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Abstract. Advanced Monte Carlo simulations of magnetisation and susceptibility in
3D XY model are performed at two different coupling constants § =0.55 and =0.5,
completing our previous simulation results with additional data points and extending
the range of the external field to twice as small values as previously reported (h >
0.00015625). The simulated maximal lattices sizes are also increased from L =384 to
L=>512. Our aim is an improved estimation of the exponent p, describing the Goldstone
mode singularity M(h) = M(+0)+ch? at h — 0, where M is the magnetisation. The
data reveal some unexpected small oscillations. It makes the estimation by many-
parameter fits of the magnetisation data unstable, and we are looking for an alternative
method. Our best estimate p = 0.555(17) is extracted from the analysis of effective
exponents determined from local fits of the susceptibility data. This method gives
stable and consistent results for both values of , taking into account the leading as
well as the subleading correction to scaling. We report also the values of spontaneous
magnetisation.
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1 Introduction

Our previous Monte Carlo (MC) study of the three-dimensional (3D) XY [1] model has
revealed some interesting features indicating that the magnetisation M(/), dependent on
the external field & below the phase transition temperature, very likely behaves as

M(h)=M(+0)+c1h*  at h—0 (1.1)
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with the exponent p somewhat larger than 1/2. This is a challenging result, since the
standard theory (see, e.g., [2-6] and references therein) predicts the Goldstone mode sin-
gularity (1.1) with p=1/2. The result 1/2<p<1, however, is expected from an alternative
theoretical treatment [7-9].

In this paper we report the results of an advanced MC study, including new simula-
tion data for smaller fields i and larger linear lattice sizes L. Our aim is to make a refined
estimation of the exponent p. It could help to clarify the fundamental question whether
the asymptotics (1.1) is exactly what is provided by the Gaussian spin wave theory (to
which the standard theory reduces asymptotically at 1 — 0), yielding p=1/2 in three di-
mensions (d =3), or there are deviations from the Gaussian behaviour like at the critical
point. We recall [1] that the Gaussian theory predicts ~ k=2 singularity (at k — 0) for the
transverse Fourier-transformed two-point correlation function depending on the wave
vector k, whereas ~ k=" singularity with positive

n*=2—d/(p+1) (1.2)

corresponds to p>1/2 and d=3, which is comparable with the known ~k~2*" behaviour
of the two-point function at the critical point [10].

2 Simulation results

We consider the 3D XY model on a simple cubic lattice with the Hamiltonian H given by

H
=B ) sisi+) _hs; |, (2.1)
(i) i

where T is temperature, s; is the spin variable (two-component vector of unit length
in the xy-plane) of the i-th lattice site, B is the coupling constant, and h is the external
field. We consider the field which is oriented along the x axis with positive x-component
hy=h=|h|.

Recently a remarkable progress in Monte Carlo simulations of this model have been
achieved by extending the simulation results to substantially larger lattice sizes L <384 [1]
as compared to L <160 in earlier MC studies [11-13]. Here we report the results of ex-
tended MC simulations for even larger lattice sizes L <512.

Like in our previous work [1], the simulations have been carried out in the ordered
phase at §=0.5,0.55> B, where B, ~0.4542 [14] is the critical point. The x-projection of
magnetisation per spin (m,), as well as the longitudinal susceptibility

o(my)
XII= oH

=V ((m3) — (mx)?) (2.2)

have been evaluated for different L, where V = L? is the volume and H = ph.
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Table 1: The MC simulated values of (my) of the 3D XY model for different lattice sizes L and external fields

h at B=0.55.

(my)
10%h
[L=512 [=384 L=256 L=192 L=128
3.125 | 0.6325486(84) | 0.632530(13) | 0.632525(18)
8.75 0.633990(11) | 0.634002(17) | 0.633991(18)
17.5 0.635550(14) | 0.635551(14) | 0.635560(16)
35 0.637904(10) | 0.637903(17)

Table 2: The MC simulated values of (my) of the 3D XY model for different lattice sizes L and external fields

h at B=0.5.
()
10*h
L=512 L=384 L=256 L=192 L=128
1.5625 | 0.521128(12) | 0.521104(16) | 0.521024(31)
8.75 0.524326(13) | 0.524323(21) | 0.524277(22)
17.5 0.526867(16) | 0.526897(21)
35 0.530807(12) | 0.530776(19)

