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Abstract. Recently, cavitated flows over underwater submerged bodies have attracted
researchers to simulate large scale cavitation. Comparatively Computational Fluid
Dynamics (CFD) approaches have been used widely and successfully to model de-
veloped cavitation. However, it is still a great challenge to accurately predict cavitated
flow phenomena associated with interface capturing, viscous effects, unsteadiness and
three-dimensionality. In this study, we consider the preconditioned three-dimensional
multiphase Navier-Stokes equations comprised of the mixture density, mixture mo-
mentum and constituent volume fraction equations. A dual-time implicit formulation
with LU Decomposition is employed to accommodate the inherently unsteady physics.
Also, we adopt the Roe flux splitting method to deal with flux discretization in space.
Moreover, time-derivative preconditioning is used to ensure well-conditioned eigen-
values of the high density ratio two-phase flow system to achieve computational effi-
ciency. Validation cases include an unsteady 3-D cylindrical headform cavitated flow
and an 2-D convergent-divergent nozzle channel cavity-problem.

AMS subject classifications: 76B10, 76D05, 65M10
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1 Introduction

Cavitation is one of important phenomena in the hydrodynamics problems. Cavitation
is well known to associate with three aspects: formation, growth and collapse of bub-
bles within the body of a liquid due to the process of nucleation in a liquid flow where
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the pressure falls below the vapor pressure. This phenomenon usually arises in flows
around solid bodies, the turning corner of convergent nozzle, leading edge of the blades
and tip leakage. It strongly affects the flow field to induce severe noise and structural
erosion which result in supplementary maintenance operations of the turbomachinery
and pump.

One pattern of cavitating flows might occur partially on the body surface or it might
grow until it becomes very long compared with the body dimensions. It is always de-
noted as the super-cavitation which has been successfully formulated as near steady-
state and incompressible flow models [1]. However, in high speed supercavitating flows
around underwater projectiles, dramatic increase of void propagation associated with
unsteady mass transferring dynamics gives rise to the cloud collapse physics. The large
transient variation of interfacial dynamics such as density, void fraction and viscosity gra-
dients around the interfaces naturally attract unsteady formulation of numerical method
constructed. Several numerical methods had been proposed in the past in order to simu-
late the related phenomena in cavitation flows, such as the VOF method [2,3], the level set
method [4] and the interface capturing method [5]. Recently, one common approach to
combine the VOF model with the interface capturing scheme to constitute the so-called
Eulerian approach based on separated equations to describe different fluids or phases.
Several different Eulerian formulations are usually used to capture the interface, namely
the multi-fluid model [6–9], the mixture model [10–17] and the ghost cell model [18].

The multi-fluid model containing individual particles, droplets or bubbles is through
the so-called two-fluid model, in which the time or space ensemble average process is
applied to both the continuous and disperse phase. Two sets of Navier-Stokes equa-
tions are used to describe both phases of fluids with additional inter-phasic terms for
the exchange of momentum and energy between phases. Since each phase has its own
velocity and temperature, the two-fluid model allows both mechanical and thermal non-
equilibrium to be considered in the modeling; in that respect, it represents a more general
model for two-phase flows. Two-fluid model have also been utilized for natural cavita-
tion. However, in super-cavity flows, the gas-liquid interface is known to be nearly in
dynamic equilibrium; for this reason, we do not pursue a full two-fluid level of model-
ing. In the mixture model, the mass, momentum and energy of the multi-phase flow are
described by a set of Navier-Stokes equations. Usually among the mixture model, a sin-
gle continuity equation is considered with the abrupt variations of density between vapor
and liquid phases through a condensation-evaporation process. Such single-continuity-
equation-homogeneous type mixture methods have become fairly widely used for sheet
and supercavitating flow analysis [1, 10–16]. Here, a time-accurate preconditioned type
three-dimensional multiphase Navier-Stokes analysis near the limit of incompressible
flow is extended based on the mixture flow model for the prediction of underwater cavi-
tation problems. A dual-time stepping method is used for the unsteady computations by
introducing artificial time terms in the governing equations and highly accurate resolu-
tion of phase interfaces will be introduced.

The paper is organized as follows. In Section 2, the governing equations will be pre-
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sented. The numerical methods will be described in Section 3. Numerical results on cav-
itated flows over a 3D cylindrical headform and on a 2D channel cavity will be reported
and discussed. Some concluding remarks will be given in the final section.

