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Abstract. A general finite element solution of the Schrödinger equation for a one-
dimensional problem is presented. The solver is applicable to both stationary and
time-dependent cases with a general user-selected potential term. Furthermore, it is
possible to include external magnetic or electric fields, as well as spin-orbital and spin-
magnetic interactions. We use analytically soluble problems to validate the solver.
The predicted numerical auto-states are compared with the analytical ones, and se-
lected mean values are used to validate the auto-functions. In order to analyze the
performance of the time-dependent Schrödinger equation, a traveling wave package
benchmark was reproduced. In addition, a problem involving the scattering of a wave
packet over a double potential barrier shows the performance of the solver in cases of
transmission and reflection of packages. Other general problems, related to periodic
potentials, are treated with the same general solver and a Lagrange multiplier method
to introduce periodic boundary conditions. Some simple cases of known periodic po-
tential solutions are reported.

PACS: 02.70.Dh; 03.67.Lx; 75.40.Mg

Key words: One dimensional finite element methods, time dependent Schrödinger equation, pe-
riodic boundary conditions, quantum computer simulation.

1 Introduction

This work presents a general solver based on finite element methods (FEM) aimed at
solving stationary and time-dependent Schrödinger equations. These equations have
analytical solutions in only a few known problems, which are used in books on quan-
tum mechanics to illustrate several points of the theory, i.e., the harmonic oscillator, the
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hydrogen-like system, or in the case of dynamical problems, spreading of a traveling
wave packet in space and time. More complex potentials require the use of more so-
phisticated methods, such as perturbation theory, variational methods or numeric ap-
proximations. The equation to be solved has the general form (atomic units are used
throughout the text):

(1

2
∆+V+F(L,S,B,E)

)

Ψ= i
∂Ψ

∂t
, (1.1)

where V represents the external potential and the function F is a general expression
which may contain interactions between external magnetic or electrical fields, spin or-
bit coupling, etc. This general equation can be solved using several numerical schemes.
Examples of the finite difference approach can be found in [1, 2]. In such references,
an explicit Numerov method is used in order to reach a general solution of both sta-
tionary and dynamical problems. This method produces good results for the problems
treated but requires a double explicit integration of the system over the domain, and
incorporates other limitations specific to the numerical tool. Since the seventies, sev-
eral approaches to quantum mechanical systems applying FEM to atomic and molecu-
lar problems in one, two and three dimensions have been developed [3–12]. Many of
these aim to solve hydrogen-like systems with radial symmetry [3], problems involving
two-dimensional Schrödinger equations [5], or more sophisticated systems such as the
Helium ground state or the Lithium ground state after an integration of the equations
in three and six dimensions, after choosing adequate changes in the coordinate system
[9, 10]. Other work provides more accurate solutions for systems that are difficult to
solve analytically, such as atoms in strong magnetic and electrical fields [6, 8] or time-
dependent perturbations, systems which are solved to using others techniques like finite
differences and spectral analysis and provides a good reference to try a new numeri-
cal technique [26, 27]. More advanced studies extend FEM to self-consistent approaches
to quantum systems (DFT and TDDFT), to calculate electronic structures and molecu-
lar states [11, 12]. Periodic potentials (common in solid-state physics) are treated using
FEM for example in [10, 25], where a general approach to solving systems with peri-
odic boundary conditions is reported, with well-behaved solutions. All of these works
show that FEM is a powerful tool for spatially integrating the Schrödinger equation with
atomic and molecular potentials in several dimensions. It also shows the high accuracy
of the method; which is comparable with other approaches to solving the same equations
[12]. One of the most important advantages of FEM over the finite difference method is
the possibility of choosing completely general discretization of the space domain with-
out any modification of the system. This allows the use of elements of different size,
depending on the requirements of the solution. Using this characteristic, it is possible to
choose a fine mesh over that portion of the domain where the solutions contain sharp
peaks and a coarser mesh near the external boundaries. This reduces the impact of dif-
fusion errors involved in the numerical schema. FEM have further been used to solve
the Schrödinger equation with potentials other than those that are atomic or molecular,
such as the three-dimensional harmonic oscillator. Reference [13] shows the important
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relation between the type of elements, space discretization of the domain or the inter-
polation function used, and the accuracy of the results. It is also necessary to take into
account that FEM applied to molecular and electronic structures result in an algebraic
system of matrices that are a generalized eigenvalue problem, where the mass matrix is
definite positive and an optimized iterative method can be used. However, for generic
potentials other than Coulomb potentials, the mass matrix is not definite positive and the
method for solving the generalized eigensystem needs to be direct. This is computation-
ally demanding when the space domain is discretized with a fine grid or the number of
nodes per element is high, which constitutes a serious limitation to reaching an accurate
solution.

