤p

∂α
yu(·,0)

α!
yα+ ∑

|α|>p

∂α
yu(·,0)

α!
yα, (4.11)

where yα = ∏
n
i=1yαi

i . In particular, we consider the terms satisfying |α| = p+1, which
contribute most to the error estimate. Using proposition 4.1, the terms with |α|=p+1 can
be written as

‖ ∑
α=p+1

∂α
yu(·,0)

α!
yα‖L∞(B,H1

0(D))≈ ∑
|α|=p+1

ca,αT(α)ρα, (4.12)

where T(α)= |α|!/α!.

4.2.2 Spectral expansion

We consider the spectral expansion of u(·,y) as

u=
∞

∑
|α|=0

uαφα(y),
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where {φα} is the normalized orthogonal basis. By comparing the spectral expansion and
the Taylor expansion, we obtain

uα =
∞

∑
|β|=0

∂
β
yu(·,0)

β!
E[yβφα(y)]. (4.13)

By noting the fact that

yα =
|α|
∑

|β|=0

aβφβ(y),

where the coefficients aβ can be uniquely determined, and the orthogonality of {φα}, we
obtain

uα = ∑
βi≥αi

∂
β
yu(·,0)

β!
E[yβφα(y)]. (4.14)

For the error estimate we are interested in the terms with polynomial order |α| ≥ p+1.
Specifically, we consider the dominant terms

‖u−up‖2
L2(B,H1

0(D))
≈ ∑

|α|=p+1

∫

D
(∇uα)

2dx,

where we assume that the polynomial chaos basis {φα} has been normalized. If in the
approximation of uα the term satisfying β = α is dominant, we can rewrite the error ap-
proximation as

‖u−up‖2
L2(B,H1

0(D))
≈ ∑

|α|=p+1

c2
a,αT2(α)E[yαφα]

2ρ2α, (4.15)

where we separate the factor ρα from ‖∂α
yu(·,0)‖H1

0 (D) motivated by the proposition 4.1,

and ca,α is constant satisfying

ca,α =
‖∂α

yu(·,0)‖H1
0 (D)

|α|!ρα
. (4.16)

Based on Eq. (4.15) we aim to reduce the cost to obtain the a posteriori error estimate η.

4.3 Estimation of η

4.3.1 Patterns of α

We first classify the patterns of α for a given |α|= p+1.

Definition 4.1. For α∈N
n, the pattern of α is defined as

sα =[αi1 ,αi2 ,··· ,αin
], αij

≥αik
, ∀j< k,

where ij =1,2,··· ,n. We let S|α| indicate the set {s
j
α ||α| is a constant}, j=1,2,··· ,nS, where

nS is the cardinality of S|α|.
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The cardinality nS of S|α| is a function of n and |α|. For example, let |α|=3 and n≥3.
sα has at most the following three possibilities

sα =[3,0,0,··· ,0], [2,1,0,··· ,0], [1,1,1,··· ,0].

For |α|=2,3,4,5, it can be easily verified that

nS =

{

2,2,3,3, if n=2,
2,3,4,5, if n≥3.

(4.17)

In other words, nS≤|α| for |α|≤5.
Based on s|α| we group the index α satisfying |α|= p+1. Let Z|α|=p+1={α||α|= p+1}.

We define
Zi
|α|=p+1 ={α|sα = si

α, si
α ∈S|α|=p+1}, i=1,··· ,nS. (4.18)

Thus

Z|α|=p+1 =
nS
⋃

i=1

Zi
|α|=p+1,

where Zi
|α|=p+1

⋂

Z
j

|α|=p+1
=∅,∀i 6= j.