2 Governing equations

In the mixture flow model, the flow is assumed to be in thermal and dynamic equilib-
rium at the interface where the flow velocity is assumed to be continuous. Therefore,
the equations are described as a fluid mixture of liquid and vapor. The phasic continu-
ity equations are written in terms of the volume fraction to simplify the derivation of
the eigensystem. Source terms are added to the mixture continuity equation to model
the mass-transfer rates Ṡ from liquid to vapor and from vapor to liquid. The governing
equations can be written in the following generalized curvilinear coordinates as

Γe
∂Q̂

∂t
+Γ

∂Q̂

∂τ
+

∂(F−Fv)

∂ξ
+
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where the subscripts l and g denote the liquid phase and the vapor phase, respectively,
J is the transform Jacobian matrix from the generalized coordinates to the Cartesian co-
ordinates, p is the pressure, (u,v,w) are the velocity components in x, y, z direction, re-
spectively, αg is the gas volume fraction. The contravariant velocity U in the ξ direction
is defined by

U = ξxu+ξyv+ξzw+ξt. (2.2)

Similar forms can be obtained for V and W. Also, the viscous fluxes can be given by
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Similar forms can be obtained for Gv and Hv. Moreover,

S=
1

J
{0,0,0,0,(Ṡv)}

T. (2.4)
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In addition, a vapor generation source term originally used by Kunz et al. [10] is used
to model the cavitation event. In their model, the mass transfer rate is proportional to
the volume fraction and the amount of the local pressure less or more than the vapor
pressure:

Ṡ=αl

(

cprod

t∞

max(0,pv−p)−
cevap

t∞

αlαg

)

, (2.5)

where t∞ denotes the characteristic time and pv is the vapor pressure. The constants
(cevap/t∞) and (cprod/t∞) are empirical, which express the time rate of the evaporation
and condensation processes with respect to the flow process. In this work, cevap/t∞=0.01
and cprod/t∞ = 5 for pg/pl = 0.001. Furthermore, the transformation matrices Γe and Γ

from conservative variables to primitive variables are given by
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
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. (2.6)

At the same time, the mixture density can be calculated based on the volume fraction and
the phasic density as follows:

ρm =αlρl +αgρg, αl +αg =1. (2.7)

Besides, the governing equations are normalized with the liquid density ρl , free stream
velocity U∞ and the characteristic length of the body D. Therefore, the Reynolds number
is defined as

Re=
ρlU∞D

µl
. (2.8)

Based on the artificial compressibility parameter β, τ in (2.1) is the artificial character-
istic time, and t is the physical time. The artificial time terms are added to the governing
equations in order to build up a dual-time stepping algorithm for the unsteady calcula-
tions. The proposed artificial terms ensure a consistent convergence rate. In this baseline
formulation, the phasic density of each constituent is taken as constant. Also, note that
each of the equations contains two sets of time-derivatives — those written in terms of the
variable “t” correspond to physical time terms, while those written in terms of “τ” corre-
spond to pseudo-time terms that are employed in the time-iterative solution procedure.
The forms of the pseudo-time terms will be discussed in the next section.

3 Numerical discretization

Here, the main algorithm for the solution of the time dependent preconditioned Navier-
Stokes equations [19,20] is presented. Numerical methods include the dual-time stepping



898 Y.-Y. Niu and W.-Y. Hsu / Commun. Comput. Phys., 4 (2008), pp. 894-910

for a time-derivative preconditioning model, Roe type flux calculations [21] at cell inter-
faces based on the characteristics of the governing equations and a linearized implicit
solution of the resulting non-linear system. Therefore, the eigenvalues and eigenvectors
of the incompressible multi-phase system equations are required for the numerical dis-
cretization of the convective flux. Eq. (2.1) can be linearized first as
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∂τ
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where A=∂F/∂Q, similarly for B and C. The matrix Ã=T−1∂F/∂Q is given by
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The eigenvalues of the preconditioned Jacobian matrix Ã are given by

λ1,λ2,λ5 =U, λ3 =U+C, λ4 =U−C, C=
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where (mx,my,mz), (nx,ny,nz) can be constructed to be linear independent based on ge-
ometry metrics and orthogonal to the local surface vector. The construction procedure
can be found in the works of Pan and Chakravarthy [22].