In this work we present a general solver based on FEM with particular characteristics
for the user. The solver allows the inclusion of general terms in the Schrödinger equation,
such as spin orbit coupling or external electromagnetic fields. Secondly, a general term for
the potential, which allows the problems ranging from square well to the hydrogen-like
system to be studied. Thirdly, it allows the election between different coordinate system
and symmetries to solve one-dimensional problems. And finally, the solver allows the
resolution of time-dependent problems, such as scattering over potential barriers, etc.

2 The general FEM approach to the Schrödinger equation

A variational or weak FEM approach is used in order of reach a numerical approximation
of the time-dependent Schrödinger equation (1.1). This approach converts the differential
problem into an equivalent integral (weak) formulation. From this point, in order to find
an approximate solution, it is necessary to choose a convenient set of strictly local piece-
wise polynomials to use in the discrete domain [14]. Applying this approach over each
element, the wave function is approximated by a local interpolation function where the
unknowns are the local nodal values. In this study we chose fifth/sixth degree polynomi-
als characteristic of Lagrangian elements with five/six nodes as the set of basis functions.
Two of these are connectivity nodes and the others are internal. Five/six functions are
necessary for each element in order to approximate the solution. In general, a Lagrangian
basis function of degree p has unitary value at node p and zero value at all other nodes
[14, 15]. The projection of every local system into Eq. (1.1) generates a simple matrix re-
lation for each element. In order to construct this, it is necessary to integrate over each
element. We performed all the integrations using four or five point Gauss quadrature,
depending on the kind of elements that were used. After this, the local matrices are as-
sembled into global matrices in order to build the generalized eigensystem characteristic
of these quantum problems. This will have the form:

[K][Ψ]=λ[M][Ψ], (2.1)

where K(M) is the stiffness (mass) matrix and Ψ(λ) is the auto-state (auto-energies) of
the problem. In the case of FEM a sparse system is obtained. There are a lot of tools for
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solving this kind of problem when the matrix M is positive definite [16] or semi-definite
[17]. If the potential term does not have this property, a direct solver taken for example
from EisPACK [18] can be used. This solver provides all the eigenvalues and respective
eigenvectors of the system for general matrices K and M.

The boundary conditions for one-dimensional symmetric problems are reduced to
specifying the value of the solution at infinity. In order to approximate the solution for
a discrete space, it is necessary to select a suitable value at this point, depending on the
particular problem. In a general description, a Dirichlet essential boundary condition is
needed in the extreme domain [4, 5, 6]. A general expression of Eq. (1.1) with spherical
(N=2, l can take any value) or Cartesian (N=0, l=0) symmetries and rigid wall boundary
conditions [4-6] has the form:

i
∂Ψ

∂t
=− 1

rN
(

∂

∂r
rN ∂Ψ

∂r
)− ℓ(ℓ+1)

2r2
Ψ+V(r)Ψ, (2.2)

Ψ(|r|→∞,0)=0. (2.3)

In the stationary case, the first term is ǫΨ and the weak FEM formulation converts the
problem to a generalized eigenproblem of determining the approximate eigenvalues (ǫ,
energy) and eigenfunctions (Ψ, wave function). In order to achieve an accurate solution
in the discrete domain, an adequate number of elements with a suitable choice of size
is necessary. Logarithmic meshes with the fine portion covering the part of the solution
containing sharper peaks are a common choice [3–10].

In the time-dependent case, in order to work only with real numbers, the complex
system is transformed into two coupled real systems. The final expression has the form:

− ∂Ψ
I

∂t
=− 1

rN
(

∂

∂r
rN ∂Ψ

R

∂r
)− ℓ(ℓ+1)

2r2
Ψ

R+V(r)Ψ
R +··· ,

∂Ψ
R

∂t
=− 1

rN
(

∂

∂r
rN ∂Ψ

I

∂r
)− ℓ(ℓ+1)

2r2
Ψ

I +V(r)Ψ
I +··· ,

(2.4)

where Ψ=Ψ
R+Ψ

I and the coupled equations after discretization, result in an asymmet-
rical non-linear system of matrices:

[

K(Ψ
R) −M(Ψ

I)
M(Ψ

R) K(Ψ
I)

][

Ψ
R

Ψ
I

]

=

[

0
0

]

, (2.5)

where K and M are symmetric. A simple change of sign makes the system symmetrical
and the general solver equations can then be used.