The simulation techniques based on a modification of the well known Wolff’s single
cluster algorithm [15] are described in our paper [1], where we provide also a comparison
with the standard Metropolis algorithm, as well as with the results of other authors [13].
The new values of the magnetisation at f=0.55 and p=0.5 are given in Tables 1 and 2,
respectively. In Tables 3 and 4, the corresponding values of the longitudinal susceptibility
are listed. These new results are complementary to those in [1] in the sense that the set of
h values is completed within the already considered range in order to allow statistically
more reliable fits, and the results are extended to twice as small fields i as previously
reported.

Note that the smaller fields are considered, the larger lattice sizes are necessary for
a good estimation of the thermodynamic limit. The minimal acceptable lattice size in-
creases roughly as cch~1/2 [1]. Therefore here we have simulated lattices up to L=>512 to
extract the thermodynamic limit for the smallest / values.

Remarkable computational resources are necessary for such simulations. They have
been provided by the Shared Hierarchical Academic Research Computing Network
(SHARCNET: www. sharcnet . ca). For the largest lattices (L=512), one job required nearly
1.25 GB operative memory and about 55 s CPU time per one modified Wolff’s algorithm
step. In this case jobs have been run on the clusters with Opteron 4 x2.20 GHz nodes, and
the total number of MC steps was 170000 and 110000 for B=0.5 and p=0.55, respectively.
All results reported in this paper have been obtained within two months by running on
average 8 jobs simultaneously.
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Table 3: The MC simulated values of the longitudinal susceptibility X of the 3D XY model for different lattice
sizes L and external fields i at f=0.55.

X
10*h
L=512 | L=384 | L=256 L=192 L=128
3.125 | 5.61(18) | 5.98(23) | 6.34(25)
8.75 3.76(13) | 3.90(12) | 3.793(97)
17.5 2.881(71) | 2.839(52) | 2.820(38)
35 2.150(43) | 2.119(33)

Table 4: The MC simulated values of the longitudinal susceptibility X of the 3D XY model for different lattice

sizes L and external fields i at =0.5.

X
10*h
L=512 =384 L=256 L=192 L=128
1.5625 | 14.31(51) | 14.38(65) | 16.64(81)
8.75 6.57(11) | 6.82(13) | 7.00(12)
17.5 5.243(90) | 5.208(64)
35 4.136(78) | 4.040(57)

The conclusion that the actually simulated maximal sizes are large enough is based
on an observation of a sufficiently fast convergence to the thermodynamic limit, as well
as on a reasonably small influence of the finite size effects on the evaluated exponent p.
At f=0.55, larger lattices have been simulated for the same values of , as compared to
the case p=0.5. It is motivated by the fact that the difference M (h)—M(+0) is smaller
for =0.55 and, thus, it has to be determined with a smaller absolute error.

In the following our main estimation is based on the evaluation of the thermody-
namic limit only from the largest-lattice data for each /, taken from [1] and completed
with the recent values reported here. For testing purposes, we also have estimated the
thermodynamic limit values as weighted averages (with the weights o 0’;2, where 0; are
the standard errors of the quantities involved) over the data for two largest lattices at
each h.

3 Estimation of the exponent p

3.1 log-log fits of the susceptibility data

The exponent p most simply can be estimated from a slope of Inx vs Inh plot, which
tends asymptotically to p—1 in accordance with the singularity

Xkt (3.1)
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Figure 1: The Inyx vs Inh plots for $=0.55 (solid circles) and for §=0.5 (empty circles).

of the longitudinal susceptibility at # — 0, as given by (1.1) and (2.2). The linear log-log
fits of the largest-lattice data for both values of B are shown in Fig. 1, giving p=0.6021(48)
at B=0.55 and p=0.6166(34) at =0.5. The corresponding values of x?/d.o.f. (the sum
of weighted squared deviations per degree of freedom of the fit [16]) are 1.51 and 2.55.
This method apparently provides rather stable results, as we can see it from comparison
with the very similar estimates p=0.6003(58) for §=0.55 and p=0.6162(39) for =0.5
obtained in [1] from the data with twice as large minimal values of h. The results also are
insignificantly influenced by the finite size effects. Namely, such plots as in Fig. 1 yield
p =0.6014(29) for p=0.55 and p = 0.6143(21) for B =0.5 when the averaged over two
largest lattices data are used, as explained at the end of Section 2. A refined analysis of
the local gradients of these plots (Section 3.3), however, shows that the apparent accuracy
and stability of such a method is somewhat misleading. Namely, due to the corrections
to scaling neglected here, the differences between the actually measured and asymptotic
slopes most probably are much larger than the indicated standard errors.