3.1 Time discretization

In the dual-time stepping formulation, usually, the physical-time terms are discretized
using a second-order, three-point, backward difference formula; that is

Γe
∂Q̂

∂t
=Γe

1.5Q̂n+1,k+1−2Q̂n+0.5Q̂n−1

∆t
, (3.5)
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where n designates the index of the physical-time level and k is the index of the artificial-
time level. The artificial-time terms are discretized by the following implicit Euler finite-
difference formula:

Γ
∂Q̂

∂τ
=Γ

Q̂n+1,k+1−Q̂n+1,k

∆τ
. (3.6)

Based on Eqs. (3.5) and (3.6), the linearized form of Eq. (3.1) can be written as
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Then we can simplify Eq. (3.7) by the following delta form

(
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Γ
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−1 J∆τRe s(Q̂)n+1,k. (3.8)

The above equation can be factorized using the LU decomposition method for the
pseudo time iteration; Re s(Q̂) is the unsteady residue vector, ∆Q̂ is the spatial differ-
ence Q̂i+1−Q̂i; ∆τ is chosen as the local pseudo time step which is determined by the
largest eigenvalue of the preconditioning system of the governing equations for each
grid cell. The diffusion terms are evaluated by the standard central differencing scheme.
The implicit part at the left-hand side of Eq. (3.8) is discretized using a first-order upwind
difference scheme. One of them in the ξ direction can be expressed as:

∂A

∂ξ
=

(Ai+1,j,k−Ai,j,k)

∆ξ
, (3.9)

where A=A++A−, and A+ and A− are computed based on the eigenvalues of the matrix
A and the related eigenvector T, namely,

A±=TΛ
±T−1, with (3.10)
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


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The terms for B and C can be treated similarly. Eq. (3.8) can be factorized after using finite
difference formulation for the derivative term:

[(D−L)D−1(D+U)]∆Q̂n+1,k+1
i,j,k =Γ

−1J∆τRe s(Q̂)n+1,k, (3.12)
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where L, D and U are recursively as:
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U =Γ
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1

2
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+Γ
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]

+Γ
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[
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1

2
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. (3.15)

Furthermore, Eq. (3.12) can be proceeded using the LU approach to advance the solution
in pseudo-time. This is implemented in two steps, i.e., a backward and a forward step in
each direction:

first (D−L)∆Q̂∗= RHSn+1,k+1/2
i,j,k , (3.16)

then (D+U)∆Q̂n+1,k+1
i,j,k = D∆Q̂∗. (3.17)

Finally, the primitive variables at the new pseudo-time level k+1 is updated by

Q̂n+1,k+1
i,j,k = Q̂n+1,k

i,j,k +∆Q̂∗. (3.18)

3.2 Numerical flux

Considering the derivative of the convective flux in the ξ-direction, we use the following
difference formula for the flux derivatives:

∂F

∂ξ
=

Fi+1/2,j,k−Fi−1/2,j,k

∆ξ
. (3.19)

The convective flux at the cell interfaces is computed by the Roe type flux-difference
splitting. The flux difference splitting scheme is constructed based on the eigenvalues
and eigenvectors of the Jacobian matrix Ã. This approach admits that numerical flux
F contains the characteristic information propagating through the domain, with speed
and direction according to the eigenvalues of the system. By splitting F into different
parts, where each part contains the information traveling in a particular direction, i.e.,
characteristic information, and by differencing the split fluxes according to the directions
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(a)

(b)

Figure 1: (a) The surface mesh distributions for the cylindrical headform (60×50×100, C type grid points).
(b) 2D side view of mesh distributions for the cylindrical headform.

of the corresponding wave propagation, the interface numerical flux of each cell is then
expressed as

Fi+1/2,j,k =
1

2

(

Fi+1,j,k+Fi,j,k

)

−
1

2
(ΓT|Λ|T−1)i+1/2,j,k∆Qi+1/2,j,k. (3.20)

Here ∆Q is the spatial difference Qi+1−Qi.

4 Results and discussions

In the verification, cavitated flows over a 3D cylindrical headform and 2D convergent/di-
vergent channel are chosen and compared with experimental data [23,24]. Especially, the
two-dimensional simulations of the cylindrical headform can be found in many litera-
tures as [10–14, 16, 17]. In these past works, the numerical results in the cases of large
cavitation number have achieved accurate computations against measurement. How-
ever, the simulations of low cavitation number as 0.2 or 0.3 are not satisfactory. Also, the
there-dimensional computations of cylindrical headform have seldom been seen in the
past works.
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Figure 2: 2D side view of pressure coefficient distribution (K =0.2).