[

K(Ψ
R) −M(Ψ

I)
−M(Ψ

R) −K(Ψ
I)

][

Ψ
R

Ψ
I

]

=

[

0
0

]

. (2.6)

The advantage of not working with complex numbers is that we can use the same code
as that used to solve stationary problems, by just doubling in the matrices and vector
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dimensions. Apart from this, standard solvers of matrices could be used. In the case of a
general periodic potential which period L, V(x)=V(x+L), the solutions have the Bloch
form, i.e. Ψk(x) = uk(x)exp(ikx) where is a complex periodic function and k represents
the wave vector. Including this expression in the stationary equation (2.1) yields the form:

−(
1

2
)

∂2uk

∂x2
+(V(x)+

k2

2
)uk−ik

∂uk

∂x
=ǫkiuk, (2.7)

u0 =uL. (2.8)

This Schrödinger-like equation is complex, and again it can be reduced by FEM to a
generalized eigenproblem. If a simple reduction to real form is made, taking into account
that uk(x)=uR

k (x)+iuI
k(x) as in (2.3) we arrive at two real differential equations that we

can put in matrix form as:

[

K ∆

−∆ M

][

uR
k

uI
k

]

=λ

[

M 0
0 M

][

uR
k

uI
k

]

, (2.9)

where the matrix ∆ is antisymmetric and corresponds to the discretized terms which con-
tains the first derivatives of uk(x). Again this transformation allows the use of a general
solver of eigensystems with real matrices, but in this case, they are not symmetric. All
that is needed now is to introduce the periodic boundary condition into (2.9) using the
Lagrange multiplier method. A periodic boundary condition introduces one nodal equa-
tion into the system for each periodic node. For example, in a one-dimensional system,
uk(0)=uk(L), the solution at the first node of the domain needs to be equal to the solution
at the last node of the domain, i.e. uk0 =ukN . This corresponds to a new equation for the
system (2.9), or in fact, two new equations which correspond to two boundary conditions
that need to be complimented, one to the real and one to the imaginary part. Then two
new rows and columns need to be added to (2.9) for each term to have a periodic system
parameterized. Each row/column added is all zeros, except in the places corresponding
to the periodic nodes, where the equation uk0−ukN needs to be satisfied. As opposed to
methods which simply equate the two solutions in the system and reduce the dimension
of the matrices, the Lagrange multiplier method increases the dimensions of the problem,
which generates not only the appropriate eigenvalues, but the proper eigenfunctions too.

3 Numerical solutions of the stationary case

Two examples were used to check the accuracy of the method and the goodness of the el-
ements and interpolation functions chosen. The first example corresponds to the Pöschl-
Teller potential which represent a model of non-linear vibrational modes of a molecule
with two atoms, where θ is the angle between the chemical bounds and D the depth of
the potential well. This kind of potential has analytical solutions for the auto-energies
and respective wave functions [19, 20]. In this case, a one-dimensional scheme over the
Schrödinger equation in Cartesian coordinates was used, with five nodes per Lagrangian
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element and fourth-order Gaussian quadrature integration. 200 elements with these char-
acteristics divide a domain of 20 atomic units with rigid wall boundary conditions at the
extremes. With this numerical treatment, great accuracy is obtained. The expression for
this potential is:

V(x)=− D

cosh2(x)
, tanh(x)=cos(θ), ∞6θ 6+∞, (3.1)

where the auto-energies take the general analytical expression:

Ψν(x)=CνPλ−ν−1
λ−1 (z), z= tanh(x), Eν =−1

2
(λ−ν−1)2,

ν=0,1,··· ,[λ−1]−1, D=
1

2
λ(λ−1).

(3.2)

Here P are the Legendre functions of the first kind [21]. Fig. 1 shows the normalized
numerical and analytical wave functions and their respective auto-energies for the five
bounded states, in the case λ = 6. The last graphic shows the first unbounded state.
The solution obtained with the same boundary conditions used for the bounded case
shows a good answer in the zone of influence of the potential, and the departure from
the predicted solution due to the different boundary condition used.

In order to study the convergence and CPU time required in the solution of our sys-
tem, we implement a comparison of results obtained with different amounts of elements,
taking measures of time consumed and the accuracy of the solution obtained. Table 1
shows several grids in where the system were solved and the comparison between the
exact solution and the numeric one in the Pöschl-Teller potential case. The same picture
was obtained for the different systems studied.

Table 1: CPU’s time consumed and relative error in function of the size of the used system.