3.2 Fits of the magnetisation data

Here we consider the estimates of the exponent p obtained from many-parameter fits of
the magnetisation data to the ansatz

MW:MH@+£%W, (3.2)
n=0

where the exponents p, = (n1+1) /2 are provided by the standard theory [5], and m is the
total number of correction terms included. We have tested how these estimates change
if the fits are performed for twice as small fields as compared to the smallest / intervals
considered in [1], including the recent simulation data. The comparison for = 0.55 is
presented in Table 5. As we see, the fit results both for m =1 and m =2 change slightly
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Table 5: The fit results for the exponent p and the x%/d.of. at B=0.55 depending on the number of correction
terms m included in (3.2) and on the fitted range of the field .

m| hx10° P x*/d.o.f.

1| 0625-14 | 0575(22) | 0.88
03125-7 | 0.565(28) | 1.24
2 | 0.625-40 | 0.536(27) | 1.16
0.3125-20 | 0.569(38) |  0.99

Table 6: The fit results for the exponent p and the x?/d.o.f. at B=0.5 depending on the number of correction
terms m included in (3.2) and on the fitted range of the field .

m hx103 0 x%/d.o.f.

1 | 03125-10 | 0.630(15) | 1.31
0.15625 -5 | 0.483(23) | 1.8
2 | 0.3125-28 | 0.571(20) | 1.72
0.15625 - 14 | 0.484(33) |  2.69

depending on the range of / values. Besides, the estimates p =0.565(28) (at m =1) and
p=0.569(38) (at m=2) for the smallest & intervals agree well with each other. These values
are sufficiently stable with respect to the finite-size effects. The already mentioned test
estimations, including the data for smaller lattices, yield p=0.561(23) and p=0.555(30),
respectively. Hence, the small finite-size effects are such that p more probably will slightly
increase for larger sizes, thus even more deviating from the standard theoretical value 0.5.

Contrary to the case f=0.55, the results are very unstable for §=0.5, as we can see it
from Table 6. Due to the dramatic variations in their values, dependent on the fit interval,
these estimations hardly can be considered as evidences for the asymptotic behaviour of
the exponent p.

To find the reason for the instability, we have checked how the data points deviate
from such fit curves. The deviations from the five-parameter fits with m = 2 correc-
tion terms for the intervals & € [0.00015625;0.014] and & € [0.00015625;0.02] are shown
in Fig. 2 (top). For comparison, we have shown here also the deviations for the interval
h€]0.0003125;0.028] at =0.5 (bottom left) and p=0.55 (bottom right). Apparently, there
are some small deviations of oscillating type, which are not reasonably well described
by the ansatz (3.2) even if some more correction terms are included. From this point of
view, the observed oscillations are unexpected. A question can arise wether these are
systematic deviations or only purely statistical fluctuations. Some systematic deviations,
overlaping with statistical fluctuations, most probably are present, since the x2/d.o.f.
values for the upper fits at =0.5 (2.69 in one case and 2.9 in the other case) are remark-
ably larger than 1, whereas x?/d.o.f. ~1 is expected for moderately good fits [16]. In the
lower pictures, the deviations are smaller. However, it is a striking fact that they look
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Figure 2: Deviations of the magnetisation data from the five-parameter fit curves for B =0.5, h €
[0.00015625;0.014] (top left); p=0.5, k€ [0.00015625;0.02] (top right); p=0.5, h € [0.0003125;0.028] (bot-
tom left); and B=0.55, h €[0.0003125;0.028] (bottom right). The dotted lines are guides to eye.

very similar for §=0.5 (left) and = 0.55 (right), only the deviation amplitude is some-
what smaller at f=0.55. Since these are two statistically independent simulations, such
a similarity could not be caused by random fluctuations. Hence, the systematic oscilla-
tions are present. The above oscillations can be interpreted as a transient nonasymptotic
behaviour, since a power-like behaviour of M(h)—M(+40), accompanied by power-like
corrections, is expected at 1 — 0.