4.3.2 A reduced space V p

Let q=1. We now take a closer look at the subspace

Yp,1 ={φα(y)|φα =
n

∏
i=1

φαi
(yi),|α|= p+1}. (4.19)

We divide the space Yp,1 according to the patterns of α as

Yp,1 =
nS
⋃

i=1

Ai, Ai ={φα|α∈Zi
|α|=p+1}. (4.20)

For each Ai, we define a subset A′
i ⊂Ai with

A′
i ={φα|the corresponding ca,αE[yαφα]ρ

2α are the largest θsnAi
ones for φα∈Ai},

where 0<θs <1 is a prescribed constant and nAi
is the cardinality of Ai. We now construct

the reduced space V p as

V p =
nS
⋃

i=1

A′
i. (4.21)

It is obvious that we keep the most important modes φα for each si
α ∈ S|α|=p+1 based on

the values ca,αE[yαφα]2ρ2α, and

dim(V p)

dim(Yp,1)
= θs <1.
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Instead of using the space Yp,1, we want to estimate η on the reduced space V p. We
note that the interaction between V p and the rest modes in Yp,1 is ignored. Let η̃ indicate
the error estimate given by V p. Since the number of modes in V p can be significantly re-
duced compared to Yp,1, the error η will be underestimated if the eigenvalues ρi decrease
slowly. The simplest way to improve η̃ is to obtain a constant c̃ such that η∼ c̃η̃.

4.3.3 Estimation of c̃

Both values of η and η̃ can be divided into nS parts according to the patterns si
α in S|α|=p+1,

and η can be rewritten as

η2 =
nS

∑
i=1

η2
si

α
∼

nS

∑
i=1

∑
φα∈Ai

ca,αT(α)E[yαφα]
2ρ2α. (4.22)

Correspondingly, η̃ takes the form

η̃2 =
nS

∑
i=1

η̃2
si

α
. (4.23)

Thus, using ρ we can estimate the following ratios

η2
si

α

η̃2
si

α

=

∑
φα∈Ai

ca,αE[yαφα]2ρ2α

∑
φα∈A′

i

ca,αE[yαφα]2ρ2α
. (4.24)

We now take a closer look at the factor T(α) for each si
α. We note that T(α) = |α|!/α!,

which depends on sα only. If T(α) is the same for all si
α, it is easy to verify that

min
si

α

η2
si

α

η̃2
si

α

≤ η2

η̃2
≤max

si
α

η2
si

α

η̃2
si

α

, (4.25)

which implies that we can choose c̃ as

c̃2 =max
si

α

η2
si

α

η̃2
si

α

. (4.26)

We note that the terms E[yαφα] are the same for a particular pattern sα if the compo-
nents of y are i.i.d random variables. In ME-gPC for arbitrary probability measures the
original PDFs of yi are decomposed simultaneously with the parametric space. E[yαφα]
will change correspondingly and can be regarded as a measure of such a change.
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5 Algorithm for h-type adaptive ME-gPC

We define a global error as
ηg =‖u−up‖L2(B,H1

0(D)) (5.1)

and a local error in element k as

ηk =‖u−up‖L2(Bk,H1
0(D)). (5.2)

We have the following lemma.

Lemma 5.1. The relation between ηg and ηk is

η2
g =

N

∑
k=1

η2
k Pr(IBk=1). (5.3)

Proof. Observe that

η2
g =

∫

B

∫

D
(∇(u−up))2 f (y)dxdy

=
∫

B

∫

D
(∇(u−

N

∑
k=1

u
p
k (yk(y))IBk

))2 f (y)dxdy

=
N

∑
k=1

Pr(IBk
=1)

∫

Bk

∫

D
(∇(u−u

p
k ))

2 fk(yk|IBk
=1)dxdyk

=
N

∑
k=1

Pr(IBk
=1)η2

k ,

which leads to (5.3).

5.1 Convergence rate of ηg

If the importance (degree of perturbation) of each random dimension is the same, we
expect an h-type convergence rate

ηg ∼O
(

N−(p+1)/n
)

,

where N is the total number of random elements [7, 9, 21]. We note that the algebraic
index decreases by the factor 1

n . Under an analyticity assumption – the eigenvalues of
the K-L expansion of a(x;y) decrease exponentially, the following convergence rate was
proved in [21]

ηg ∼O(N
−p+o(1)
ace ), n→∞ (5.4)

for the sparse wavelet approximation, where Nace is the number of deterministic PDEs to
be solved. We note here that Nace/N is constant since we use the same polynomial order
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in each random element. In this work, we relax the optimal assumption and implement
adaptivity based on the a posteriori error estimator. In practice, the optimal convergence
rate in Eq. (5.4) is difficult to maintain due to the low regularity of covariance kernel, e.g.,
the exponential kernel. The convergence rate can be weakened greatly by the dimension-
ality. Thus, we focus on a moderate number O(10) of random dimensions.