81 N 201 N 401 N 601 N 801 N 1001 N

(Sexac−Snum)/Sexac×100 0.0207 1.2×10−5 8.7×10−8 3.4×10−9 3.6×10−10 9.1×10−11

CPU time (sec) 0.2031 2.2968 17.5468 57.6093 147.7500 237.4375

Of course the better precision in the results is obtained with more elements and more
nodes by elements. Systems of great sizes will need better solvers for the generalized
eigenproblem involved. In our case in order to reach generality and by the fact that we
are trying one dimensional problems which have relative small size, a direct solver can be
chosen. This solver provides all the Eigenvalues and respective eigenvector of the system
for general matrixes K and M. For a system of 106 used to arrive to the better results of
the problem, 4 minutes of a Pentium 4 are required approximately (Table 1).

In second place a hydrogen-like system is solved using spherical symmetry produc-
ing a one-dimensional radial Schrödinger equation, where V(x) is the Coulomb potential
[22]. In this case, six nodes per Lagrangian elements were used in order to discretize the
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Figure 1: Auto-energies and wave functions of the Pöschl-Teller Potential for λ=6. The five bound states and
the first unbounded state are plotted with the respective auto-energy value obtained numerically.

domain of interest. Fig. 2 shows several principal and orbital quantum number wave
functions (normalized) and their respective self-energies are listed. As mentioned above,
the accuracy of the solution is highly dependent on the spatial domain over which the
equations are defined. It is possible to see that, when the principal quantum number
increases, the wave function is more extended in space and the rigid wall condition in-
troduces an error in all the calculations. Extending the domain results in more accurate
solutions, as can be seen from Fig. 2c, where for a high principal quantum number the
space of integration is greater. Under the same assumption, the error in the auto-energies
also increases with the value of the principal quantum number, compared to the theo-
retical value given by the formula ǫn =−0.5/n2. In each case the first number plotted
is almost exact, and deviation increases with each subsequent number. However, this
solver allows us to obtain the complete numerical spectra of the hydrogen-like systems
just by exploring deferent values of the quantum numbers and taking greater spatial do-
mains. The computational time needed to obtain the spectra in each case is not greater
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Figure 2: Several auto-functions of the hydrogen-like system for different values of the principal and orbital
quantum numbers. The domain of integration needs to be adjusted in each case.
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Figure 3: Numerical auto-energies and auto-functions compared with analytic values for the isotropic harmonic
oscillator.

than 2 or 3 minutes. In Table 2 the accuracy of the wave function is measured and com-
pared to the analytical value, computing some mean values related to the coordinate r.
Again, the two values correspond to a high degree.

Table 2: Numeric and Analytic mean values of 〈r2〉, 〈r〉, 〈r−1〉, 〈r−2〉 for several values of N and L. These
values show the accuracy of the calculated wave functions.

Num./Anal. 〈r2〉 〈r〉 〈r−1〉 〈r−2〉
N=0, L=0 3.000647/3.0 1.500070/1.5 0.9999566/1.0 1.999512/2.0

N=3, L=2 126.0301/126.0 10.50100/10 0.111105/0.1111 0.01481410/0.0148

N=5, L=4 825.2176/825.0 27.5029/27.50 0.03999788/0.04 0.001777683/0.0018

A general symmetrical isotropic quantum harmonic oscillator is also studied, with a
potential given by: V(r)=−r2/2. Both auto-energies and auto-functions depend on the
two quantum numbers N and L. In [22] a detailed explanation is given. Fig. 3 shows the
first three auto-states with the respective auto-energies obtained numerically. Again, the
solution is very accurate compared to similar numeric strategies used for the hydrogen-
like system.

4 Numerical solution of the dynamics case

The simplest non-trivial example of a time-dependent quantum wave function is the free
Gaussian wave packet [1]. In this case, V(x)= 0 everywhere and the initial wave is de-
scribed by:

Ψ(x,0)=exp(ik0x)exp

(

− (x−x0)2

2σ2

)

, (4.1)



A. Soba / Commun. Comput. Phys., 5 (2009), pp. 914-927 923

where the wave package is centered on, x0 = 1.0, k0 = 50.0 represents the velocity group
and σ0 =0.125 determines the initial width. Since the package has observable amplitude
over the approximate range of ∆x = x0±σ(t), it is necessary to choose a domain of inte-
gration for the Schrödinger equation which is large enough to observe the entire section
of interest. In this example a range of 10 atomic units was discretized using Lagrangian
elements of five nodes, but the size of the elements was variable: a finer mesh in the
central zone, where the oscillation of the solution requires more accuracy, and far away
from the centre the elements are larger. Fig. 4 shows different instances of the traveling
wave package. The position of the centre of the wave packet coincides with the predicted
position according to the analytical expression (x(t)= tk0).
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Figure 4: Evolution of a traveling wave packet. Both the center position and dispersion follow those predicted
by the analytical formulae.