The systematic oscillations explain the instability in the estimation of p, since many-
parameter fits are very sensitive to any small systematic deviations. Besides, according to
the lower plots in Fig. 2, similar oscillations take place at =0.5 and at $=0.55. Although
in the latter case their amplitude is smaller, one has to take into account that the values
of M(h)—M(+0) also are smaller in this case. Hence, one may expect that at §=0.55 the
results will become as unstable as in the case of g =0.5 if the & interval will be extended
from h>0.0003125 to h >0.00015625, like for p=0.5.

These fits can be stabilised by widening the fit intervals. The number of fit parameters
also should be chosen not too large. For example, the four-parameter fits with m =1, in-
cluding only the leading correction to scaling, yield p=0.5869(81) for 1€[0.00015625;0.014]
and p=0.580(10) for & € [0.00015625;0.01] at =0.5. These two estimates agree well with
each other and also with similar (m=1) ones for p=0.55 in Table 5, indicating that the true
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asymptotic p value very likely is near 0.58 or somewhat smaller. However, the fit quality
becomes worse for such wider, as compared to those in Table 6, intervals. Namely, we
have x2/d.o.f.=3.72 for h€[0.00015625;0.014] and x?/d.o0.f.=4.04 for h€[0.00015625;0.01].

3.3 Analysis of the effective exponents

As discussed in Section 3.2, the many-parameter magnetisation fits do not provide suf-
ficiently stable and reliable results in general, therefore we are looking here for an alter-
native method by fitting the susceptibility data for the largest lattices simulated here and
in [1]. Although the susceptibility data seem to be relatively inaccurate, one should take
into account that the relative errors of M(h)—M(+0) also are not so small for the small-
est h values. An advantage of the susceptibility data is that one needs not to subtract a
constant background term. Hence, there are less fit parameters. It can ensure a sufficient
stability and accuracy of the evaluated exponent p even if the data are less accurate than
those for M(h).

Basically, we refine the estimation in Section 3.1 by evaluating locally the slope of the
Inx vs Ink’ plot within k' € [h/4;4h], which gives an effective exponent peg(/), with the

following idea to fit (extrapolate) the pe (1) vs h'/2 plot using the ansatz
peit(h) =p+arh'/*+ash. (3.3)

In such a way we evaluate the asymptotic exponent p, taking into account the leading
as well as the subleading correction to scaling, represented by the expansion in powers
of h'/2. Even if the correction-to-scaling exponents in reality are slightly different from
these ones suggested by the standard theory, such a method makes sense as a reasonable
extrapolation, which can be well controlled visually.

The choice of sufficiently wide fit intervals i’ € [h/4;4h] ensures that the evaluated
effective exponents are not sensitive to small local oscillations like those in Fig. 2. They
show only the general trend with decreasing the field /. Thus, the fit of pes plot provides
a reasonable estimate of the asymptotic exponent p.

A great advantage of this method is that we can directly (visually) control the quan-
tity of interest — the estimate of p depending on the & interval. In particular, we can see
how well the evaluated effective exponents lie on a smooth curve and how large is the
extrapolation gap. Thus we can judge how plausible is the extrapolated value. To the
contrary, the many-parameter fits discussed in Section 3.2 can be controlled only indi-
rectly by looking on small deviations from the fit curves. From such plots of deviations
we cannot see directly how they influence the final result.