5.2 Criteria of adaptivity

The relation between ηg and ηk provides a natural strategy for the h-type adaptivity of
ME-gPC. We define another local error indicator as

η̂k =ηk Pr(IBk
=1)1/2≈ c̃kη̃k Pr(IBk=1)

1/2, (5.5)

where c̃k is the correction factor of the error estimator η̃k from the reduced space V
p

k in
element k. We note that η̂k includes an extra factor: the square root of Pr(IBk

= 1). The
value of c̃kη̃k indicate the approximation error of the local gPC while Pr(IBk

= 1) is the
probability that the random variable y is located in the element Bk. These two factors
should be balanced for the h-type refinement. For example, it may not be necessary to
refine an element where ηk is large while Pr(IBk

=1) is very small.
When the global error estimator is larger than a threshold, then h-type refinement is

needed; however, it is not wise to refine all the random elements. We examine the values
of η̂k for each element and refine the elements satisfying

Criterion I: η̂k ≥ θI max
i=1,···,N

η̂i, 0< θI <1, (5.6)

where θI is a prescribed constant.
Alternatively, we can sort the local error indicators η̂k

η̂i1 ,η̂i2 ,··· ,η̂iN
, η̂im

≥ η̂in
, ∀m<n, (5.7)

where (i1,i2,··· ,iN) is a permutation of (1,2,··· ,N), and refine a certain percent of the total
elements. This criterion can be expressed as

Criterion II: η̂ij
with j≤ θI I N, 0< θI I <1. (5.8)

In other words, Criterion I refines the elements according to a threshold for the lo-
cal error indicator without any restriction on the number of elements while Criterion II
refines a certain percent of the total elements with the largest local error indicators.

5.3 Importance of random dimension

Another question about adaptivity is how to refine the local multi-dimensional random
element. It is too expensive to refine all the random dimensions due to the “curse of
dimensionality”, e.g., bisection in each random dimension will result in 2n child elements.
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Thus we need to consider the importance of each random dimension. In this work, we
use the value ρi to measure the importance of each random dimension and choose just a
few random dimensions to refine while leave the rest unchanged. If ρi decreases fast, the
random dimension corresponding to the largest ρi should be refined; otherwise, we can
relax the restriction and refine the first two or three most important random dimensions
simultaneously. The support of each random dimension is divided into two equidistant
elements.

5.4 Revisiting the correction factor c̃

In the construction of V p and the estimation of c̃, we include the constant ca,α. However,
such a constant is, in general, unknown. Furthermore, in different random elements the
random process a(x,y) takes different forms ak(x,yk):

ak(x,yk)=E[a](x)+σ
M

∑
i=1

bk,i+ak,i

2

√

λihi(x)+σ
M

∑
i=1

bk,i−ak,i

2

√

λihi(x)yk,i,

where the element ×M
i=1[ak,i,bk,i] is mapped to a unit hypercube [−1,1]M . Thus, cak,α is

also element-dependent.
We first present our strategy to deal with cak,α and explain it subsequently.

1. Compute ca,α in the global parametric space using the gPC basis. In other words,
we need to solve the error equation in the full space Yp,1.

2. Construct the reduced space V
p

k in each random element using the coefficients ca,α.

3. Take into account the relative fluctuation of cak,α with respect to ca,α.

We start from the following observation:

Proposition 5.1. If in element ×M
i=1[ak,i,bk,i] the linear mapping (3.7) is defined, then the

following relation holds

‖∂α
yu(x,y=yc)‖H1

0 (D)

M

∏
i=1

(

bk,i−ak,i

2

)αi

=‖∂α
yk

uk(x,0)‖H1
0 (D) (5.9)

where u(x,y) and uk(x,yk) are global and local solutions, respectively, and

yc,i =
bk,i+ak,i

2
.

Proof. We note that u(y)= uk(yk(y)). The conclusion follows from the chain rule of dif-
ferentiation.