4.1 Cylindrical headform

A measurement data achieved on a wind tunnel conducted by Rouse and McNown [23],
involving liquid water flow over a cylindrical forebody, is chosen as the first verification
test case in this work. The experiment of Rouse and McNown has been widely used for
the assessment of incompressible flow models for cavitation prediction. Flow conditions
are assumed for each computation with the same Reynolds number of 1.36×105, tem-
perature of 300K, incoming uniform velocity of 4.317 m/s. Also, the incompressible flow
liquid density is 998.2 kg/m3 at standard conditions. The surface pressure distributions
considered as functions of the cavitation number are used for the comparison against
measurement. The grid independence study is performed on the comparison of pre-
dicted surface pressure coefficient against the measured data of Rouse and McNown as
seen in Fig. 4. The computed results on coarse and fine grids are almost identical. There-
fore, we only demonstrate the results on coarse grids in this section. The influence the
cavitation number on occurrence of cavitation is studied. Under the above-mentioned
conditions, the vapor pressure is set to be 3589Pa. Standard subsonic inflow (fixed ve-
locity and extrapolated pressure) and subsonic out flow (fixed pressure and extrapolated
velocity) are used in the calculations. In addition, the computations are performed on
the C-type mesh with 60×50×100 and 60×75×200 nodes. As shown in Figs. 1(a) and
1(b), the 60×50×100 grid plot is clustered tightly to the body surface and to the region
downstream of the end of the cylindrical section, where a cavity growth is expected.
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K =0.2

K =0.3

K =0.4

K =0.8

Figure 3: Three-dimensional contour plots of gas volume fraction over the cylindrical headform at steady-state
(K =0.2∼0.8).
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Before performing the calculations, we define the cavitation number by

K =
2(P0−Pv)

(ρU2
0)

=
P0−Pv

P0−P∞

,

where P0, Pv, P∞ are total pressure, saturated-vapor pressure, and free-stream pressure
respectively. The so-called cavitation number pressure coefficient is defined as

Cp =
2(p−p0)

ρlU
2
0

.

Also, the relationship between Cp and S/D are predicted in our calculations, where S/D
is the surface distance starting from the head nose, normalized by its diameter of 1 in.

One of the predicted pressures in the cavitation zones is shown in Fig. 2. We can ob-
serve that the pressure of expansion region drops to the vapor pressure which leads to
the formation of cavitation no matter K=0.2, 0.3, 0.4. Because of the impact of inlet liquid
flow at the cylindrical head, the high local pressure regions appear around the leading
edge of the head due to the local velocity near stagnation velocity. After that, the flows
pass over the head shoulder, then, the local pressures continue to drop down violently,
resulting in negative pressure regions which cause the appearance of the bubbles. The
pressure in bubbles retained constant in the transition region of evaporation. However,
for the sake of the reversal flows, the pressures rise up abruptly again at the end of the
evaporation region. Here the volume fraction of the liquid is increased and the bubbles
start to collapse until the bubble region disappearing. Finally, the liquid flows dominate
the downstream and the pressure recovers to the initial state. When K =0.8, the pressure
loss is not obvious and still larger than the local saturation pressure so that the cavita-
tion will not be produced. As shown in Fig. 3, the evolutions of volume fraction for the
water vapor are predicted in the 3D cases with K = 0.2 to 0.4 and demonstrated by the
gas volume fraction fields. As K decreases from 0.8, the pressure in the expansion region
drops to the vapor pressure, resulting in the generation of a vapor phase and the growth
of a bubble. The reversal flow appears because the negative pressure exists on the down-
stream. The flow velocity here is relatively small. From Fig. 3, we note that the cavitation
length is getting bigger and the peak pressure is increasingly changed as the cavitation
number K decreases. In addition, no cavitation zone is found in the case of K =0.8.