The plot of effective exponent for f=0.55 is shown in Fig. 3. Within a wide range of
fields h, it is well approximated by a parabola in the scale of h!/2 in accordance with (3.3).
Such a fit, shown by solid line, gives p=0.558(21). Taking into account that the data sets
used in the determination of p.¢ are overlapping, the resulting statistical error is calcu-
lated as o = (Y;02)!/2, where 0; are statistically independent contributions provided by
the raw susceptibility data. We observe that the last five (smallest /) data points of pes
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Figure 3: The effective exponent pe depending on h'/2 for B=0.55. The fit to (3.3) is shown by solid line.
The dashed line represents the linear fit without the second-order correction.
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Figure 4: The effective exponent pe¢ depending on 12 for B=0.5. The fit to (3.3) is shown by solid line.

very well lie on a straight line. It corresponds to (3.3) with only the leading correction
term included (a, =0). The linear fit gives p=0.557(19). In the other case of p=0.5, we
also observe that the effective exponent data fit well on a parabola, but only in a remark-
ably narrower range of i, as shown in Fig. 4. As a result, we obtain a less accurate value
p=0.548(29). In this case the linear fit is omitted, since we do not observe a good linearity
within a sufficiently wide interval of i!/2. Evidently, all these estimates are well consis-
tent thus supporting the theoretically expected universality of the exponent p. Hence,
the weighted averaging over the results of quadratic fits, including two corrections to
scaling, provides our best estimate p=0.555(17).

The above estimates change only slightly if the averaged data for two largest lattices
(at each h) are used instead of the largest-lattice data. In this case the quadratic fit gives



J. KaupuZs, R. V. N. Melnik and J. Rim$ans / Commun. Comput. Phys., 4 (2008), pp. 124-134 133

p =0.548(13), and the linear one provides p = 0.550(13) at p =0.55. The quadratic fit
then gives p=0.566(19) at §=0.5. The averaged over both couplings (8=0.55,0.5) result
remains almost unchanged, i. e., p =0.554(11), indicating that the finite-size effects are
insignificant here.

Our current best value p = 0.555(17) agrees well with the estimates extracted from
the magnetisation data within & > 0.0003125, where the many-parameter fits discussed
in Section 3.2 provide relatively stable results. In particular, it closely agrees with the
p values for B =0.55, obtained in Section 3.2, as well as with our previous estimate p =
0.552(18) reported in [1]. It agrees within error bars also with the four-parameter fit
results for 1 >0.00015625 at =0.5, if the fit intervals are chosen appropriate, as discussed
at the end of Section 3.2.

According to (1.2), our estimate p=0.555(17) corresponds to the value 0.071(21) of the
exponent 77* describing the singularity ~ k2" of the transverse two-point correlation
function.

4 Spontaneous magnetisation

Apart from the exponent p, the fits of the magnetisation data to (3.2) provide estimates of
the spontaneous magnetisation M(+0). In the remaining part of the paper we will dis-
cuss the fits with m=1 and m=2 correction terms for the smallest /1 intervals considered in
Section 3.2. For B=0.55, it gives M(40)=0.630771(95) at m=1 and M(+0)=0.63077(11)
at m=2. Since such fits do not provide stable and reliable values of p at =0.5, in this case
we have evaluated M(+40) using the exponent p=0.555(17) as a given parameter, esti-
mated independently in Section 3.3. The fit with m =1 then yields M(+0)=0.519301(73)
at $=0.5, taking into account the uncertainty in the above value of p. This method gives
M(+0)=0.630736(64) at =0.55 in close agreement with the two other estimates reported
above. Generally, the actually obtained values of the spontaneous magnetisation agree
well with those ones extracted only from the data of [1] at consistent with our current
results choice of the exponent p about 0.55.

5 Conclusions

Advanced Monte Carlo simulations of the magnetisation and longitudinal susceptibility
in the 3D XY model have been performed (Section 2) for two values of the coupling
constant §=0.55 and B = 0.5 below the critical temperature, extending the range of the
external field & to twice as small values as compared to those in our previous work [1].
The maximal simulated linear lattice sizes have been increased from L =384 to L =512.
Based on the extended data, an improved estimation of the exponent p, describing the
singularity M (h)—M(+0)xh? of the magnetisation at 7—0, has been performed. We have
found that the method of fitting the effective exponent p.g (/1) (Section 3.3), extracted from
the susceptibility data, provides more stable results as compared to the many parameter
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fits of the magnetisation data (Section 3.2). The method of effective exponent gives well
consistent results for both values of . Our best combined estimate is p=0.555(17), which
agrees also with the values extracted from the magnetisation data for appropriately cho-
sen fit intervals. Apart from the exponent p, the spontaneous magnetisation M(+0) also
has been evaluated (Section 4).
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