Using the Eqs. (4.16) and (5.9) we can obtain the relation between cak,α and ca,α as

cak,α

ca,α
=

‖∂α
yu(x,yc)‖H1

0 (D)

‖∂α
yu(x,0)‖H1

0 (D)

. (5.10)
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We now examine the fluctuation of ‖∂α
yu(x,yc)‖H1

0 (D) around ‖∂α
yu(x,0)‖H1

0 (D). For sim-

plicity and without loss of generality we consider the following one-dimensional model:

−∇·((b(x)+δb(x)ξ)∇u(x,ξ))= f (x), (5.11)

where δb(x) is a perturbation function around b(x) and ξ is a random variable with zero
mean on [−1,1].

Applying the operator ∂m
ξ to both sides of Eq. (5.11), we obtain

−∇·((b+δbξ)∇∂m
ξ u(x,ξ))=m∇·(δb∇∂m−1

ξ u(x,ξ)). (5.12)

When ξ =0, Eq. (5.12) becomes

−∇·(b∇∂m
ξ u(x,0))=m∇·(δb∇∂m−1

ξ u(x,0)).

For a particular value ξ=ξi, we consider the change of ∂m
ξ u(x,ξi) with respect to ∂m

ξ u(x,0).

Let um
ξ (x,ξi)=∂m

ξ u(x,ξi). We write ∂m
ξ u(x,ξi) as

u
ξ
m(x,ξi)=um

ξ (x,0)+δum
ξ (x,0),

which satisfies the following equation

−∇·((b+δbξi)∇(um
ξ (x,0)+δum

ξ (x,0)))=m∇·(δb∇(um−1
ξ (x,0)+δum−1

ξ (x,0))).

The above equation can be simplified as

−∇·((b+δbξi)∇δum
ξ (x,0))=∇·(δbξi∇um

ξ (x,0))+m∇·(δb∇δum−1
ξ (x,0)).

For a low-order derivative and small perturbation, we neglect the second-order terms
and obtain

−∇·(b∇δum
ξ (x,0))=∇·(δbξi∇um

ξ (x,0)), (5.13)

which yields

(b∇δum
ξ (x,0),∇δum

ξ (x,0))=−(δbξi∇um
ξ (x,0),∇δum

ξ (x,0)) (5.14)

by Green’s formula. The above equation implies that it is reasonable to use the degree of
perturbation of the random inputs to model the fluctuation of cak ,α with respect to ca,α.

Finally, for the elliptic problem we take the value of c̃ as

c̃2 =1+





1

nS
∑
si

α

η2
si

α

η̃2
si

α

−1





(

1+σc

1−σc

)2

, (5.15)

where σc is degree of perturbation of a(x,y).

Remark 5.1. We note that we take the mean of η2
si

α
/η̃2

si
α

instead of the maximum since

we have a new factor (1+σc)/(1−σc). When the number of terms in the reduced space
increases, c̃ goes to 1, in other words, V p becomes Yp,1.
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Algorithm 5.1: h-type adaptive ME-gPC

1. Choose a global tolerance ǫ and a steering parameter 0<θ <1.

2. Compute ca,α by solving the error equation on the space Yp,1.

3. Construct local polynomial chaos basis, implement gPC element-by-element.

4. Sort the values ρk,i≈ck,i

√
λi in element k to measure the importance of each random dimension.

5. Construct the reduced space V
p

k .

6. Compute the local error indicator η̂k for new random elements.

7. if the global error indicator ηg satisfies

ηg =

(

N

∑
k=1

η̂2
k

)1/2

>ǫ,

then

8. if η̂k satisfies Criteria (I) or (II) then

9. Refine the first two or three leading random dimensions.

10. end if

11. Go to step 3.

12. else

13. Stop and exit.

14. end if

5.5 Discussion of cost

Since the PDE system for the polynomial chaos coefficients can be decoupled [7], we can
use the number of PDEs that needs to be solved as a measure of the overall cost. We
assume that the adaptive ME-gPC simulation leads to N random elements. If the space
Yp,1 is used, the total cost for the a posteriori error estimates is O(dim(Yp,1)NT1), where
T1 is the time for resolving one deterministic PDE; if the reduced space V p is used the
cost is O(dim(Yp,1)T1+dim(V p)(N−1)T1). When N is large enough, the ratio of the two
costs is about θs (see Section 4.3.2). We note here that unlike the deterministic adaptive
methods, we do not need to resolve the problem in the entire parametric space when
splitting occurs; we only need to solve the local problems in the newly added random
elements.