The next example of a time-dependent Schrödinger equation is a wave packet scat-
tering resonantly from a double rectangular barrier of height 0.25 [1]. We started with an
initial Gaussian wave packet centered on x0 =25.0, and parameters k0 =0.31, σ0 =

√
10.

The double barrier acts like a filter, transmitting only the energies close to the auto-
energies of the potential well formed by the barriers. In the sequences plotted in Fig. 5, it
is possible to see an incident wave package, the encounter with the barriers, and subse-
quent reflected and transmitted packages. The transmitted portion is composed of only
those few components in the incident packet with energies within the narrow range of
resonance. Long after the main scattering event is over, a small remnant of the initial
wave remains trapped between the barriers, steadily losing amplitude. As in the case of
a traveling wave packet, the domain considered for the integration has a finer structure
close to the barriers and elements of greater size towards both edges, to make the applica-
tion of a rigid boundary condition possible. Again, this is not a difficult task using FEM
and provides good results in both the time-dependent cases shown in this work. The



924 A. Soba / Commun. Comput. Phys., 5 (2009), pp. 914-927

20 40 60 80

0,0

0,2

0,4

0,6

0,8

1,0

20 40 60 80

0,0

0,2

0,4

0,6

0,8

1,0

20 40 60 80

0,0

0,2

0,4

0,6

0,8

1,0

20 40 60 80

0,0

0,2

0,4

0,6

0,8

1,0

 Double potential barrier (Normalized)
 Incident wave paquet

W
av

e 
fu

nc
tio

n
W

av
e 

fu
nc

tio
n

x (U.A.) x (U.A.)

Figure 5: Incident wave packet to a double barrier. In the bottom figures a transmitted and reflected wave
packet is showed. It is also possible to see a trapped mode between the barriers.

accuracy of the solution could be compared with several referenced works [28]. Several
approaches to related problems can be found in [26, 27] in where a time-splitting spectral
scheme are used to solve time dependent Schrödinger equation, using finite difference in
space instead FEM.

5 Numerical solution of periodic systems

The simple Kronig-Penney periodic potential is treated with the solver [24]. In this model,
the electrons are considered free inside a crystal where the ions have a periodic short-
distance interacting potential. The electron is then moved by a periodic one-dimensional
lattice with two regions in the unit cell: a zero potential zone of dimension a, and a
constant potential zone of dimension b. This potential has an analytical solution and its
energy bands are known [24, 25]. Fig. 6 shows a comparison between the numerical and
analytical solutions of the bands in function of the wave number k for the following set
of parameters: a = 2a.u., b = 1a.u. and V0 = 6.5a.u. The numerical solutions agree very
well with the analytical ones using Lagrangian elements of five nodes and two hundred
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elements to discretize the unit cell. Fig. 7 shows several auto-functions for values of the
wave number k =−π/(a+b) and k = 0.0 for the first five auto-energies in each case. It
is possible to see not only the periodicity of the functions, but also the variation of their
form when the value of the potential changes. The values of the auto-energies are listed
in each case, showing good agreement with the reported values [24, 25].
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Figure 6: K-P analytical and MEF solutions.

6 Conclusions

We presented a finite element-based solver for generic quantum systems. The solver al-
lows practically all kinds of one-dimensional problems in quantum mechanics related
to simple potentials, scattering or interaction between the system and external fields, in
different coordinates systems and symmetries to be resolved. The use of Lagrangian ele-
ments of five and six nodes shows the best numerical performance in all the cases stud-
ied. Throughout the work, the solutions are compared with different known problems
with exact analytic solutions and prove to be good approximations. However, it is also
possible to use the code with a great variety of potentials with a simple modification.
These include perturbed potentials, systems subjected to strong electromagnetic fields,
and in general any system without an analytical solution. In the case of periodic and
time-dependent problems, converting the system into a real one allows the general real
eigen solver to be used, without the need to treat complex numbers. Apart from this, pe-
riodic boundary treatments using Lagrange multipliers result in more accurate solutions
both for auto-energies and auto-functions, in comparison with more general FEM ap-
proaches. The election of proper integration domains and discretization elements allows
us to obtain almost all the auto-energies and auto-functions for the potentials studied:
the ground states and subsequent exited ones. An extension of the general solver to two-
or three-dimensional cases required the use of a fasted solver for eigensystems because
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Figure 7: Auto-functions of the Kronig Penney potential for the first five auto-energies for the wave numbers
k=1.047 and k=0.0.

the size of the matrices increases in direct proportion to the number of elements chosen
to discretize the space. Part of this final task is still in preparation, and will be published
separately.
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