Fig. 4 demonstrates that the predicted surface pressure distributions, which are com-
pared with experimental data, can also be parameterized as a function of the cavitation
number. It compares the surface pressure distribution with the data of Rouse and Mc-
Nown. The current test results are shown to be consistent with the validated data when
K=0.4 and K=0.8 on both coarse grids and fine grids. However, predicted surface pres-
sure coefficients in the phase transition regions at K =0.2 and K =0.3 are not completely
consistent with the experimental data, although demonstrated in a satisfactory tendency.
Also, an evolution of two-dimensional contour plots of gas volume fraction over the
cylindrical headform at transient states for the case of K = 0.2 is demonstrated in Fig. 5.



Y.-Y. Niu and W.-Y. Hsu / Commun. Comput. Phys., 4 (2008), pp. 894-910 905

Coarse grids Fine grids

Figure 4: Surface pressure coefficient distributions (K =0.2∼0.8) computed on 60×50×100, coarse and 60×
75×200 fine grid points.
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T =0.10 T =0.20

T =0.32 T =0.40

T =0.60 T =0.80

T =2.00 T =3.00

Figure 5: Three-dimensional contour plots of gas volume fraction over the cylindrical headform at transient
states for the case of K =0.2.
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Figure 6: 2D mesh distributions of a convergent/divergent channel.

T =0.01s

T =0.03s

T =0.07s

T =0.09s

Figure 7: The contour plots of gas volume fraction for a convergent-divergent channel at different transient
states (from 0 sec to 0.09 second).

From the above computations, the discrepancy from numerical prediction against mea-
sured data may arise from the unsteady turbulence phenomena in the cavitation region.
This remains to be an important topic for the further cavitation flow study.

4.2 Convergent/divergent channel cavity

The second case corresponds to an experiment conducted by Reboud [24], involving liq-
uid water flow in 2D 4.3/4 degree convergent/divergent channel geometry. The geom-
etry and mesh are shown in Fig. 6. The channel throat which is the narrowest height is
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x/h=0.10 x/h=0.51

x/h=0.93 x/h=1.37

Figure 8: 2D velocity distributions of a convergent-divergent channel at different cross sections.

called h. The computations are performed on difference grids. The grid independence is
found on 160×50 grid points, with Reynolds number 1.6×106, the vapor pressure 2000
Pa, and the liquid density 998.2 kg/m3. The computational conditions of the isother-
mal temperature of 293 K and inlet void fraction of 0.1% were imposed. According to
Reboud’s experimental observations, a nearly one periodic cycle of evaporation and con-
densation process was observed. In this case, the distributions of gas volume fraction are
predicted as shown in Fig. 7. A thin sheet cavitation exists in vicinity of the throat and
maximum volume fraction is approximately 80%. A sheet cavitation occurring near the
throat developing and flowing downstream with a nearly periodic behavior is captured
in our simulation. At the beginning of the gas bubble evolution, the bubble distributes
like the boundary layer along the low surface in the divergent channel with the adverse
pressure gradient. Then, a sheet cavity growing and getting larger from the narrow sec-
tion of the throat until t=0.0 second, then repeat periodically.

Fig. 8 shows a comparison of predicted average velocity distributions against mea-
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sured data. The measurement range is focused at cavitation region in which y represents
the normal distance from the lower wall. Overall, the velocity profiles only agree with
the measured data before the section of 0.51h downstream from the throat. However,
the separation region after 0.51h is somewhat under-estimated. We note that the com-
parison is performed at very small distance scale. Therefore, our simulation actually has
achieved a satisfactory tendency. Simulating velocity in the cavitated boundary layer
region requires further works on the turbulence modeling.

5 Concluded remarks

In this work, an incompressible underwater multi-phase flow code based on the precon-
ditioned three-dimensional multiphase Navier-Stokes equations comprised of the mix-
ture density, mixture momentum and constituent volume fraction equations is devel-
oped. A dual-time implicit formulation with LU Decomposition is employed to accom-
modate the inherently unsteady physics. Also, we adopt the Roe flux splitting method to
deal with flux discretization in space. Numerical validations are performed on the cases
of transient 3D cylindrical headform and 2D convergent-divergent nozzle in underwater
cavitating flows. Though the turbulence effects are not considered in our computations,
numerical validation against experimental data in the simulation of blunt body flows is
satisfactory and demonstrates a very similar surface pressure coefficient prediction as the
data of Rouse and McNown [23]. A further work is required to study physical phenom-
ena containing many sizes of length and time scales such as the turbulence effects and
surface tension effects of bubbles.
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