6 Numerical results

In this section we present a numerical study on the proposed a posteriori error estimators
and the adaptive ME-gPC method using stochastic algebraic and elliptic model problems.
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6.1 The stochastic algebraic model

To illustrate the effectiveness of the presented concepts, we first consider the following
algebraic equation

(β0+σ
M

∑
i=1

√

λiyi)u=1, (6.1)

where β0 and σ are constants, λi are eigenvalues from a second-order random process,
and yi ∼U[−1,1] are i.i.d. uniform random variables with zero mean and unit variance.
To avoid the singularity at zero we assume that

β0+σ
M

∑
i=1

√

λiyi >0.

We can appreciate that such an algebraic equation shares common properties with the
elliptic model problem with random coefficients. For the algebraic model we consider
the norm ‖·‖L2(B).

We consider the Taylor expansion of the solution. The term ∂α
yu(0) takes the form

∂α
yu(0)=ρα∂

|α|
z u(z=0), (6.2)

where z = σ∑
M
i=1

√
λiyi and ρi = σ

√
λi. Thus, the Taylor expansion of the solution can be

expressed as

u(y)=∑
α

∂α
yu(0)

α!
yα =∑

α

∂
|α|
z u(z=0)

α!
ραyα. (6.3)

We note that given a particular point yi,

∂α
yu(yi)/∂α

yu(0)=∂
|α|
z u(z= z(yi))/∂

|α|
z u(z=0)=constant,

where the constant only depends on |α| instead of α.
We consider two typical covariance kernels exp(−(x−y)2/A) and exp(−|x−y|/A),

where x,y ∈ [0,1] and A is the correlation length. We note that the decay rate of eigen-
values is exponential for the Gaussian kernel and asymptotically algebraic for the expo-
nential kernel. In this work we focus on M = 10 random dimensions and consider two
correlation lengthes: A=1 and 0.1. When A=1, λ10/λ1 =3.4×10−3,2.8×10−14 for expo-
nential and Gaussian kernels, respectively; when A = 0.1, λ10/λ1 = 1.1×10−1,5.7×10−6

correspondingly.

6.1.1 Error estimates

In Figs. 1 and 2 we present the error contribution u2
α of each term in Yp,1 for p = 1,2,

respectively, using the exponential kernel. It is observed that for each pattern si
α, the error

contribution shows an overall decreasing trend, which is determined by the factor ρα
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Figure 1: Error contribution of each mode in Yp,1 with p = 1 and M = 10. Eigenvalues are from kernel

exp(|x−y|/A) in [0,1]. The markers of the largest 10% terms for each si
α are filled. Left: A=1; Right: A=0.1.
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Figure 2: Same as Fig. 1, except with p=2 and M =10.

since the factors T(α) are comparable for each pattern si
α, i.e., the decay rate is determined

by the decay rate of eigenvalues. We note that only the first two or three components of
si

α are kept in the legends since the rest are zero. In Fig. 2, similar behaviors are observed.
In Figs. 3 and 4, we plot the values u2

α/ρ2α, which are almost constant for each si
α. This

implies that it is reasonable to separate the factor ρα in the error estimate. Furthermore,
it is observed that for a fixed polynomial order the profiles of u2

α/ρ2α are almost the same
for A=0.1,1. Such observations can be easily explained using Eqs. (6.3) and (4.15). Also,
this is the motivation in constructing the reduced space based on the pattern si

α since we
do not need to consider the constants related to each pattern.

We now examine the effectiveness of the reduced space V p. Let ηW denote the error
from the full space Yp,1 and ηV the error from the reduced space V p. We use the largest

10% terms for each si
α in space Yp,1, which are indicated in Figs. 1 and 2 by filled markers.

In Table 2 we show the values of η and c̃η̃ for different cases. It is observed the a posteriori
error estimator c̃η̃ is effective for the algebraic model with about 90% savings.
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Table 2: A posteriori error estimates given by Yp,1 and Vp. dim(Vp)/dim(Yp,1)= 0.1. Eigenvalues are from

the exponential kernel.

ηV ηW ηV /ηW

A=1, p=1 4.30e-3 4.20e-3 1.02

A=0.1, p=1 4.08e-3 4.06e-3 1.00

A=1, p=2 4.65e-4 4.47e-4 1.04

A=0.1, p=2 5.12e-4 5.01e-4 1.02

A=0.1,λi =λ1, p=2 1.93e-3 1.93e-3 1.00

6.1.2 Adaptive ME-gPC

We now examine the behavior of the adaptive ME-gPC method for the algebraic prob-
lem. We let the polynomial order be p = 2. If a uniform discretization is considered in
the parametric space, the h-convergence rate of ME-gPC for the second-order moment
should be O(N−2(2+1)/10)=O(N−0.6) [7, 9, 18], which is close to the convergence rate of
the standard Monte Carlo method.

It is known that if the eigenvalues decrease fast, the error contribution mainly comes
from the first several random dimensions. For a limit case, if the correlation length goes
to infinity, the random behavior can be described by one random variable. This implies
that the most effective way to do h-type refinement is to refine the random dimension
related to the largest ρi. Let nr denote the number of random dimensions to be refined.
We present the evolution of errors for two different refinement strategies: nr = 1 or 2,
in Fig. 5. Both exponential and Gaussian kernels are examined. The local error esti-
mators are obtained from spaces V p and Yp,1, where the correction factor c̃ is chosen
using Eq. (4.26) since ∂α

yu(yi)/∂α
yu(0)= constant for a given |α|. We let θI I = 0.1 for Cri-

terion II (see Eq. (5.8)), in other words, we refine 10% of the total number of elements
when necessary. It is observed that it is more effective to refine only one random di-
mension. Numerical experiments show that for a certain nr the error evolution is almost
the same for θI I = 0.1 and 0.2. (We do not include here the results for θI I = 0.2.) All the
curves can be roughly decomposed to two parts (indicated by the dotted lines). The h-
convergence rate is much better in the first part where the difference between ρi is large.
As the h-refinement goes on, ρi approach each other and the h-convergence rate asymp-
totes O(N−2(p+1)/n). Since the eigenvalues of Gaussian kernel decrease very fast when
A = 1, only the first two random dimensions contribute to the errors ≥ 10−10, and thus
the h-convergence rate is ≈O(N−2(2+1)/2=−3). For the errors ≤ 10−10, the third random
dimension must be included resulting in an h-convergence rate ≈O(N−2(2+1)/3=−2). In
other words, the eigenvalues indicate properly the importance of each random dimen-
sion.

In Fig. 6, we present the convergence of h-type adaptive ME-gPC for different random
distributions. The eigenvalues are from the exponential kernel. Firstly, we note that the
reduced space V p provides a comparable error estimator with the space Yp,1. Secondly,
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Figure 3: The factor u2
α/ρ2α of each term in Yp,1 with p = 1 and M = 10. Eigenvalues are from kernel

exp(|x−y|/A) in [0,1]. Left: A=1; Right: A=0.1.
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Figure 4: Same as Fig. 3, except with p=2 and M =10.

the error estimator given by V p works well not only for the uniform distribution but also
for other random distributions, although the PDFs for each random dimension in a cer-
tain random element may be different. This observation implies that the factor E[yαφα]ρα

provides a good prediction.

6.2 The stochastic elliptic model

We next consider a one-dimensional elliptic problem

− d

dx
(a(x;ω)

du

dx
)=1, x∈ [0,1] (6.4)

subject to homogeneous Dirichlet boundary conditions. Using the exponential covari-
ance kernel, we approximate a(x;ω) by the K-L decomposition as

aM(x;ω)=E[a](x)+σ
M

∑
i=1

√

λihi(x)yi,
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Figure 5: Adaptive errors of the second-order moments for the stochastic algebraic model. N is the number of
random elements. p=2, M=10 and A=1. Uniform distribution is considered. Left: exponential kernel; Right:
Gaussian kernel.
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Figure 6: Adaptive errors of the second-order moments for the stochastic algebraic model. N is the number of
random elements. p=2 and M =10. Uniform and Beta distributions are considered. Eigenvalues are from the
exponential kernel. Left: A=1; Right: A=0.1.

where σ is standard deviation and yi are i.i.d. random variables on [−1,1]. We let σ =
0.35 and M = 10. The random field is approximated by gPC while the physical space is
discretized by the spectral/hp element method [27].

6.2.1 Error estimates

We now test the effectiveness of the reduced space V p, where the norm ‖e‖L2(B,H1
0(D)) is

used for the error estimates. We define the effectivity index as

CU =
c̃η̃

ηW p+1

, (6.5)

where ηW p+1 is the error estimate from the space W p+1 instead of Yp,1 and c̃η̃ is the error
estimate from the reduced space V p. We compute c̃ using the Eq. (5.15). Since the number
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Table 3: Statistics of local effectivity indices for a mesh with 1060 random elements. p=2 and A=1.

Mean of CU Std of CU

dim(Vp)
dim(Yp,1)

=0.1
Uniform 1.24 0.0254
Beta(1,1) 1.18 0.0205
Beta(4,4) 1.11 0.0309

dim(Vp)
dim(Yp,1)

=0.2
Uniform 1.17 0.0203
Beta(1,1) 1.12 0.0189
Beta(4,4) 1.08 0.0209

of random dimension is 10, it is hard to generate a standard mesh in the parametric space.
We solve the elliptic problem adaptively up to a 1060-element mesh of the parametric
space, where we let θI I =0.2 and nr=2. Since the final meshes can be different for different
PDFs of yi, we collect the information in a statistical sense, in other words, we compute
the mean and standard deviation of the local effectivity indices, which are shown in Table
3. We can see that the local effectivity indices are distributed basically around the mean
value since the standard deviation is very small. In other words, the reduced space V p

can recover the information efficiently although only 10% or 20% terms in Yp,1 are used.
We note that the reduced space works well for nonlinear PDFs due to the factor E[yαφα]
(see Eq. (4.15)). The larger V p yields better local effectivity indices as expected.

6.2.2 Adaptive ME-gPC

We next examine the adaptive behavior of ME-gPC for the stochastic elliptic model prob-
lem. In Fig. 7 we plot the global adaptive errors of the second-order moments (H1

0(D)
norm in the physical space) from the space W p+1 and the reduced space V p. We let
θI I = 0.1 and nr = 1. It appears that the a posteriori error estimator from V p provides a
good prediction of the true errors with a much smaller overall cost. The curves show a
similar two-part structure as we observed in the stochastic algebraic model, which im-
plies that the splitting strategy is effective. Although the PDF is decomposed by ME-gPC
and the local polynomial bases may be different between two random dimensions, the
proposed a posteriori error estimator works well for all tested PDFs.

7 Summary

In this paper we present an adaptive ME-gPC algorithm for elliptic problems with ran-
dom coefficients. We first prove the hp-convergence of ME-gPC. Based on the hierarchy
of polynomial chaos basis and the properties of Galerkin projection, we consider an im-
plicit a posteriori error estimate. However, the problem is the cost for the error equation
can be much larger than that for the original problem even for a moderate number of
random dimensions (O(10)). Based on the properties of the elliptic problems, we extract
a factor ρα from the error contribution of each polynomial chaos mode (see Eq. (4.15)).
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Figure 7: Adaptive errors of the second-order moments for the stochastic elliptic model. N is the number of
random elements. p = 2, A = 1 and M = 10. Uniform and Beta distributions are considered. Eigenvalues are

from the exponential kernel. Left: dim(Vp)/dim(Yp,1)=0.1; Right: dim(Vp)/dim(Yp,1)=0.2.

The examination of the Taylor expansion implies that we can use the factor E[yαφα] to
deal with the decomposition of arbitrary PDFs, where the local polynomial chaos bases
may be different between two random dimensions. We grouped the terms in the space
Yp,1 according to the pattern of index α, which helps us to get rid of the pattern related
constants. Based on these observations, we constructed a reduced space V p, which con-
sists of a small number of terms in Yp,1. Numerical studies on stochastic algebraic and
elliptic models show that V p can provide a good prediction of the true errors with a large
saving in computation.

We do not consider the interaction between the errors of spatial discretization and
polynomial chaos expansion, which should be an important issue for the adaptive meth-
ods both in physical space and in parametric space. The study of such a problem will be
reported later.
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